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Abstract

One of the challenges with nuclear reactors is choosing materials that can endure intense
levels of radiation. When irradiating a material, the atoms starts a process of ballistic
collisions, but it can also lead to radioactive decay or transmutation of the material. The
radiation interacts with the materials and causes a wide range of microscopic damages,
which over time accumulate to create macroscopic damaging effects such as brittleness,
swelling and deformations. With time, the materials can transmute into alloys, and it is
of great importance to study irradiation on crystals of different elements.

It is very common to use molecular dynamics simulations for this sort of research. A
well known ab initio simulation package based on Density Functional Theory (DFT) is
VASP. Executing a large simulation cell in VASP is computationally expensive however,
so the main focus of this project has been to create a program that will speed up the
simulations, without sacrificing too much accuracy.

LAMMPS is another simulation package, but unlike VASP, it is based on classical
mechanics. To optimize the simulations, we first predict the trajectories of the atoms in
LAMMPS to see if any will experience strong local compression conditions and if so, use
a more accurate potential model for those atoms in VASP.

The program written for this task is called LAVAX for LAMMPS VAsp eXchanger.
An analysis of the results of simulating radiation damage in a tungsten crystal showed
that LAVAX is more efficient by a factor of up to 6.3 compared to running VASP alone.
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Chapter 1

Introduction

Nuclear reactors operate under extreme conditions: high temperature, intense levels of
radiation and in some cases chemical corrosion. This puts high requirements on the
materials used for cladding tubes, reactor vessel, plasma-facing components etc.

The high-energetic neutrons released in the nuclear reactions interact with the ma-
terials and cause a wide range of microscopic damages, which over time accumulate to
create macroscopic damaging effects such as brittleness, swelling and deformations. [3]
The evolution of these damages are complicated phenomena, and ranges on length scales
from Ångstroms to meters and on timescales from femtoseconds to years. Besides direct
experimental examination, it is also possible to simulate these damages in a computer,
which is often faster, cheaper and gives more insight into the process.

Different time/length scales call for different simulation methods. Ab-inito (latin:
from the beginning) methods requires no previous experimental data (besides the atomic
number) and gives the best agreement with reality in comparison with other simulation
methods. Ab-initio means that the methods used are based on fundamental principals
of nature, such as solving the Schrödinger equation for some system. An example of a
non-ab initio method would be molecular dynamics based on classical mechanics, where
the atoms are approximated by a semi-empirical potential. The ab initio method used in
this work is the popular Density Functional Theory (DFT) method. [13] DFT is however
computationally expensive even for moderately sized systems, and almost exclusively
requires supercomputer clusters to run a simulation in a reasonable time period.

The objective of this work is to speed up the DFT simulation by using a detailed
quantum mechanical potential model in only those parts of the crystal that require it
and a less refined model in the rest of the crystal. This will benefit future works and
simulations, since it allows for faster execution and thus larger crystals can be analyzed
without loss of accuracy.

In this work we have studied radiation damage on a crystal of tungsten, a proposed
material for plasma-facing components in fusion reactors. [4]
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1.1 Background

1.1.1 Radiation damage in materials

Radiation damage in materials occurs when energetic neutrons collides with the atoms
in a crystal. The kinetic energy of the neutrons is directly transferred to some of the
atoms. These atoms are called the Primary Knock-on Atoms (PKA). The PKA starts
a cascade of ballistic collisions between the atoms in the crystal. The collisions displace
the atoms in the crystal, and these displacements leaves a vacancy behind that may be
left empty or filled by another atom. [3] The energy of the PKA will spread to the entire
crystal as thermal energy and eventually one can measure the defects that remain.

Defects

There are different defects that can occur when a material is exposed to radiation, and
a few of them are worth mentioning here. A crystal consisting of one or different atom
types can get both Foreign Interstitial Atoms (FIA), substitutional atoms, Self Interstitial
Atoms (SIA) and vacancies. The FIA are atoms that naturally occur in the interstitial
positions of the crystal (blue atom in Fig. 1.1), such as carbon or oxygen in a metallic
lattice. The substitutional atoms (SA) are the ones who occupy the ordinary lattice posi-
tion (red atom). Both FIA and SA are defects that comes from the crystals composition
because of impurities.

Figure 1.1: Different types of defects in a crystal.

SIA is an extra atom that defects the crystal structure by crowding it’s way into the
crystal (the dumbbell at position (1.5, 0.5, 0.5)). A vacancy is a missing atom in the
lattice (origin). SIAs and vacancies are generated in equal proportion when atoms start
to collide into each other. [5]
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1.1.2 VASP - Vienna Ab initio Simulation Package

This is one of the two computer programs we have used during this project. VASP is a
program for atomic scale materials modeling, and is very common for quantum mechan-
ical (QM) molecular dynamics. VASP utilizes DFT for molecular dynamics simulations
and the simulation cell is using periodic boundary conditions. For every ionic step VASP
takes, the Kohn-Sham equations are used to reach convergence of the electron density
(explained in section 2.1).

Since VASP is using DFT it is computationally expensive, and that is why LAMMPS
has an important key role in this project. [13][15]

1.1.3 LAMMPS - Large scale Atomic/Molecular Massively Par-
allel Simulator

Unlike VASP, LAMMPS is used for classical mechanical molecular dynamics. This is an
important difference since classical mechanics is not based on heavy calculations com-
pared to a quantum mechanics. Another difference is that a more accurate model of
the potential is used for the quantum mechanical simulation compared to the classical
mechanical.

LAMMPS integrates Newton’s equation of motion for a collection of atoms that in-
teract via short- or long-range forces with a variety of initial and boundary conditions.
LAMMPS uses neighbor lists to keep track of nearby particles for computational effi-
ciency. The atoms are described by a semi-empirical potential model. In this work the
relevant potential model is the Embedded Atom Model (EAM), which is suitable for
studying metallic crystals. LAMMPS also provide other potential models for studying
polymeric, biological, granular and coarse-grained systems. The boundary conditions in
LAMMPS can be set to be periodic or fixed. [12][8]

1.1.4 Ovito - Open Visualization Tool

This is a visualization tool for atomistic simulations, where the simulation cell and the
entire sequence of events can be seen in a three dimensional space. Multiple particle types
can be visualized, and the particles can be color coded for various properties (kinetic
energy for instance).
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Figure 1.2: Radiation damage visualized in OVITO

1.2 Scope

When studying radiation damage in reactor materials, it is important to use simulations
to see what properties a certain material have and how it is affected when it is exposed for
radiation. Density Functional Theory publications is becoming more common nowadays
compared to 30 years ago for this kind of research. To use DFT calculations for molecular
dynamics is starting to become tractable at the more and more powerful supercomputers
that are available today. [10] To use a quantum mechanical simulation gives, as mentioned
before, the best accuracy on the atomic scale but is computationally challenging, so how
can this problem be solved? How can the execution time of a simulation be minimized,
and still give a good accuracy of the results?

This study will not attempt to quantify the final state of defects of a crystal, but
rather focus only on the performance aspect of simulating radiation damage in VASP.
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1.3 Objective

The aim of this study is to write code that exchange data between VASP and LAMMPS.
First, LAMMPS will run to predict the trajectories of the atoms in a crystal during
some short time interval. LAMMPS will simultaneously build neighbor lists between the
atoms within some radius. The neighbor lists will then be used to determine what atoms
require a more detailed potential model in VASP. VASP will then be run for the same
short time interval. This process will be repeated for a desired number of time steps.

A comparison can be done between the execution of the code and a more accurate, full
simulation using VASP. An analysis of the results will tell how much the program differ
from running only VASP, and if our code manages to speed up this kind of simulation.

The potential models provided by VASP will also need to be compared to see at what
distance they start to deviate from each other.
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Chapter 2

Theoretical Background

The code VASP is based on DFT, so it will be explained here briefly so the reader
can understand both the theoretical background of DFT and why it is computationally
expensive to use for a large number of atoms. LAMMPS has also been used during this
project and the theory behind LAMMPS will also be explained.

2.1 DFT - Density Functional Theory

The Density Functional Theory is basically a method to solve the time independent,
non-relativistic Schrödinger equation with approximations, because the parameters that
are required for solving the Schrödinger equation are computationally expensive. For a
system containing M nuclei and N electrons, the Schrödinger Equation can be written
as:

ĤΨi(x1, ...,xN,R1, ...,RM) = EiΨi(x1, ...,xN,R1, ...,RM) (2.1)

where Ĥ is the Hamiltonian of the system.
Hohenberg and Kohn laid the theoretical foundation of DFT in the 1960s by proving

that the determination of the ground-state wavefunction (2.1) of the electrons in a system
(a function of 3N variables in a system containing N electrons) can be replaced by the
determination of the ground-state electronic density (a function of only 3 variables). [2]

Born-Oppenheimer approximation

The Hamiltonian can be written as:

Ĥ = Te + Tn + Vext + Vee + Vnn (2.2)

where Te is the kinetic energy of the electrons, Tn is the kinetic energy of the nuclei, Vext is
the attractive electrostatic interaction between the nuclei and the electrons, Vee and Vnn
is the repulsive potential due to the electron-electron and nucleus-nucleus interactions.

The Born-Oppenheimer approximation is made by considering that the nuclei move
much slower than the electrons, that we can consider the kinetic energy of the nuclei as
zero and their potential energy as constant.[5] With the Born-Oppenheimer approxima-
tion the Hamiltonian reduces to:

Ĥ = Te + Vext + Vee (2.3)
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which is called the electronic Hamiltonian. Then the solution of the Schrödinger equation
reduces to:

ĤelecΨelec = EelecΨelec (2.4)

The variational principle

The variational principle is a method to find the ground state energy E0 by guessing an
upper bound energy of the state Ψ.[11] The expected value of the energy E is a functional
and can be written as:

E[Ψ] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

≥ E0 (2.5)

with

〈Ψ|Ĥ|Ψ〉 =

∫
Ψ∗ĤΨdx , 〈Ψ|Ψ〉 =

∫
Ψ∗Ψdx

To get the ground state energy E0, the functional must be minimized with the wave
functions which depends on the number N of electrons. The functional will also depend
on the nuclear potential:

E0 = min
Ψ→N

E[Ψ] = E[N, Vext]

Here, Ψ→ N means that Ψ is an allowed N -electron wave function.

The Hohenberg-Kohn theorems

The first Hohenberg-Kohn theorem states that the external potential Vext and the full
many particle state are unique functionals of the electron density ρ(r).
The second Hohenberg-Kohn theorem states that the functional delivers the lowest
ground state energy of the system when the input density is the true ground state
density.[11]

The Kohn-Sham equations

By using the Hohenberg-Kohn theorem the properties of a system can be calculated, but
the theorem is due to the ground state density is given. The Kohn-Sham equations is a
way of finding the ground state density. [11][5]
Introducing a reference system that is non interacting and has the same density as the
real system, we can define the density and the kinetic energy as follows:

ρ(r) =
N∑
i

|ψi(r)|2 (2.6)

Ts = −1

2

N∑
i

〈ψi| 52 |ψi〉 (2.7)

But the kinetic energy of the reference system differes from the kinetic energy of
the real system. To minimize this difference, one can separate the functional F [ρ] that
contains all of the contributions of the kinetic energy:

F [ρ] = Ts[ρ] + J [ρ] + EXC [ρ] (2.8)
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The energy of the real system can be expressed with (2.8):

E[ρ] = Ts[ρ] + J [ρ] + EXC [ρ] + ENe[ρ] (2.9)

J [ρ] =
1

2

∫ ∫
ρ(r1)ρ(r2)

r12

dr1dr2 ENe[ρ] =

∫
VNeρ(r)dr EXC [ρ] = (T [ρ]−Ts[ρ])+(Eee[ρ]−J [ρ])

(2.10)
J [ρ] is called the classical Coloumb interaction, ENe[ρ] is the functional of the nuclear-
electron interaction and EXC [ρ] is the exchange correlation energy. EXC [ρ] is unknown
and determined locally by the systems electronic density. Since the Perdew Burke Ernz-
erhof (PBE) potential is used, superior limits are used for the exchange-correlation en-
ergies. [17] We can now use the variational principle and 〈ψi|ψj〉 = δij for (2.9). The
Kohn-Sham equations can now be formulated:

[
− 1

2
52 +Veff (r1)

]
ψi = εiψi (2.11)

Veff (r1) =

∫
ρ(r2)

r12

dr2 + VXC(r1)−
M∑
A

ZA

r1A

(2.12)

ρ(r) =
N∑
i

|ψi(r)|2 (2.13)

To solve the Kohn-Sham equations practically, the first step is to guess the density.
Next step is to determine the effective potential (2.12), and then solve the Kohn-Sham
equation (2.11) to find a new value of the density. Continue to find a new value of the
potential (2.13) and iterate until convergence. The process of solving the Kohn-Sham
equations is described in Fig. 2.1:
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Figure 2.1: Algorithm for finding the ground state charge density in DFT.

VASP use the Kohn-Sham equations for every ionic step as mentioned before, and
the computing time of M atoms is proportional to M3. [16]
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2.2 Wave functions

It is necessary to have a good representation of the atoms wave function in DFT. The rep-
resentation have to be precise in the region of interest, as well as computationally efficient
in any part of space. Several methods are available to represent the wave function:

2.2.1 Pseudopotentials

These methods often use the plane waves approximation:

Ψi(r) =
∑
K

ci,Ke
i(k+K)r (2.14)

However, this requires a large basis set to fit the real wave function in the core region,
where the wave function varies greatly, in order to be convergent. In areas far away from
the core, most of the physical properties are best described by the valence electrons and
the core can be considered frozen. To speed up convergence, a smaller basis set is used
to fit the wave function in the valence region and is (unrealistically) softened in the core
region, as illustrated in Fig. 2.2. The choice of cutoff radius rc is a trade-off between fast
convergence and precision in the core. [5]

Figure 2.2: When the atoms are far enough apart, it is sufficient to only include the
valence electrons in the potential and the core is softened. [6]
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2.2.2 Augmented Wave methods

These methods are based on the “muffin-tin” approximation, where the crystal space is
divided in to two regions: The interstitial region, where the potential is assumed to be
constant and the spherical “muffin” region centered on the atom positions with radius s,
where the potential is the average radial value:

V (r) =

{
V (r) , r < s
V0 , r ≥ s

Since the potential is spherically symmetric, the radial part of the Schrödinger equa-
tion becomes, with u(r) = rR(r):

− ~2

2m

d2u

dr2
+

[
V (r) +

~2

2m

l(l + 1)

r2

]
u = Eu

with the full solution for one atom in the region r < s:

Ψn=1(r, θ, φ) =
∞∑
l=0

l∑
m=−l

almRl(r)Y
m
l (θ, φ)

In the interstitial region where the potential is constant, the wave function is a plane
wave series (Eq. 2.14). Here the alm must be chosen to the wave function is continuous
at r = s. The wave function for the entire crystal is a linear combination of all the one
atom wave functions:

Ψk ∝
{∑∞

l=0

∑l
m=−lAlmRl(r)Y

m
l , r < s∑

K ck,Ke
i(k+K)r , r ≥ s

[5]

2.2.3 PAW - Projector Augmented Wave method

The Projector Augmented Wave formalism is a complicated pseudoization scheme, similar
to the ultrasoft scheme (as described in 2.2.1) but allows for the reconstruction of the
real electronic density and the real wave functions, with all their oscillations (as seen in
Fig. 2.2). [2] In the valence zone, plane waves are used (as in the ultrasoft scheme), but in
the core region, the wavefunction is expressed with the help of atomic orbitals (from the
augmented wave method). This method can be considered a hybrid of the two. [5][14]

In this work we have only used PAW potentials, provided by VASP.
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2.3 Screened Coulombic repulsion

Ionic repulsive interaction can be described as a screened Coulombic interaction at very
short distances. This can be modeled by multiplying the ordinary Coulombic repulsion
between the nuclei with a screening function χ(r/a):

V (r) =
Z1Z2e

2

4πε0r
χ(r/a)

with the condition that χ(r/a) → 1 when r → 0. Z1 and Z2 are the nuclear charges,
and a is the screening length. One such parameterization of χ is the Biersack-Ziegler
potential, which was constructed by fitting a universal screening function to repulsions
calculated for many different atom pairs:

χ(x) = 0.1818e−3.2x + 0.5099e−0.9423x

+ 0.2802e−0.4028x + 0.02817e−0.2016x

where

a =
0.8854a0

Z0.23
1 + Z0.23

2

and x = r/a and a0 = 0.529 Å is the Bohr radius. [1]
It will be a good measure to compare the PAW-potentials provided by VASP with

the screened Coulumbic potential at short distances to see if they actually approach each
other.

2.4 Classical Mechanics Theory

One of the theories that molecular dynamics simulations can be based on is classical
mechanics, Newtons law of motion is used for a given atomic system and is defined as:

m ¨r(t) = F (r(t)) (2.15)

Where F (r(t)) is the forces acting on the atom, r̈(t) is the acceleration of the atom and
m is the atomic mass. By these equations one can derive the Velocity Verlet Algorithm.

One can write the time dependent differentiations as:

ṙ(t) = ν(t)

r̈i = ν̇(t), ν̇(t) =
F (r(t))

m

By writing r(t+ δt) as a Taylor expansion:

r(t+ h) = r(t) + hṙ(t) +
h2

2
r̈(t) +O(h3) (2.16)

and rewrite it as:

r(t+ h) = r(t) + hν(t) +
h2

2

F (r(t))

m
+O(h3) (2.17)
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Expanding ν(t+ h) in the following step:

ν(t+ h) = ν(t) + hν̇(t) +
h2

2
ν̈(t) +O(h3) (2.18)

Knowing that F (r(t))
m

will replace ν̇(t) in the above equation, but an expression for ν̈(t)
needs to be found. By using Taylor expansion for ν̇(t+ h), ν̈(t) can be expressed as:

h2

2
ν̈(t) = h(ν̇(t+ h)− ν̇(t)) +O(h3) (2.19)

By using the above expression and the equation of motion in ν(t + h) the following
result is obtained:

ν(t+ h) = ν(t) +
h

2m
(F (r(t+ h)) + F (r(t))) +O(h3) (2.20)

The Velocity Verlet Algorithm has the following steps: Start to decide values for the
position rk,the velocity νk and the force acting on the atom F (rk). Then calculate rk+1

from r(t + h) , the next step is to evaluate F (rk+1) and then decide νk+1. The first
iteration is done, then start to repeat the procedure with starting values of the position,
velocity and the force as rk+1,νk+1 and F (rk+1). [9]

15



Chapter 3

Methods

In this chapter the methods for comparing the different potentials provided by VASP are
described; the code LAVAX that optimize the execution of VASP, as well as the methods
to analyze the outputted data from VASP.

Since we have periodic boundary conditions in VASP we need a simulation cell large
enough so that the cascade of high energetic atoms from the PKA don’t cross over the
boundary and interferes with itself (Fig. 3.1). A large cell can however be very costly to
simulate.

Figure 3.1: Periodic boundary conditions: Atoms from a collision cascade, crossing the
boundary would (unrealistically) interfere with simulation cell.
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3.1 Comparing Potentials

VASP provides a large number of PAW potentials. For some elements, several PAW
versions exist, where the standard version generally has no extension. The extensions
pv and sv imply that the p and s semi-core states are treated as valence states (i.e. for
V pv the 3p states are treated as valence states, and for V sv the 3s and 3p states are
treated as valence states). [7]

In this work we have used the potential W (tungsten) with the 6s and 5d orbitals
treated as valence states with a total of 6 electrons; W pv with the additional 5p orbital
(a total of 12 electrons) and W sv with the additional 5s (14 electrons total).

We need a way to determine at what distance the two pseudo-potentials start to deviate
significantly from each other. This should become apparent when the atoms electron
shells starts to overlap.

Figure 3.2: When the atoms are far enough apart, it is sufficient to only include the
valence electrons in the potential.

Figure 3.3: When the atoms are close enough so that their electron shells begin to overlap,
it is necessary to include further shells in the potential.

17



We have two methods to compare the W and W pv potentials. For both methods, the
NSW flag in VASP is set to 0 so that we calculate the energy of the system statically. The
first is a quasi-static movement of an atom as illustrated in Fig. 3.4. The rest of the
atoms are kept at their respective lattice positions.

Figure 3.4: Determining the potential energy by a quasi-static method. One of the
atoms is moved closer to another atom in each iteration and the energy of the system is
computed.

The second method is compressing the entire lattice by varying the lattice constant
as illustrated in Fig. 3.5. This will give us a zero-level if the lattice constant a→∞

Figure 3.5: Determining the potential energy by varying the lattice constant. This can
be thought of as compressing the entire crystal.

18



3.2 LAVAX - LAMMPS VASP Exchanger

We wrote a program (in java) called LAVAX that exchanges data between VASP and
LAMMPS in order to speed up the execution time of a VASP simulation. LAMMPS is
used to determine the set of atoms that will experience strong local compression condi-
tions (see Fig. 3.6). The selected set of atoms will be treated in VASP by a potential
that includes semi-core electrons in order to model the correct physics for these condi-
tions. The remaining atoms can be treated with a minimal set of valence electrons to
save computation time.

Predicted
Actual

Figure 3.6: The predicted path in LAMMPS an atom may take v.s. the actual path it
will take in VASP. The dashed atoms are those whose distance is short enough to warrant
a more accurate potential during a run in VASP.

First, the state of the crystal (positions and velocities of the atoms) is imported to
LAMMPS. LAMMPS then predicts the paths the atoms will take in the crystal during
some short time step (on the order of 10 fs). LAMMPS will simultaneously build pairwise
neighbor lists for atoms within some specified cutoff distance rc of each other (determined
perhaps from one of the methods in the previous section). VASP then runs for the same
short time step, with the selected atoms from the neighbor lists using a more accurate
potential model compared to the rest of the atoms in the crystal.

LAVAX assigns an index to each atom for bookkeeping and LAMMPS is configured
to output the indices in the neighbor lists.

The predicted path differs from the actual path the atoms take in VASP (see Fig. 3.6),
but since the time step is small, this difference is negligible. The process can be repeated
for desired number of time steps.

The algorithm is described in Fig. 3.7.
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Figure 3.7: Principal flow chart of LAVAX.

3.2.1 Adaptive timestep

In the beginning of the simulation it can be of interest to take smaller time steps since a
few of the atoms will have comparably high speeds (such as the PKA). Later in the sim-
ulation, the kinetic energy will distribute itself over the entire crystal and the maximum
speed among all atoms will be much smaller. A larger timestep will then suffice. We
can use an adaptive time step ∆t chosen with the following condition in the beginning
of each LAVAX iteration:

∆t = min (MAX DISTANCE/vmax, MAX TIMESTEP) (3.1)

where vmax is the maximum speed among all atoms in the crystal, MAX DISTANCE is the
maximum tolerated distance any atom may travel during one ionic step and MAX TIMESTEP

is the maximum tolerated time step so that we don’t select an unfeasibly large time step.
The adaptive time step was implemented in LAVAX and used in all the simulations.
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3.3 Methods for the analysis

We can use to total kinetic energy of the crystal as a proxy variable for the state of the
entire crystal. To see if we get the same accuracy with LAVAX, we first need to perform
a reference simulations with only the more accurate potential model for the entire crystal
(we can also perform one for the less accurate potential model). We then run the same
simulation with LAVAX for various values for the rc-cutoff parameter, where we expect
the systems development to approach the development of the reference simulation for
larger rc-values.

To determine the performance gain using LAVAX, we can compare the average exe-
cution time of all the electronic steps in VASP with that of the reference simulation.
Since LAMMPS runs vastly faster than VASP we can neglect it’s contribution to the
total execution time.

We can also compare the total wall time of a full simulation, which is probably what
a prospective user would be more interested in.
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Chapter 4

Results

Here we see a visualization of the switch of potentials during a LAVAX run.

(a) t0 (b) t1

Figure 4.1: A switch of potentials between W (grey) and W pv (blue) during a LAVAX run

(a) t0 (b) t1

Figure 4.2: A switch of potentials during a LAVAX run in a larger crystal
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4.1 Comparing Potentials

Using the method of quasi-static movement of one atom, the potentials W and W pv (as
well as W sv even though it wasn’t used in any of the full simulations) as a function of
distance was determined. The divergence of the two can clearly be seen in Fig. 4.3
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Figure 4.3: Comparing the potential energy using the quasi-static method.

When we instead use the method of varying the lattice constant, we get the results in
Fig. 4.4. Here we have also inserted the theoretical screened Coulumbic potential (ZBL)
for comparison.
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Figure 4.4: Comparing the two potential models by varying the lattice constant.

From both Fig. 4.3 and 4.4 we can clearly see that the potential W becomes inadequate
around the NN-distance ≈ 2.4 Å. We also see that the more refined W pv (and W sv)
approaches the ZBL-curve at short distances, as expected.

4.2 Kinetic energy during a LAVAX run

First, we ran VASP simulations with only the W and W pv for the entire crystal, respec-
tively, for reference. The system studied was a bcc crystal consisting of 648 (= 2×9×6×6)
W-atoms, with initial temperature 50 K. A PKA was given a kinetic energy of 100 eV, in
the direction 〈135〉. We ran ten simulations for each potential. The total kinetic energy
of the system is plotted in Fig. 4.5 and can be seen as a proxy variable for the systems
state.
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Figure 4.5: The kinetic energy of the system with W and W pv for ten runs each with
random initial velocities, from the Maxwell-Boltzmann distribution.

Next, we ran the LAVAX program with different values for the rc-cutoff. That is,
the distance in which the W pv potential should be used. 10 runs for each rc-value was
started, although most of them diverged before the simulation could finish. Because of
this, not a very good statistical base was attained. A few more simulations was run at a
later date to attain a better base to analyze.

The mean value of the entire systems kinetic energy is given in Fig. 4.6
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Figure 4.6: The mean value of the systems kinetic energy, with random initial velocities
from the M-B distribution.

From Fig. 4.6 we see that the systems development initially agrees well for all rc-
values, but begins to depart noticeably around 200 fs. One must remember that the
system is chaotic in nature: a small change in velocity, position or potential energy at an
early stage, eventually leads to a large change at a later time. This is why it is important
to have a large statistical base, as the mean value of many runs should correspond the
systems “real” development.

A zoom-in of Fig. 4.6 can be seen in Fig. 4.7
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Figure 4.7: The mean value of the systems kinetic energy.

Here, we get a better view of the systems development in the beginning. The LAVAX
runs are clearly closer to the W pv reference simulation than the W, even though we don’t
get perfect conformity to the W pv. Whether this difference is acceptable or not is difficult
to say.

4.3 Performance gain with LAVAX

We ran a VASP simulation through LAVAX, as well as reference simulations, on the
Marconi supercomputer with the following settings:

CPU Cores: 2400

W crystal atoms: 1980 (= 2× 9× 10× 11)
rc-cutoff: 2.2 [Å]

PKA energy: 300 [eV]

PKA direction: 〈135〉
---- Adaptive time step settings ----

MAX DISTANCE: 0.1 [Å]

MAX TIMESTEP: 3.0 [fs]
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The average execution time spent in one electronic loop (every ionic step requires about
10 to 40 of these) is presented in Fig. 4.8
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Figure 4.8: The average time spent in one electronic step for LAVAX.

Since the simulation ran on 2400 cores, the W pv spent 2400× 260 s ≈ 173 core hours
for an average electronic step.

We ran another, smaller VASP simulation via LAVAX (plus reference simulations) on
the Marconi supercomputer with the following settings:

CPU Cores: 1600

W crystal atoms: 648 (= 2× 9× 6× 6)
rc-cutoff: 2.2 [Å]

PKA energy: 100 [eV]

PKA direction: 〈135〉
Total ionic steps (NSW): 150

---- Adaptive time step settings ----

MAX DISTANCE: 0.1 [Å]

MAX TIMESTEP: 3.0 [fs]

The total elapsed wall time for the entire simulation is shown in Fig. 4.9
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Figure 4.9: Comparison of the total elapsed wall time for a full simulation using LAVAX.
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Chapter 5

Discussion

Studying the two potential comparison methods in Fig. 4.3 and Fig. 4.4 we see that we
arrive at the same result for determining the rc-cutoff value where the potentials begin
to depart (≈ 2.4 Å). Any of the methods may be used for this task, although the quasi-
static method seems more realistic than compressing the entire crystal, because not all
atoms in the crystal are experiencing strong local compression conditions at the same
time.

From the kinetic energy in Fig. 4.5, we see that the development of the crystals state
is chaotic. This is why we need to take the average of many simulations with different
initial velocities, as displayed in Fig. 4.6, in order to appreciate how much accuracy is
lost when using LAVAX for different rc-values.

We see that the performance gain is quite significant when comparing the execution
time in Fig. 4.8 for LAVAX and only W pv for the entire crystal. They differ by a factor
6.3!

If we assume that the time complexity for the number of electrons N scales as O(N3),
we can estimate how much larger a crystal we could simulate with the same amount of
resources with LAVAX. We introduce the average number of valence state electrons navg

for all atoms M in a crystal during a LAVAX run. The W pv has 12 valence state electrons
so we can write the performance gain as

(12M)3

(navgM)3
= 6.3 ⇒ navg =

12

6.31/3
≈ 6.5

If we want to simulate a crystal larger by a factor k in the same time it would take using
W pv for a crystal of size M we get

(12M)3

(navgkM)3
= 1 ⇒ k =

12

navg

≈ 1.85

It may seem tempting to conclude that the performance is worse with LAVAX when
comparing the total elapsed wall time in Fig. 4.9. But the settings on the supercomputer
may have been vastly different between different sets of runs: different process priorities
and difference in performance between nodes may effect the resulting wall time. The
figure does however give us some idea of how expensive these types of simulations are.
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We have not run any test to determine the performance gain of the adaptive time step
alone. The adaptive time step could although explain the difference in behavior of the
systems in Fig. 4.7. The LAVAX simulations had a time step (POTIM) of about 1 fs in the
beginning, while the W pv used a constant 2.0 fs for the entire simulation. The LAVAX
curves are therefor a bit smoother and could explain why the initial dip in kinetic energy
goes deeper for LAVAX than the W pv curve. This is, again, an unfortunate inconsistency
of settings. The dip do however occur at the same time for LAVAX and W pv, but not
for W which lags behind.

It is unfortunate that VASP often diverge when you switch potential for many atoms
before a new iteration.

VASP saves the calculated wave function in WAVECAR and it is used as the initial guess
for the next ionic step, since recalculating it from the beginning is very expensive (the
WAVECAR file can be over 100 GB in size). Since we may have switched potential for a
large number of atoms during a LAVAX iteration, the WAVECAR file may be inconsistent
with the “new” system and the DFT calculation could diverge as a result.

It is interesting to note that most of the LAVAX runs that were able to finish used
rc = 2.2, while a smaller rc = 2.0 and larger rc = 2.4 caused VASP to diverge more often.
This could be explained that when using a smaller rc value, the difference in potential
energy between W and W pv for that rc is so large that when we switch potentials in a new
iteration the WAVECAR becomes inconsistent. For larger rc values we switch potential for
a greater number of atoms and the WAVECAR becomes inconsistent for that reason. The
sweet spot seems to be rc = 2.2 for our simulations.
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Chapter 6

Summary and Conclusions

The results from Fig. 4.8 show that LAVAX vastly improves the performance for radia-
tion damage simulations, without sacrificing too much accuracy. For most performance
critical applications, a mere 10 % increase in speed could be considered significant. Look-
ing at the mean electronic step time, we got an improvement of about 500 %

From Fig. 4.9 we see that a typical 648 atom simulation finishes in about 6 hours on
a supercomputer with 1600 CPU cores (a total of 9600 core hours). For perspective:
running the same simulation on a single core machine would take over a year, which
shows how computationally expensive these simulations are and how important any per-
formance gain could be.

It is unfortunate that we don’t have any fair comparison of the total wall time since
the preconditions on the supercomputer may have varied. Hopefully, we would see equal
scalability for the total wall time as for the mean electronic step time if we ran the sim-
ulations under the same settings.

An improvement of LAVAX would be to check if VASP diverges and if so remove WAVECAR
so that VASP has to recalculate it from scratch when it is restarted. Removing WAVECAR

every time to avoid divergence would be a bad idea since divergence only occurs occa-
sionally and we would loose performance if we did.

All the energy of the PKA remain inside the simulation cell because of the periodic
boundary conditions and the resulting temperature of the crystal will be very large.
To quantify the remaining defects we would need to remove some of the energy at the
boundaries, to model the spread of heat to the rest of the material (in a way freezing the
simulation cell).

Right now, LAVAX only works for one particle type. To develop LAVAX in the future
one could generalize the program by making it possible to use more than one particle
types. Radiation damage in a material will with time develop the material into an alloy.
By generalizing LAVAX one could simulate larger crystals of alloys to study the behavior
of the material.
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Appendix

LAVAX source code

The source code for LAVAX, as well as the code for the potential comparison, is available
at

https://github.com/danielk707/lavax.git
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