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ABSTRACT
This thesis presents fine-mesh multiphysics methodologies and algorithms for nu-
merical predictions of the behavior of Light Water Reactor (LWR) cores. The mul-
tiphysics aspects cover the distribution of neutrons, the fluid flow of the coolant
and the conjugate heat transfer between the solid fuel pins and the fluid coolant.
The proposed schemes are aimed at fine-mesh coupled effects, directly resolving
the interdependencies of the different fields on the finest scales of the computa-
tions.

The solver is developed for both steady-state and transient LWR scenarios.
For the steady-state simulations, the neutronics is solved both by the lower or-
der, diffusion equation and the higher order, discrete ordinate transport method,
and for transient cases by the former. The thermal-hydraulic solver is based on
a computational fluid dynamics (CFD) approach. The implementation utilizes a
finite volume method (FVM) computational framework, and to achieve feasible
computational times, high performance computing (HPC) aspects such as paral-
lelization by domain decomposition are considered.

The implemented tool is applied to cases of parts of a fuel assembly, analyzing
systems of up to 15× 15 fuel pins and succesfully resolving sub-pin resolution of
all fields. Furthermore, the transient fine-mesh neutronic solver is verified based
on a novel scheme utilizing the system response to a local perturbation.

In addition, the multiphase flow problem encountered in Boiling Water Reac-
tors (BWRs) is studied. First, the transport of bubbles under subcooled boiling
conditions is simulated based on a population balance approach. The novel for-
mulation is shown to increase the computational efficiency and to capture a large
range of bubbles sizes with few degrees of freedom. Second, the typical Eulerian-
Eulerian approach for two-phase flow is studied from a stability and dynamics
perspective. The latter investigations highlight the complexity of the two-fluid
formulation and indicate the spontaneous emergence of meso-scale void struc-
tures under adiabatic conditions.

Keywords: Coupled neutronics/thermal-hydraulics, CFD, nuclear reactor mul-
tiphysics, multiphase flow
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δij Kroenecker delta
ρ Density
Θ Example quantity
Θp Θ for cell p
Θs Face interpolated value of Θ
Ω Angular direction
g Gravitational acceleration
r General space coordinate
Sf Face area vector
SΘ Source term for Θ
t General time coordinate
V Volume of mesh cell

Neutronics
β Fraction of delayed neutrons
γ Energy per fission
λ Decay constant
µ Average scattering angle
ν Neutron fission yield
ρA Atomic density
σx Microscopic cross-section for reaction

x
Σa Absorption cross-section
Σf Macroscopic fission cross-section
Σs Macroscopic scattering cross-section
Σs0 Macroscopic isotropic scattering

cross-section
ΣT Total macroscopic cross-section
ϕ Scalar neutron flux
φ Expansion coefficient in real spherical

harmonics base
χ Fission neutron spectrum
Ψ Angular neutron flux
C Precursor concentration
D Diffusion coefficient
F Fission source term
G Number of energy groups
J Neutron current
keff Multiplication factor
n Neutron density
PN Power density
Pl Legendre polynomials
Rlr Real spherical harmonics
S Scattering source
w Quadrature weight

TH - Single-phase
α Isothermal compressibility coefficient
β Thermal expansion coefficient
ϵ Dissipation of turbulent kinetic en-

ergy
µ Dynamic viscosity
µt Turbulent kinetic viscosity
τ Stress tensor
cp Specific heat capacity at constant

pressure
h Instantaneous enthalpy
H Time averaged enthalpy
k Turbulent kinetic energy
K Thermal conductivity
p Instantaneous pressure
P Time averaged pressure
q′′ Surface heat flux
q′′′ Volumetric heat source
T Temperature
u Instantaneous velocity
U Time averaged velocity

TH - multiphase
α Void fraction
ξ Abscissa (bubble size)
µ Dynamic viscosity
ρ Density
¯̄τ Stress tensor
¯̄τ t Turbulent stress tensor
Φ Time resolved uniformity index
C Condensation rate
d43 Mean diameter
db Bubble size
f Average number density
g Vapour phase
i Phase
j Bubble size index
l Liquid phase
M Momentum transfer due interfacial

forces
N Number of abscissas
P Pressure
S Source term for condensation, aggre-

gation and breakage
t Turbulent quantity
U Phase velocity
w Weight
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CHAPTER 1

Introduction

This thesis begins with, and ultimately originates from, the physics in the core
of the nuclear power plant (NPP). The core is at the heart of a reactor in every
aspect, located in the center of the plant and containing the fuel with its enor-
mous potential of heat generation from fissioning of heavy nuclei. The reactor
core is a complex environment, governed by multiple fields of intertwined and
coupled physics influencing the process on a wide range of length scales. This
environment is the field of this thesis and the main goal shall be to increase the
understanding of how such a system can be simulated with high resolution and
accuracy.

This first chapter will introduce the main fields of physics that are of interest in
the reactor core and in particular how these are mutually coupled (Section 1.1). To
give a context of the contribution of this work, some standard (or even classical)
schemes of nuclear reactor core simulations (Section 1.2) are described, followed
by some more recent developments in reactor modeling (Section 1.3). Finally, the
objectives of this thesis are presented in detail in Section 1.4.

1.1 Multiphysics in the reactor core

The core of the Light Water Reactor (LWR) contains the solid uranium fuel pins
which contribute with the heat source in the reactor. A controlled chain reaction
of fissions results in a continuous and enormous release of energy in the reac-
tor core. The energy is conducted via the solid encapsulation, the cladding, of
the fuel and then extracted from the pins and convected out of the core via the
heated water. To understand the interplay between the neutron density and the
fluid flow and heat transfer in the coolant, a more detailed description of the
multiphysics is of interest.

The chain reaction of fissions is governed by the distribution of neutrons in

1



Chapter 1: Introduction

the core. If the population of neutrons is kept at a statistically steady concentra-
tion, the reactor is said to be critical. On the other hand, if there is an increase in
neutrons with time, the reactor is in a supercritical state. Reversely, if fewer neu-
trons are born from fission than disappear due to fission, absorption or leakage,
the reactor is in a subcritical state. To achieve an economic utilization of the fuel,
the core should be designed to minimize the loss of neutrons due to leakage out
of the physical domain and due to other nuclear reactions.

The cross-section for a certain reaction, i.e. the probability for a neutron to in-
teract with a certain target, is determined by properties of the interacting material
as well as the energy of the neutron. The microscopic cross-section (σ) describes
the probability for a certain reaction to take place, such as absorption, capture
or fission to occur (see details below). Due to the dependence on the density of
the target material, the neutron distribution is influenced by all processes which
result in variations of the material concentrations. For this thesis, the coupling to
the water density is of particular interest. In addition, the temperature of the fuel
has a significant effect on the cross-sections due to the so-called Doppler broad-
ening.

The microscopic cross-section gives the probability for a certain reaction to occur given
the incident neutron energy such that the reaction rate Rx is given by

Rx(E) = σx(E)ϕ(E)ρA, (1.1)

where ϕ(E) denotes the neutron flux and ρA the atomic density of the target material.
Commonly the combination of the microscopic cross-section and the density is written as
a macroscopic cross-section

Σx(E) = σx(E)ρA. (1.2)

The figure below shows the microscopic fission cross-section of Uranium-235. For low en-
ergies the cross-section is inversely proportional to the neutron velocity, whereas a much
more complicated dependence is seen for the intermediate region. The resonances in
this energy range constitute a particularly challenging task in the process of cross-section
condensation as an average of a longer energy interval in the resonance region strongly
depends on the precise spectrum of the neutron flux.
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Figure 1.1: Fission cross-section for Uranium-235 [1].
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1.1. Multiphysics in the reactor core

CORE ASSEMBLY FUEL PIN

Core � ≈4 m Assembly
width 0.2 m

Fuel pin� ≈0.01 m

Fuel
Gap
Cladding

Figure 1.2: Schematic drawing of a horizontal plane of a LWR core.

The temperature profile in the fuel is determined by the energy release from
the fissions and the conduction in the fuel pins, i.e. the transport of energy in
the stack of fuel pellets in each rod in the assembly (see Figure 1.2). The conduc-
tivity of the solid fuel matrix is governed by the micro structure as well as the
temperature of the material. Due to the neutron irradiation in the core, the fuel
and cladding properties change with time in the reactor. The processes responsi-
ble for such defects constitute a complete field of material science, and complex
phenomena such as cracking of the fuel might take place.

To allow thermal expansion and fuel swelling, LWR fuel rods have a small
gap between the fuel and the cladding, initially filled by an inert gas. Due to the
small distance between the solids, the major mechanism for heat transfer (under
normal reactor operating conditions) is conduction also in the gap. The cladding
is the first safety barrier in the reactor, designed to contain the fuel and the fis-
sion products. Although no fission events occur in the gap or cladding, these
regions are still influential on the neutronics problem as the neutron distribution
is affected via capture.

The heat conducted from the cladding is extracted from the core with forced
convection. In the case of the LWR, the water acts as the coolant, and a high flow
velocity through the core is maintained by pumps. In the case of a Pressurized
Water Reactor (PWR) the water is nominally kept in liquid state, whereas a phase
change from liquid to vapor is seen in a Boiling Water Reactor (BWR). The high
flow velocity results in a turbulent flow with enhanced heat transfer properties.
The turbulence in the coolant is further enhanced by the so-called spacers, es-
sentially steel frames holding the fuel pins as well as interrupting the flow and
inducing swirls.

In addition to acting as a coolant, the water in a LWR functions as a moder-
ator for the neutrons. The moderation process cools, i.e. slows down, the high
energy neutrons born from fission. The benefit of a higher concentration of low
energy neutrons is best understood from the energy dependence of the fission

3



Chapter 1: Introduction

Light Water
Reactor

Multiphysics

Neutron
distri-
bution

Power
density

Cross-
sections

Fuel
properties

Temper-
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Density
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Fuel cross-sections:
Doppler and density coupling

Power density:
Energy source in fuel
temperature
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fuel properties
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Water density coupling

Neutronics

Thermal-hydraulics

Figure 1.3: Diagram of the multiphysics couplings for the neutronics and
thermal-hydraulics in the LWR core.

cross-section for U-235 as presented in Figure 1.1. Due to the inverse propor-
tion of the microscopic fission cross-section, the chance for fission events is much
larger for slow neutrons. The moderation primarily occurs due to elastic scatter-
ing between the neutrons and the hydrogen atoms in the water.

All described physical processes are connected and the reactor core problem
is thus a true multiphysics problem in the sense that one field cannot be solved
without knowledege of the others. To summarize the different couplings, Fig-
ure 1.3 shows the primary dependencies between the neutron behaviour, the so
called neutronics, and the fluid flow and heat transfer in the water and the fuel,
the so called thermal-hydraulics. The temperature and density of the fuel and the
water both influence the neutronics, which in turns affects the fuel temperature
directly through the energy release from fission, and water indirectly as the heat
is transported from the fuel to the water.

In addition to the multiphysics aspects of the reactor core, the problem is fur-
ther complicated by the many length scales to be resolved. The schematic repre-
sentation in Figure 1.2 shows a horizontal plane in the core. The figure outlines
a hierarchy of relevant scales, ranging from the full core size, via the fuel assem-
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blies, to the separate fuel pins. In principle, the hierarchy could be continued
with even smaller scales governing some of the phenomena discussed above (e.g.
turbulence in the water and micro structures of the fuel matrix). In the extreme,
we could even consider the atomic length scales and the sizes of the nucleons
which ultimately govern the interaction between the neutrons and the nuclei.

Due to the extreme range of scales, it is immediately clear that it is not possible
to directly resolve all parts of the problem from first principles. In order to solve
the ultimate problem of the complete reactor core, we must rely on assumptions
and closures from other scales. Inevitably, such closures introduce errors. As
the reactor is also a multiphysics environment, the use and derivation of closures
for the large scale problems must also consider that coupled physics phenomena
occurring at the small scales need to be correctly represented at the larger scales,
which is far from trivially granted. The latter is a key aspect to why the focus in
this thesis is on fine-mesh simulations, i.e. simulations where the different fields
of physics can be directly coupled without the approximations required to solve
the full core problem.

1.2 Neutronics and thermal-hydraulic simulations

Given the multiscale and multiphysics problem of the reactor core, we now turn
the attention to different options and strategies to simulate and produce numer-
ical predictions of the behavior of the core. To motivate the need of novel algo-
rithms, a brief overview is first presented of some standard schemes applied in
routine calculations for the core. The described procedures are well established
and the current practices have prevailed for many decades in the same or at least
similar shapes. Nevertheless, there are significant limitations and assumptions
for multiphysics perspectives and for the physics of the finest scales resolved.

1.2.1 Lattice and core simulations of the neutronics

Although a rapid increase is seen in the use of Monte Carlo methods for the neu-
tronic calculations, even on a full core scale, such methods are still too compu-
tationally expensive for routine industrial calculations (further discussed in Sec-
tion 1.3). As a result, the industry still relies on deterministic computations for
the neutronic problem, and the predominant schemes have for a long time relied
on hierarchal algorithms. Such multiscale approaches range from the simulations
of a single pin cell (i.e. a fuel pin surrounded by the coolant), to fuel assembly cal-
culations and finally to the full core scale. A brief overview of the hierarchy of
scales is shown in Figure 1.4, where the three different levels are outlined together
with some standard choices of algorithms.

In detail, the first two stages of the simulations (pin cell and assembly cal-
culations) are typically computed in a lattice code. Conveniently, such a code
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the core simulator, branched on
thermo-physical state and burnup

• 2D transport algorithm, e.g.
Method of Characteristics

• Burnup simulations for fuel and
burnable absorbers [2]

• Few group energy structure
traded against the spatial repre-
sentation for feasible computa-
tional time

• Node-wise homogeneous repre-
sentation of the core (∼20,000 for
a full core [3])

• Low order representation of the
neutron energy dependence (of-
ten only a fast and a thermal
group)

• Simplified thermal-hydraulic
models to compute node-wise
thermophysical data

• Diffusion or nodal codes based
on a uniform Cartesian grid

• Eigenvalue computations to
determine the steady-state charac-
teristics of the core

• Transients computed with time
dependent solvers, potentially
coupled to a thermal-hydraulics
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Figure 1.4: Overview of a multiscale deterministic neutronics scheme progress-
ing from pin-wise 1D calculations, via 2D assembly calculations to full core 3D
simulations

generates a library of cross-sections which are branched to cover desired state
points for fuel burnout, thermo-physical state of the reactor, control rod positions
etc. Due to the large number of different fuel assemblies and feasible states, the
lattice calculators must rely on fast algorithms and sufficiently coarse approxima-
tions to give useful simulation times.

Relevant for this thesis, the approximations in the lattice code include assump-
tions of approximate fuel and moderator temperature profiles. Whereas the ac-
tual horizontal temperature profiles are multiphysics dependent (as depicted in
Figure 1.3), a standard lattice code is run with explicit, and often discrete, temper-
ature profiles.

The last stage, the core calculation, is for LWRs performed on a coarse Carte-
sian grid corresponding to the fuel assemblies in the core. A large number of
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1.2. Neutronics and thermal-hydraulic simulations

solver variations exist. However, the core simulators again require fast compu-
tations as the codes are routinely applied repetitively e.g. in the process of core
design.

Furthermore, the core solver relies on lower dimensional thermal-hydraulic
algorithms to predict the temperature and void distributions in the core. The
computed states are used to interpolate the cross-section tables from the lattice
solver. Roughly, each fuel assembly has one associated thermal-hydraulic chan-
nel in which the conservation equations of mass, momentum and energy are
solved (see e.g. [4]). At the scale of the core solver, the multiphysics couplings
are coarse and by no means resolve small fluctuations or pin-wise temperature
profiles.

From this crude description of the neutronic scheme it is clear that the method-
ology is streamlined to give fast computations for the full core problem with the
core solver and the cross-section tables computed in the lattice solver. The mul-
tiphysics aspects are limited and the direct coupling to the (simplified) thermal-
hydraulic solvers is performed only at the coarsest level.

1.2.2 System codes for thermal-hydraulics

The thermal-hydraulic counterpart to the hierarchal neutronics methodology con-
sists of a full core solver, partitioned on so-called channels, and a sub-channel
code simulating one or a few such channels with a higher resolution. Figure 1.5
presents a brief overview and characteristic algorithms for both methodologies.
In contrast to the neutronics scheme, the thermal-hydraulic solvers are not neces-
sarily combined in the same workflow.

The goal of the system code is to compute the complete plant response to a set
of transient scenarios, including accidents such as a loss-of-coolant accident [9].
The representation of the flow is much simplified, relying on 1D transport equa-
tions, discretized with first order schemes in space and time [6]. As illustrated
in Figure 1.5, the core, as well as the other components, is treated with a coarse
nodalization. As a result of the crude representation, the effects from for example
fluid fluctuations are not modeled but included in correlations. The benefit of the
coarse approach is the short wall clock time for relatively long transient scenarios,
even on desktop computers.

The algorithms for the neutronic response are typically based on much sim-
plified models, such as the 0D point-kinetic model [10]. On the other hand, for
scenarios where the neutronic response is crucial, a coupling to a 3D neutronic
solver is advantageous (which is further discussed in Section 1.2.3).

In partial contrast to the macroscopic full plant modeling in the system code,
a subchannel code is aimed at (more) local conditions in specific fuel assemblies.
For safety reasons it is of interest to e.g. find the hottest channels in the reactor
core in order to determine the peak cladding temperature (PCT) [11]. For such a
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temperature, e.g. find-
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representation (1D
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the fine scale behavior,
including influence of
spacers and turbulence
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ficient, allowing mul-
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[8]
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Figure 1.5: Overview of the characteristics of a coarse full plant system code
and a higher resolution subchannel code.

purpose the subchannel approach gives more information than the coarse nodal-
ization in the system code. From fluid dynamics and heat transfer perspectives,
the subchannel code is still very far from the first principles, relying on correla-
tions for pressure drops, heat transfer, multiphase flow and more [12]. Further-
more the flow is still not resolved in 3D manner but only 2D (see e.g. [7]).

In addition to the mentioned schemes, there is of course the option of a further
resolved and much more fine grained simulation. In nuclear terms this would be
denoted as CFD, although in principle also the previously described models are
numerical predictions of fluid flows, thus deserving the epithet CFD. Although
there are numerous examples of interesting core related applications of CFD in
the open literature, the 30 years of experience of the macroscopic type of model-
ing should not be forgotten [13]. The current and future potentials of CFD are
further discussed below (Section 1.3).
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1.3. High-fidelity core simulations

1.2.3 Segregated multiphysics schemes

For some accident scenarios the multiphysics aspects need to be better resolved
than it is in the case of the system codes with simplified neutronic models [10].
For such scenarios, the classical choice is to perform an external code coupling
between a system code and a neutronic core solver. Even though appreciated as
multiphysics in a more integrated sense, the coupling algorithms are commonly
based on the so-called operator splitting techniques [14] with low order time
schemes. Nevertheless, such best estimate approaches are a key tool for current
industrial simulation routines, in particular due to the enormous efforts of code
verification and validation already spent on this type of simulations for industrial
plants. Examples of attempts on higher order time schemes exist, e.g. by implicit
formulations of a combined system matrix [15], such and similar attempts are still
limited in the resolved scales of multiphysics. The mapping between the codes is
often coarse in the sense that only macroscopic quantities or average properties
are exchanged. Consequently, there is no increased fidelity in the physics sim-
ulated. The coupled calculations are limited by the very static geometries and
resolutions of each of the separate codes and the simplistic coupling schemes and
mappings. In contrast, the type of projects next described (Section 1.3) are to a ma-
jority focused on newly developed tools, without the legacy of the system codes
or core solvers, or with more degrees of freedom when it comes to geometry and
resolutions.

1.3 High-fidelity core simulations

Following the rapid development of the computational capacity, an increasing
complexity in the fuel assembly designs and the continuous strive to perform
more accurate and precise reactor core simulations, the last ten years have seen
a large number of initiatives toward higher fidelity multiphysics simulations of
the reactor core. From a larger perspective, the specific goals and aims are as
many as the methodologies proposed and many of the initiatives are still in early
development stages. Nevertheless, the trend is clear and true HPC applications
are growing in interest in the nuclear community. In this section, some of the
motivations of such novel schemes are discussed together with an overview of
the HPC and high-fidelity efforts from the open literature.

1.3.1 Motivations for novel approaches

As evident from the discussion on the classical computational schemes, the sepa-
rate neutronics and thermal-hydraulic reactor simulations are severely simplified
in their representation of the multiphysics. As a motivation for new algorithms
for nuclear reactor core simulations, a scattered list is given below. Some of the
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points of this list are later referenced and rephrased in the actual objectives of the
current thesis (Section 1.4):

• Unresolved multiphysics – The lattice codes apply simplified temperature and
density profiles in the cross-section generation, implicitly introducing an
error in terms of the actual thermophysical state in the fuel and moderator.

• Small margins require higher resolution – As plants are power uprated the mar-
gins to, for example, critical heat flux (CHF) decrease and arguably the local
conditions are of increased interest [16].

• Void heterogeneities – Heterogeneities in the void fraction distribution in the
subchannels of a BWR are potentially influential on the neutron modera-
tion and thus a multiphysics understanding of such heterogeneities is of
interest [17, 18].

• Fuel behavior – To simulate e.g. the local influence and deposition of CRUD
on the fuel pins, novel fine-mesh and multiphysics schemes are required [19,
20]. Notably, simulation of CRUD deposition is one of the targeted prob-
lems in The Consortium for Advanced Simulation of LWRs (CASL) [21].

• Spacer design – As the spacers in the fuel assemblies increase in complexity,
there is a greater need to understand the influence of the induced turbu-
lence. In addition, CFD predictions of spacers are a cheap way to select the
best candidates to a significantly smaller cost then using test rigs. [16, 22–
24]

Whereas the list is by no means exhaustive, such and similar issues are interesting
and constitute relevant drivers for the development of novel multiphysics and
high-resolution strategies.

1.3.2 Overview of multiscale and multiphysics approaches

The drive towards stronger coupling and higher resolutions has taken a lot of
different shapes, partly due to the fact that the complexities of the physics are
mirrored in the complexities of the computations, partly because of unclear stan-
dards for reactor core multiphysics and partly because of the very different needs
for the different issues mentioned in the previous section.

In many of the attempts on achieving the higher resolution multiphysics of the
core, the schemes were based on externally coupled tools, e.g. applying a combi-
nation of a Monte Carlo solver for the neutronics and a commercial CFD solver
for the thermal-hydraulics [25–27] , or a deterministic neutronic solver [28–30],
again, coupled to a CFD solver. The sophistication of such couplings varies from
efficient data exchanges using external scripts to built-in coupling schemes. Large
scale projects such as VERA [31] and MOOSE [19] likewise apply an existing code
coupling approach but in massive HPC environments and with a large focus on
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efficient parallelization and coupling. Although many of the efforts referenced
are of interest from a physics point of view, many should be considered as proofs
of principle, paving the way towards practical use of such computations.

In contrast to the external code couplings, there are notable examples of mul-
tiphysics solvers with a more integrated focus. An interesting example is again
the MOOSE project, which can be employed as a general finite element frame-
work with non-linear solvers and massive parallelization [32]. Many smaller
scale projects with a tighter coupling were focused on commercial multiphysics
solvers [33, 34], but there are also examples which are based on open source
software [35], as is the case in the current thesis. Many of the multiscale and
multiphysics initiatives in the open literature are focused on fuel performance
in terms of local phenomena, where for example the deposition of CRUD is of
importance [19, 20] or for fuel pin mechanistic behavior [36, 37].

Whereas the resolution of the CFD simulations has generally been low in the
multiphysics coupled simulations discussed above (see e.g. [28, 30]), there are
many pure CFD applications where a high-resolution approach is of particular
interest. An example is seen in the simulation of grid-to-rod fretting for which
time and space resolved turbulent fluctuations are of interest [22, 38]. Another
class is the simulation of fuel pin spacers, where again an accurate prediction of
the induced turbulence is of interest to predict the pressure drop in the core as
well as the local heat transfer from the fuel pins to the coolant [16, 24, 39].

As mentioned above, multiphase flow is yet another topic for future high-
fidelity simulations relevant for nuclear core predictions. Whereas the system
codes rely on approximations and empirical relations, there are efforts made to
perform 3D simulations on the scale of a fuel assembly (see e.g. Lo and Osman
[40]). Although much less developed, there are examples of coupled multiphase
CFD and neutronics [41], performed on coarse meshes and for steady-state pur-
poses. However, the severe complexity of the multiple flow regimes makes the
multiphase problem a theoretically more complicated CFD problem compared
to the single phase counterpart, and much work remains in covering all flow
regimes in a consistent manner [42]. An extended introduction connected to mul-
tiphase simulations for BWRs is postponed to Chapter 6.

1.4 Objectives of the research work

The objectives of the research are divided in two parts. First, the objectives for
the fine-mesh multiphysics simulations are described together with the applied
assumptions and resulting limitations. Second, the objectives for the investiga-
tions and method development for the multiphase flow research are outlined.
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1.4.1 Fine-mesh multiphysics simulation objectives

The first part of the thesis is concerned with multiphysics simulations of the nu-
clear reactor core. The primary aim is to develop a computational tool which re-
solves the multiphysics dependencies already at the finest simulated scales. The
physics covered is the same as in the classical coupled schemes (Section 1.2.3), i.e.
the flow of the fluid coolant, the conjugate heat transfer (CHT) between the solid
fuel pins and coolant and the neutron distribution in the core. However, the sim-
ulated scales are much finer, focused at a sub-fuel pin level and with a resolved
water temperature and flow profile between each of the separated fuel pins. The
described scales are throughout the thesis described as fine-mesh.

A part of the objective is to demonstrate the feasibility of such a computa-
tional code, including the computational cost and applicability in terms of HPC
resources. However, the focus is also to resolve aspects of the multiphysics which
are of potential importance for a safe operation of the reactor and, perhaps even
more, for design of fuel assemblies.

In specific terms the objectives of the first part are to:

• develop a deterministic computational methodology with a fine-mesh ap-
proach to the neutronics for both steady-state and transient simulations,
with a cross-section model relevant on a sub-pin scale,

• develop a CFD methodology, including heat transfer and the fluid flow,
with a 3D representation of the flow between the fuel pins and treatment
of turbulence,

• implement the methodologies in a single, multiphysics, computational tool
deployable at computational clusters, and

• apply the solver to both steady-state and transient cases for parts of fuel
assemblies.

As such, the objectives are related in a generic sense to many of the points
mentioned in Section 1.3.1, and perhaps primarily to the need to resolve the mul-
tiphysics and to increase the resolution of the numerical predictions in the core.
In relation to the previously referenced literature on coupled neutronics/CFD
projects (Section 1.3.2), the current objectives are different in that a single compu-
tational tool should be developed, directly treating all covered aspects.

Assumptions and limitations

Following the defined objectives, there are a number of implicit assumptions in
the models, whereof the most important include:

• No mechanistic modelling of fuel behavior – As described in Section 1.3.2, many
of current high-fidelity simulation schemes are primarily targeted toward
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fuel behavior and mechanical properties. The fuel pins are here considered
static, rigid bodies with only temperature dependent thermophysical prop-
erties.

• No models for the surrounding environment – Due to the computational cost
(and the limited computational resources at hand) only parts of a fuel as-
sembly are considered in the performed simulations. In principle a coarse
model for the surrounding would be beneficial, serving a set of boundary
conditions. However, for the presented cases all computations assume an
infinite lattice of the simulated environment, which is realized through peri-
odic or symmetry boundary conditions in horizontal direction. For the inlet
and outlet conditions the boundary conditions are determined without any
actual models of the nozzles or e.g. the turbulent spectra of the fluid flow
entering the bottom of the assembly.

Whereas the previous assumptions are limitations of the implemented code,
there are some further limitations imposed due to the computational cost of the
simulations:

• System size limited to parts of a fuel assembly – As a result of the high resolu-
tion of the simulations, the computational grids contain a large number of
degrees of freedom and thus an extensive computational burden. Due to
the available computational resources, the system sizes must thus be lim-
ited. However, as part of the objective to implement the tools for HPC en-
vironments, proper parallelization schemes are still applied and with larger
computational resources the code should be applicable to larger cases.

• Number of neutronic energy groups limited – The neutronic calculations are
performed on a low number of energy groups (ranging from 2 to 16). Again
the reason is the computational cost, and all algorithms are implemented
for an arbitrary number of energy groups (an exception to this is the results
related to Paper VIII, where the derivation is performed for 2 groups (Sec-
tion 5.3). Similarly, the simulations performed with the discrete ordinates
method are limited in the number of directions.

Practically there are additional limitations in terms of what could be consid-
ered within the above scope of the objectives. In particular, the geometrical details
of the fuel assemblies are limited to the fuel pins, the gap, the cladding and the
coolant, e.g. neglecting the influence of the spacers.

1.4.2 Multiphase flow objectives

The second part of the thesis concerns multiphase flow in the reactor core and in
particular bubbly flows under subcooled and adiabatic conditions. As is further
discussed in Section 6.1, the multiphase flow is challenging for multiple reasons
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and the maturity of multiphase CFD is significantly lower than for single-phase.
For the mentioned reasons, the research conducted for multiphase flow within
this thesis has a more generic character than the fine-mesh multiphysics simula-
tions. Nevertheless, the goal of the conducted studies is to increase the under-
standing of bubbly flows with the two-fluid model, which could be used for low
void fraction simulations in the fine-mesh multiphysics solver.

Due to the extreme computational cost connected with the interface resolving
methods, such methods are not of practical interest for simulations of systems of
the size of a fuel assembly. Instead, the focus is on the two-fluid model, which
gives only an average representation of the phases, with no explicit tracking of
the interface between the gas and the liquid in the two-phase flow. The model is
further introduced and discussed in Section 6.4, but for the sake of formulating
the objectives for the multiphase research two of the issues with the two-fluid
model is here outlined.

First, as a result of the lack of representation of the interface between the faces,
information such as bubble sizes and shapes are unknown in the two-fluid formu-
lation. A potential remedy for this is to introduce a population balance equation
(PBE) to track one or more properties of the bubbles to a significantly lower cost
as compared to explicitly computing the bubble interfaces. Such an approach is
of interest not the least for diabatic simulations where the bubble distribution will
change not only due to bubble breakage or aggregation but also due to conden-
sation and evaporation. In practical terms, a two-fluid approach complemented
by a PBE is a good candidate for simulation of the subcooled and bubbly flow
regimes in a BWR, and as such the framework is worth investigating, also from
the fine-mesh multiphysics point of view.

Secondly, from a more general perspective, the two-fluid formulation has pre-
viously been shown to be prone to numerical issues, not the least due to an ap-
parent lack of hyperbolicity for some types of flow. Although a wide range of
remedies have been proposed, the underlying potential stability issues are still
of major interest for the application of the two-fluid model. In particular, the dy-
namic behavior of the model is key to the predicted mass and heat transfer within
the reactor core, and emergence of heterogeneities in the flow can only be trusted
if the underlying equations are understood to be sound. Again, investigations on
the dynamics of the two-fluid formulation is of interest for the larger perspective
of fine-mesh simulations as the dynamics and appearance of void heterogeneities
are of potential importance in the coupling to the neutron distribution.

In specific terms, the objectives related to modeling of multiphase flow within
this thesis are to:

• investigate the stability of the two-fluid model in terms of phase heterogen-
ities for bubbly gas-liquid flows, and

• develop novel methodologies for simulation of vapor bubbles in a subcooled
liquid using a the two-fluid model complemented by a PBE.
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As the case of multi-phase flow is particularly challenging from a CFD per-
spective and again limitations to the scope are necessary. The main simplifica-
tions applied in the developed models and performed simulations include:

• No simulation of wall phenomena – The bubbly flows arises due to evapora-
tion at the wall. The bubble growth and departure are governed by micro
structures at the surface as well as the flow at the wall. Such aspects are not
covered in the thesis. Instead the transport of the bubbles is the primary
target.

• Empirical correlations for condensation – In the simulation of subcooled bubbly
flows, the condensation of the bubbles is, again, ruled by local conditions
at the surface of the bubble. In this work no interface tracking simulations
of the condensation are performed. Instead, empirical relations are used for
the condensation rate.

• No specific treatment of high void fractions – The objectives are primarily re-
lated to low void fraction regions. This is not to say that high void fractions
with other regimes than bubbly flow are not of interest. Rather, the bubbly
flows are perhaps the most well researched and still there are significant op-
portunities for further research. From a larger perspective it is also natural
to first focus on the low void fraction regimes.

1.4.3 Outline of the thesis

The thesis is structured in seven chapters, whereof this introductory chapter is the
first. Chapter 2 gives an introduction to the computational methodologies later
applied in the thesis, including detailed descriptions of mesh generation, cross-
section generation and parallelization algorithms. In Chapter 3 the models for
coupled LWR single phase problems are given for both neutronics and thermal-
hydraulics. Next, Chapter 4 presents the implementation and an application to
a steady-state multiphysics problem. In Chapter 5, the methodology is extended
to transient conditions and again applied to a small lattice of fuel pins. Chapter 6
describes some of the complexities of the two-phase flow in BWRs, and presents
a proposed algorithm for subcooled boiling and, additionally, simulations regard-
ing the dynamics of two-phase CFD solvers. Finally, Chapter 7 gives a conclusion
and recommendations for future work in the areas of multiphase flow for reactor
core applications as well as fine-mesh multiphysics simulations.
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CHAPTER 2

Computational methods

To perform multiphysics simulations of a nuclear reactor is, inevitably, strongly
connected to development of computational methods, coding, and not least HPC.
To approach both the complexity and the sheer size of the system, we need ef-
ficient algorithms and numerical methods run on modern hardware and imple-
mented in the right languages. I therefore find it reasonable and enlightening to
introduce the computational techniques, which are key to this thesis. As a matter
of fact, a large effort has been invested in choosing and developing sufficiently
performant algorithms; a task which has been equally challenging and joyful.

Due to the many fields of physics and thus many numerical solvers required,
it would be difficult, not to say impossible, to within the same PhD project de-
velop all the necessary computer code from scratch. Instead, I partly use some
existing tools and codes, in some cases extended for the purpose of the project,
which substantially increase progress and reduce the development time. At the
same time, it is of large value to have full transparency of all codes and algorithms.
With the current trend of open-source initiatives this is viable. An accessible code
base gives the possibility to perfom rapid development and the opportunity to
modify and extend the software. This has been a cornerstone in the work for this
thesis.

This chapter introduces the computational tools applied throughout the re-
maining chapters of the thesis. A brief introduction to HPC is given in Section 2.1,
including a small historical perspective on HPC and the development of comput-
ers and efficient code in parallel algorithms. In Section 2.2, an outline of the key
elements of the finite volume method (FVM) is presented togther with the library
which lies as the foundation for the developed multiphysics solver as well as
the two-phase solvers later discussed. Finally, Section 2.3 introduces the specific
framework developed within this thesis and its use of existing software.
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2.1 High Performance Computing

High performance computing involves simulations or other computational tasks
that are employed on multiple processors or multiple computers. In the area of
computational physics and numerical simulations in general, HPC is necessary
to solve large problems which would lead to prohibitive long simulation times
on a laptop or desktop computer. Now, as we shall see, the notion of a large com-
putational problem has changed and continues to change with the ever increas-
ing capacity of the supercomputers. The computations performed in this thesis
would have been almost impossible already 20-25 years ago, even considering, at
that time the largest supercomputers in the world.

To further widen the concept of HPC, aspects such as computational efficiency
and utilization of the hardware must also be considered. In particular, even
though a large computational cluster is exploited, the single CPU utilization is
still vital. Furthermore, the single CPU optimization is relevant irrespective of
the cluster size. As discussed below (see Figure 2.1), the computational resources
for this project have been limited to around maximum 80 and in average 20 CPUs
on one of the Swedish computational resources.

2.1.1 A brief historical perspective

The history of HPC and supercomputers goes back to the 1960s, with computers
such as LARC [43], featuring two CPUs. The early 1970s saw the emergence of
RISC computers, where the CDC6600 was the first to use the idea of a reduced
instruction set to simplify the CPU [44]. From the later part of the 1970s, HPC was
dominated by vector computers which utilized a single operation on a vector of
data (so called SIMD architecture) [45]. During the following two decades (ca.
1975-1995) the supercomputer CPUs were considerably more complex than per-
sonal computers. In the latter half of the 1990s this changed, with the emergence
of clusters built up of thousands of simpler, commodity, CPUs. During the 2000s
the trend with massively parallel supercomputers continued, with machines such
as Blue Gene [46].

Although history has seen a large number of architectures of hardware the
trend is clear; the computational capability is growing exponentially (see Fig-
ure 2.1). With the trend of ever increasing computational capacity it is tempt-
ing to rely on accelerated hardware, putting less effort in software development.
However, in reality, the situation is rather the reversed one. Currently, the trend
of the largest supercomputers is to use more heterogeneous architectures with
accelerators or graphic cards connected to each standard computer. To use the
full capacity of such resources major efforts on software development might be
required to utilize the resources.

From a nuclear engineering perspective, it is interesting to note that, whereas
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2.1. High Performance Computing

the nuclear industry for a long time has taken a lead in the development of HPC
resources, Turinsky [47] points out that during the mid 1980s the industry turned
from the use of large computers to standard desktop machines. Although the
industry to a large extent relies on codes running on desktop computers, many of
the above described efforts (Section 1.3) are again heavily focused on taking the
lead in use of large scale computations.

The trend for the growth of the supercomputers is shown in Figure 1, with a linear in-
crease in the floating point operations per second (FLOPS) in the log diagram. In relation
to the single CPU performance, the increase in clock frequency of the CPUs is also impor-
tant. However, as indicated by the trend in the figure, the growth in clock frequency has
stalled and we cannot expect the next generation of CPUs to necessarily keep accelerating
our applications. To quote Herb Sutter, the convener of the ISO C++ committee, ”The free
lunch is over” [48].
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Figure 2.1: Development of the CPU clock frequency over time [49] (data ex-
tracted from [50]) with a comparison of the #1 computing cluster according to
Top500 [51]. The green squares indicate desktop and laptop computers of the the-
sis author, with Flops estimated by Intel Math Kernel Library Benchmarks [52].

Hardware development and resources

2.1.2 Code efficiency and optimization

To write a fast computational code we need to consider both hardware aspects,
such as e.g. cache sizes and memory bandwidth, as well as software aspects
such as algorithms and code languages. Although a PhD project in multiphysics
of nuclear reactors does not specifically target such areas, it is arguably of high
value with a general knowledge of such code aspects for the development of a
HPC framework.

In order to illustrate some of the many challenges in code efficiency and op-
timization, a few of the key aspects for the multiphysics simulations performed
are briefly mentioned:
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• Memory bandwidth – To solve the discretized neutronic and thermal-hydraulic
equations, a sparse matrix solver is applied (Section 2.2.2). The standard it-
erative sparse matrix solvers typically rely on matrix-vector multiplication,
which in turn are limited by the bandwidth of the memory [53]. Whilst the
modern CPU architecture relies on multiple levels of caches to speed up the
data fetching, our large sparse systems will not be close to fit the cache.

• Memory locality – Not only sparse matrix calculations are restricted by slow
memory access in relation to the CPU throughput. For data processed to-
gether it is always beneficial to keep the data close in memory. An impor-
tant example is the ordering of the computational mesh cells which could
help to minimize the number of fetches from memory (and the larger cache
levels).

• Disk access – The disk (spinning disk or SSD) is the slowest data storage
on the computer and we generally want to avoid excessive write or read
operations. As an example, we can avoid disk access by condensing the
results as much as possible already in the simulation stage, minimizing the
storage operations.

• Vectorized operations – A modern CPU support vectorized operations where
multiple variables are processed within the same instruction (see e.g. [54]).
On a commodity CPU this means that the throughput of arithmetic opera-
tions for double precision (64 bit) numbers increases with a factor of two to
eight (see e.g. [55]).

For any of the above aspects we are helped both by the CPU routines (e.g.
for handling data fetching) and the compiler (e.g. for translating code in to vec-
torized machine instructions). Nevertheless, it must be in the interest of the de-
veloper to understand the basics of the hardware and software interaction. Any
small knowledge helps to increase the understanding of the computer and what
we can expect in terms of CPU efficiency and performance.

Directly or indirectly, the programming language is an additional key aspect
for good utilization of the hardware. HPC applications have historically been
implemented in compiled languages, where no additional effort is spent on run-
time code interpretation. Whereas FORTRAN is a classical choice for HPC for
nuclear applications in particular, a large proportion of modern software is de-
veloped using other languages, not seldom C++. The latter has the advantage of
a large user base (outside the nuclear community and outside HPC) with good
compiler and library support.

2.1.3 Parallelization

A fast single CPU code is a good starting point for a fast parallelized code. Mod-
ern architectures support parallelization on many different levels, which might
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require significantly different efforts from the developer. The three most com-
monly discussed parallelization regimes include:

• Shared memory – The easiest way to parallelize the code is often to use all
available threads on the same computer, which allows the memory to be
shared between the different processes. Shared memory parallelization is
limited to the number of CPUs on the motherboard (i.e. 2-6 on a commodity
desktop computer). A major advantage is that the interprocessor communi-
cation is avoided, i.e. the parallelization incurs no substantial overhead.

• Message passing – To combine multiple separate computers (aka nodes) on
e.g. a computer cluster, message passing is utilized. In contrast to the pre-
vious scheme, no shared memory exists and the application must handle
exchange of all data common between the different computers. While this
is de facto standard seen in e.g. commercial CFD solvers (as well as the
open source alternatives) it has drawbacks in terms of interprocessor com-
munication overhead and complexity of data exchange scheduling.

• Accelerators/Graphic cards – A recent trend on some of the largest supercom-
puters has been to use separate hardware for computational acceleration.
For example, graphic card computations based on, e.g., CUDA [56] is a cur-
rent trend in which massive computational performance can be achieved
on a single gaming graphics card. The major drawback here is the induced
complexity of another hardware architecture.

In addition, for completely independent simulations, we can of course parallelize
by running multiple separate processes and combine the results. The latter is
e.g. used in some Monte Carlo codes, and was exploited in the cross-section
generation (Section 2.3.3), where the system can be duplicated since the neutron
histories are assumed independent. A further detailed introduction to different
types and levels and some key aspects for nuclear engineering parallelization is
given by Calvin and Nowak [57].

In the same manner as the above discussion on efficiency and optimization,
the code developer will benefit from general knowledge about the paralleliza-
tion. However, in many cases an underlying framework for parallelization is
desirable, e.g. a parallelized matrix solver library. In the current project the paral-
lelization is achieved using message passing as defined in the MPI standard [58].
The system is decomposed in multiple domains, each solved in a separate process.
The message passing handles the communication by, simply put, exchanging the
boundary values of the domains.

In more specific terms of reactor core simulations, many of the CFD/neutronics
multiphysics examples from the literature are formulated as a multiple code scheme.
Such an approach is exemplified in Figure 2.2. Advantageously, each of the codes
can use the existing parallelization capabilities, which is efficient from a develop-
ment point of view. However, as apparent from the figure, the communication
is handled in a gather-scatter manner, where the internal parallelization, e.g. by
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domain decomposition, must gather data before the exchange to the other code
occurs. After retrieving the data from the other code a scatter must again take
place. This clearly limits the efficiency of the coupling and induces further com-
plications [31].

Coupling scriptCode A

Read data from B
Solve field

Write data for B

CPU1

CPU2

...

CPUn

Code B

Read data from A
Solve field

Write data for A

CPU1

CPU2

...

CPUn

Map
coupled

fields
Invoke

the codes
sequentially

Parallelization handled
separately by the codes

Figure 2.2: Example of data transfer in the multiple codes approach [Paper IV].

In contrast, in a single code approach, as applied in the thesis, all parts of
the multiphysics problem can be decomposed in the same spatial domains as ex-
emplified in Figure 2.3. In such a scheme, the data transfer between e.g. the
neutronics and the thermal-hydraulics can be performed directly on each sepa-
rate CPU or thread. As the same, monolithic, application runs both the CFD and
the neutronics there are no costs associated with waiting for one of the fields to
be finished or similar. Instead all fields are directly solved in the same code. This
is particularly important for transient applications where a large number of data
exchanges are required.

Solve all fields
Coupled data read

directly from memory

CPU1

CPU2

CPU3

CPU4

Solve all fields
Coupled data read

directly from memory

CPU1

CPU2

CPU3

CPU4

Problem decomposed
using same decomposition

Coupled data shared
on each CPU

Figure 2.3: Example of single code coupling scheme avoiding external trans-
fer [Paper IV].
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2.2 The finite volume method

In this thesis all partial differential equations (PDEs) are solved using the finite
volume method (FVM). FVM is the classical choice for CFD applications, includ-
ing many commercial examples (e.g. Star-CCM+ [59] and ANSYS Fluent [60]),
as well as long term open source projects (e.g. Gerris [61], OpenFOAM R⃝ [62]
and MFIX [63]). Although the finite difference method (FDM) was the historical
choice, in particular for the very early CFD research [64], it is much less popular
today. FDM suffers from restrictions on the grids and the conservation proper-
ties are less favorable than in FVM [65]. Furthermore, the finite element method
(FEM) is applied in some CFD codes (e.g. COMSOL [66]), but still only in a minor-
ity of the commercially available tools. FEM has undoubtedly many advantages,
not the least for higher order discretization, but still to some extent considered
less mature than FVM for fluid systems [67].

In terms of 3D implementations of neutronics (i.e. core solvers), the classical
choices include the FDM or nodal methods [68]. However, in terms of differential
operators in the neutron diffusion and transport equation, the FVM is again a
viable option. To fulfill the objective of a single multiphysics code, the neutronic
equations are here solved with the FVM, as done for the CFD. In particular, FVM
is well suited for unstructured meshes required in the fine-mesh approach in this
thesis.

2.2.1 Equation discretization

The finite volume method relies on a discretization of the computational domain
into control volumes (CVs). The process of discretizing the domain is considered
separately below (Section 2.3.1) and at this point only the discretization of the
conservation equations on an existing grid of CVs is considered. Even though a
full description of the discretization mathematics is out of scope for the current
thesis, a brief and very basic overview is given. A more complete and general pic-
ture can be found in numerous CFD books and publications (for good examples
see e.g. [65, 69, 70]).

For simplicity we consider a standard example from CFD, namely the trans-
port equation of the generic (scalar) quantity θ:

∂θρ

∂t
+∇ · (ρUθ)−∇ · (Dθ∇θ) = Sθ(θ), (2.1)

which is transported in a fluid by a convective velocity U, with a fluid density
ρ, a diffusivity Dθ and some source term Sθ. For the sake of brevity, notation on
the space and time dependence has been removed from all quantities in eq. (2.1).
Upon integration over the CV and after applying the Gauss theorem we get∫

V

∂θρ

∂t
dV +

∑
∀f

Sf · (ρUθ)f −
∑
∀f

Sf · (Dθ,f∇θf ) =

∫
V

SθdV, (2.2)

23



Chapter 2: Computational methods

where the divergence operator convective term and the diffusion term are trans-
formed to discrete sums over the faces of the control volume by application of the
Gauss theorem.

Concerning the space dependence, FVM assumes a linear variation of a field
both with respect to time and space and, for the collocated approach, cell cen-
tered values of all fields [70]. Accordingly, the volume integrals in eq. (2.2) are
converted to multiplications of the integrand and the volume of the current cell.
For the right hand side source term a linearization in the field can be performed,
increasing the implicitness of the method, such that∫

V

Sθ(θ)dV = VpθpSp + VpSu, (2.3)

where p indicates the cell currently under consideration, Sp and Su correspond to
the coefficients for the implicit and explicit parts of the linearization, respectively.
This is of particular interest for the implementation of the neutronics, where lin-
earizations of both the fission and scattering source terms are needed.

For the convective term, face values of the velocity, density and the generic
quantity are required. The interpolation to faces is of major importance for the
accuracy as well as the robustness of the method. Whereas low order methods,
such as the upwind differencing guarantee boundedness, higher order schemes
such as central differences come at the expense of issues with stability [69].

Similar to the convection, the diffusion term requires a face interpolation of
the density, the diffusivity and the gradient of the field (∇θ). For orthogonal
meshes the gradient can be directly estimated as the difference between the cell
center values in the cells on each side of the face. For non-orthogonal meshes
on the other hand, additional explicit terms are needed (for a detailed overview
see [70]).

To handle the time dependence, eq. (2.2) is integrated in time. The time deriva-
tive is then approximated as

t+∆t∫
t

∫
V

∂θρ

∂t
dV dt = ρp

θnp − θop
∆t

Vp, (2.4)

where the indices n and o refer to the new and the old time step, respectively.
What concerns the rest of the terms of eq. (2.2), for all variables a time step (n or o)
must be chosen. If the old time step is inserted an explicit scheme is achieved,
whereas using the new time step (currently solved for) results in an implicit
scheme. The previous is first order accurate and limited by the Courant num-
ber whereas the latter is in theory first order accurate but unconditionally stable.
In practice however, the first order accuracy of both schemes are undesirable and
therefore the unconditional stability is of secondary importance. Other, higher or-
der time schemes are therefore more popular, and in the current thesis the default
choice is the Crank-Nicholson scheme (second order in time).

24



2.2. The finite volume method

For later discussion on mesh generation (see Section 2.3.1) the following con-
ditions imposed by the applied FVM should be noted:

• Only first neighbors – In the discretization of the convective term and the
diffusion term relations to neighboring cells are computed. In the current
work only first neighbors are considered, resulting in a so called compact
computational molecule. The latter is beneficial for unstructured meshes,
where second neighbors are not trivially defined.

• No hanging nodes – The faces of the CVs are assumed to be one-to-one in the
sense that no single face is connected to more than one face of another cell.

• No curved faces – All faces of the discretized mesh are assumed to be flat.
A curved boundary (such as the outer radius of the fuel pin) is thus repre-
sented by a set of flat faces. In contrast to FEM, where the order of accuracy
can be increased by an increase of degree of base polynomials and with a
non-linear representation of the boundary (see e.g. [71]), FVM instead relies
on a refinement of the mesh.

Although seemingly restrictive, the above assumptions are important to achieve
a performant method with fast discretization and a, generally, well structured
sparse matrix system with few off-diagonal elements.

2.2.2 Sparse matrix solvers

The discretization in time and space results in a set of algebraic equations. It
should be noted that all non-linearities are linearized (as discussed for the source
term), and thus result in a sparse linear matrix system.

In terms of computations, the discretization (and matrix assembly) routines
might take significant computational time. However, the major effort of the CFD
solver is spent on solving the linear system itself. Whereas direct methods are
useful for very small matrices, such methods are out of question for the large
and sparse matrices found in CFD, both due to excessive memory usage and too
high a cost in terms of floating point operations. Instead, iterative methods are
used such as e.g. the Gauss-Seidel method for which a huge number of accel-
eration techniques have been developed over the years [72]. Again more effi-
cient methods are found in so-called projection methods, which include Krylov
subspace solvers such as Conjugate Gradient (CG) for symmetric matrices and
Bi-Conjugate Gradient Stabilized (BiCGStab) which are routinely used in many
CFD solvers. For certain classes of problems, relaxation techniques, such as the
Algebraic Multigrid method (AMG), are a good option.

Although the mathematical details of the sparse matrix solvers are out of
scope for the thesis (for good introductory texts see e.g. [73, 74]), a general knowl-
edge is of importance both for selecting the correct class of methods based on
the matrix properties (hyperbolic, parabolic or elliptic) as well as for tuning the
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methods to achieve good performance. The latter is often a (time consuming) pro-
cess of trial and error. Nevertheless, due to the long simulation times for highly-
resolved simulations presented in this thesis, well chosen parameters can easily
save days of simulation time.

In the presented example (eq. (2.1)), the solution variable θ was assumed to
be a scalar quantity. For vectorial (or tensorial) solution variables a set of such
conservation equations need to be solved for each computational cell. Addition-
ally, with interdependent conservation equations (such as pressure and velocity,
or different neutron energy groups) the couplings must be resolved. In princi-
ple all equations could be discretized together, and after applying the required
linearizations, a coupled system of equations is obtained. In CFD the early day
computers were limited by computer memory and as a result, the matrices were
kept at a minimum size, resulting in the development of segregated algorithms
for the pressure and velocity dependence. The coupled aspects are further dis-
cussed in Section 3.3.

2.2.3 OpenFOAM R⃝

All solvers developed in this thesis are implemented as extensions of the finite
volume framework OpenFOAM R⃝[75] 1, which is a C++ open-source tool for de-
velopment of CFD solvers. The code consists of a library of general routines
focused on formulation, discretization and solution of tensorial equations with
FVM. Furthermore, a set of existing solvers are provided, including classical ap-
proaches such as segregated pressure and velocity solvers for single phase flow,
multi-fluid solvers, conjugate heat transfer and more. For an overview, see the
documentation [77, 78] or third party literature on the code [79, 80].

Considering the objectives of this thesis, some of the key aspects and benefits
of the library are:

• Unstructured meshes – OpenFOAM R⃝ handles unstructured meshes and im-
plements a computational molecule consisting of the nearest neighbors. The
unstructured meshes captures the geometry of the fuel pins and potentially
more complicated core geometries (e.g. the spacers). The library provides
corresponding FVM discretization and differential operators for the fluid
flow and heat transfer applications.

• High level equation format – The code provides a high-level equation inter-
face in which the system equations can be directly written in a user-friendly
manner which effectively hides the underlying equation discretization and
treatment of boundary conditions, etc.

1OpenFOAM R⃝ has since its first release in 2004 been forked multiple times, and in this thesis
the multiphysics code and the subcooled population balance transport code are implemented in
the community version foam-extend [76] whereas the two-fluid stability computations are per-
formed in OpenFOAM foundation version [62].
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• Existing CFD algorithms – Importantly, the library provides the standard seg-
regated fluid solver approaches, including SIMPLE [81] and PISO [82], with
a Rhie-Chow for collocated grid [83]. The previous are the foundations for
the fluid solver for the coolant of the core.

• Turbulence models – Libraries of both Reynolds Averaged models (RANS)
and Large Eddy Simulations (LES) are included, which enable fast integra-
tion of turbulence in new solvers.

• Parallelization routines – The library supports MPI parallelization and all nec-
essary data operators (such as discretization routines, algebra operators) are
written with the parallelization in mind. The code uses a so-called zero halo
layer domain-decomposition, i.e. partitioning of space in non-overlapping
domains.

Except for the above mentioned points, the freely available source code (released
under GNU GPL 3) is another important aspect as it can be extended not only on
the top-level but also for key, lower level, elements of the library.

For this thesis, many parts of the library are exploited without any modifica-
tions. However, for the multiphysics and two-fluid parts of the project, significant
code development was needed. Some of the newly developed parts2 are (in order
of size of code):

• Neutronics solvers – A library for neutronic simulations (diffusion and trans-
port) was required. This includes handling of the cross-sections and treat-
ment of both diffusion and transport equations (SN ).

• LWR multiphysics solver – The multiphysics application was developed to
combine neutronic solvers and fluid solvers.

• Population balance solvers – For Paper VI, PBE solvers for DQMOM and MUSIG
were developed, including the relevant boundary conditions for vapor gen-
eration.

• Mesh intersection utility – A library for intersecting overlapping meshes was
developed. The tool handles the data transfer between the neutronic mesh
and the separate meshes for the solid fuel pins and the coolant (see Sec-
tion 2.3.1).

2The mentioned additions to the code are not part of OpenFOAM R⃝, and the work here pre-
sented is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM
software and owner of the OpenFOAM and OpenCFD trade marks. For any ambiguity on the
rights (and wrongs) of the trademark please refer to http://www.openfoam.com/legal/
trademark-guidelines.php.
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2.3 Computational scheme

An overall view of the computational workflow of the multiphysics solver is pre-
sented in Figure 2.4. The leftmost column corresponds to the pre-processing steps,
namely mesh generation (Section 2.3.1), cross-section generation (Section 2.3.3)
and formatting and acquiring of thermo-physical data for the materials. As for
the material properties, data are extracted from openly available sources and in-
terpolated in the multiphysics solver.

The center column corresponds to the coupled fine-mesh solver for the neu-
tronics and the thermal-hydraulics. As indicated, the two modules exchange all
coupled data, and the procedure for the data mapping is briefly covered in Sec-
tion 2.3.2. The results of the computations are stored on the OpenFOAM internal
format and post-processed by a combination of ParaView [84] and Python utili-
ties.

Although invisible in all included publications and in the current description,
the setup of a coupled case with all initial fields, meshes, thermophysical data,
cross-section sets and decomposition schemes is typically time-consuming and
repetitive. To simplify the process, Python utilities were developed for each of
the applications presented in the appended papers, and the value of such utilities
for work like this should not be underestimated.
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Figure 2.4: Overview of the computational framework for the multiphysics sim-
ulations.
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2.3.1 Grid generation

The generation of computational grids, is a key to the multiphysics simulations,
not least due to the fact that the problem benefits from the use of multiple meshes,
with one or more for each field.

Mesh influence on the results

As regards the influence of the grid quality on the results, some of the key sources
which contribute to mesh-induced errors are [70, 85]:

• Insufficient mesh resolution – If the mesh is too coarse the physics might not
be correctly represented. In particular, large gradients will be poorly repre-
sented and the solution might not be only imprecise but also inaccurate.

• Non-orthogonality error – In the discretization of the diffusion operator, the
gradient at the surface between two neighboring cell centers must be com-
puted. In the case of non-parallel normal of the surface and the vector con-
necting the cell centers a correction of gradient at the surface is required.
Such a correction is often computed explicitly [65], but might lead to insta-
bilities.

• Skewness error – The term skewness is applied when the vector binding
neighboring cells does not cross the common surface in the center. In partic-
ular, the order of interpolation from the nodes to the face centers decreases
from second order to first order.

• Non-uniformity – The mesh uniformity affects the discretization, namely via
the order of accuracy of the computation of face gradient.

In addition, it should be mentioned that in the case of a preferred direction of
the flow (as the case with the dominating axial flow velocity component in the
reactor) it is preferable to have the flow crossing the cells parallel to the normal
of the crossed surface. In practical terms we thus desire prismatic or hexahedral
elements, axially aligned with the flow.

As the gradients in the field govern what regions require a finer discretization,
a non-uniform grid is generally beneficial. The resolution requirements would ei-
ther stem from some a priori knowledge of the solution or on posteriori estimated
errors used to automatically update the mesh accordingly (so called adaptive re-
finement). Whereas we can directly apply the former from a general knowledge
of the reactor core, considering phenomena such as a thermal neutron group peak
in the top and bottom reflectors, the latter is, although tractable, practically cum-
bersome to achieve. In particular, for a refinement by splitting cells to smaller
cells (h-refinement) we want to work on a fully unstructured grid [86], which has
other drawbacks for the multiphysics framework as discussed in the next section.
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Gap mesh
Fuel mesh

Cladding
mesh

Moderator mesh Neutronics mesh

Figure 2.5: Example domain discretization for a single fuel pin with surround-
ing subchannel. Exploded for the thermal-hydraulics (left) and the neutron-
ics (right) [Paper IV].

Multiple meshes

To solve both neutronics and thermal-hydraulics in an efficient manner, multiple
overlapping meshes are required. The neutronic grid must cover the entire do-
main, whereas the fuel, gap and cladding meshes discretize the separate regions
only. In addition, the fluid problem is solved on a mesh covering the domain
outside the solids. An example of the required regions and meshes is given Fig-
ure 2.5, where the separate domains are highlighted.

Depending on the algorithms that couple the different fields of physics, dif-
ferent conditions are imposed on the mesh characteristics. A good overview of
some mesh generation issues specific to the reactor geometry is given by Hansen
and Owen [87], where among others the following key aspects are notable:

• Mass preservation – A mesh with flat surfaces induces an error in the rep-
resentation of the underlying body. Figure 2.6 gives an example where a
fuel pellet is discretized with two alternative meshes; the full lines apply a
discretization of 3 elements in the azimuthal direction whereas the dashed
discretization uses 6 elements. In the magnification of the point at ϕ = π/6
it is seen that the actual cylinder (red) is not exactly captured by any of the
two meshes. Although seemingly small, the impact on the criticality value
of the reactor might be important.

• Multiple mesh consistency – Not many available meshing tools are built for
multiple mesh support, especially not considering the need for overlap-
ping meshes with preserved material regions. Preferably, a mesh generator
should handle situations as the one presented in Figure 2.6 in a consistent
manner for all the meshes.

In addition, two more aspects were found important during the method develop-
ment for this thesis:
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Figure 2.6: Quarter fuel pin discretization with a 9 elements (solid lines) or 18
elements (dashed lines).

• Domain decomposition – As all the calculations are performed on HPC re-
sources with MPI, the domain must be decomposable into different regions.
To achieve an efficient decomposition of the multiphysics problem, one ap-
proach is to decompose all fields of physics using the same spatial partition-
ing. This ensures that the data transfer between the modules (e.g. neutron-
ics power level to the fuel heat transfer mesh) is done on the same CPU. To
achieve this, a strictly controlled meshing process is required, where all the
different meshes have cell faces coinciding at the surfaces used for spatial
partitioning.

• Mesh repeatability – Since the geometry of the reactor consists of square or
hexagonal lattices, at least in the case of the commercial designs, a consis-
tent meshing throughout the fuel assembly is needed. That is, for the same
pin cell geometry, the same mesh topology should be computed. This is
achievable with block structured meshes where one can assure a perfect
match at the interface of the pin cells. For an unstructured mesh this is not
directly feasible (or at least difficult to achieve given the previous point of
material region preservation).

The described key aspects are not very closely related to the archetype case of
the single monolithic mesh covering the full domain. Although the mentioned
issues are not particularly challenging from a theoretical point of view, the com-
bination of requirements still makes for a practical problem requiring special pro-
cedures (in the sense of not directly applicable in the commercial CFD codes). As
an example from the literature, Tautges and Jain [88] describe a hierarchal proce-
dure for building meshes for hexagonal as well as square lattices with a sufficient
resolution for CFD, taking advantage of the repeated structures. Such procedures
are a good attempt, at least up until the point where the level of detail is further
increased. For the case of explicit modeling of spacers, a fully unstructured mesh
is generally unavoidable (see e.g. [40, 89]).
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Development of mesh capabilities

If we summarize the above discussion, the criteria include that the meshes should
be:

• preferably structured with minimized non-orthogonality and surface nor-
mals aligned with the flow direction,

• conformal with the domain decomposition such that no inter-node data
transfer is required for the multiphysics couplings,

• easy to control in terms of the resolution, in order to minimize the degrees
of freedom,

• repeatable for all pin cells, and

• body-fitted to capture advanced geometries such as spacers.

To fulfill as many criteria as possible, two different solutions were tested. In the
first part of the project (essentially [Paper I]) the meshes were generated with
the SALOME platform [90]. An example of the meshes produced is given in Fig-
ure 2.7. The SALOME platform includes both pre-processing and post-processing
together with different capabilities for code coupling and was applied as the
framework tool for the NURESIM project [91]. For the current example, only
the meshing tools were tested.

The meshes from [Paper I] are of hybrid character, with structured regions
for the boundary layers (i.e. fluid regions close to the walls) and unstructured
regions in the bulk of the fluid and the fuel pin. Although the software could
be controlled via a Python interface, the possibilities to full control the mesh was
found limited (at least in 2012).

To increase control, especially to get full consistency between all mesh regions
and in the whole fuel lattice, an alternative meshing code was developed within
the project. The code consists of an object-oriented Python framework in which
the grids are built from macro objects in a block-structured manner. An example
of a computed block-structured mesh of a spacer from the PSBT benchmark [92]
is illustrated in Figure 2.8. The macro objects are discretized as blocks with an
internal Cartesian discretization in (nx, ny, nz) cells. The FVM formulation ap-
plied does not allow hanging nodes, and thus all intersecting blocks must have a
consistent face discretization.

The block-structured method has the benefit of exact control of the discretiza-
tion of each block and, accordingly, a shared preservation of all geometric regions
between different meshes. However, there are drawbacks, and in particular the
block-structured mesh will be governed by the regions of the finest mesh reso-
lution which will propagate through the mesh. An example issue is seen in Fig-
ure 2.9, where the corners of the moderator mesh are influenced by the structure
of the spacer, which gives artificial transitions between different regions in the
mesh.
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Figure 2.7: Example of mesh generated via SALOME (adaptation from [Paper
I]).

Figure 2.8: Block-structured mesh of a spacer for a pin cell. The solid fuel pin is
indicated by the low opacity orange region.
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Figure 2.9: Example of moderator mesh for a pin cell including a spacer as
shown in Figure 2.8.
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A configuration file ensures rapid control of the discretization and the system
geometry (fuel pin radius, number of spacers, fuel pin lattice size, etc.). On the
drawback side, it should be noted that the geometrical template structures are in-
ternally specified, e.g. the spacer geometry is hard coded from blueprints except
for some general parameters such as height and material thickness. This is the
price of the block-structured approach; the developer needs to more or less man-
ually build the block structures internally. However, with the developed object
oriented library, modifying the geometry or building new geometries are suffi-
ciently fast. Also, this should be considered a programmatic approach to pure
hexahedral meshing as can be done through interfaces in some mesh generators
(such as e.g. ANSYS R⃝ ICEM [93]).

The developed mesh tool additionally creates the required initial and bound-
ary conditions for all fields. Furthermore, the output of the mesh generator con-
tains blocks with corresponding discretization, points and groups of block faces
for the boundary conditions. The application generates the exemplified mesh
(Figures 2.8 and 2.9) for 3 spacers in a 1 m long system in approximately 10 sec-
onds. The short generation time is a benefit of the block-structured approach
where not every single cell needs to be computed but only the blocks building
the structures.

It should be noted that the generality of the tool is limited and, as discussed
above, a more complicated spacer geometry would require an unstructured mesh.
An extension of the tool would be to use unstructured meshes for certain regions
of the multiphysics meshes, and specifically ensuring that the outer surfaces of
such regions are consistent with neighboring block regions.

2.3.2 Mesh mapping

As described above, different meshes are applied for the different fields. To
achieve data transfer between meshes of different resolution and structure a map-
ping algorithm is required. The problem can be solved by a point-to-point inter-
polation, advantageously accelerated by clever data sorting and decomposing the
problem (see e.g. [94]). Alternatively, a direct overlap between the meshes could
be computed such that volumetric intersections are used to map the data trans-
fer. A schematic example of the latter approach is displayed for a 2D problem
in Figure 2.10. An advantage of intersection approach is that the interpolation
is directly conservative, and such a property was the rationale for choosing this
approach for the current work. A more detailed discussion on the algorithm and
its limitations is given in Paper IV.
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MESH A MESH B

Cell j in mesh A

Intersection Iij
between cell j
in mesh A and
cell i in mesh B

Cell i in mesh B

Figure 2.10: Example of mapping of two overlapping meshes. The intersection
Iij is used to compute interpolation weights for two-way interpolation between
cells i and j. [Paper IV]

2.3.3 Cross-section generation and utilization

Except for meshes and the material thermophysical data, the multiphysics tool re-
quires macroscopic cross-sections for the neutron solvers. The actual application
of the cross-sections in the neutronic equations is postponed to Section 3.1, but as
the preparation of the cross-sections requires a methodology in itself, a descrip-
tion is given of the criteria for and how to efficiently compute such cross-sections.

Prerequisites and potential methodologies

Based on the objectives of sub-pin resolution in the fuel and the fine-mesh multi-
physics coupling, the prerequisites are that the cross-sections should be:

• valid at a sub-fuel pin scale,

• discretized in G energy groups (where G ≪ 100),

• providing higher order (PN ) scattering matrices,

• parametrized on the thermophysical state (temperature, density, etc), and

• useful in combination with the multiphysics setup as described in the pre-
vious section.

In particular, the last and the first point turns out to be challenging as the required
scales are not the same as in the standard neutronics workflow (as described in
Section 1.2.1). Three alternative approaches to generate the cross-sections were
identified:
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1. Generate macroscopic cross-sections directly from the nuclear data libraries
with correct handling of resonances, with a large number of energy groups.
This could either be done in a lower dimension spatial calculation or on
parts of the actual simulated 3D domain. A detailed overview of the stages
associated with lattice computations and cross-section generation is given
by Knott and Yamamoto [3] and it is clear that this process would require a
major effort in terms of methodology development, and it would later risk
to significantly increase the simulation time.

2. Directly apply cross-sections generated by a lattice code. This option was
investigated in the early stages of the project (primarily for the commercial
codes CASMO-4E [95]), but it was found that the available output was pro-
vided on a scale much coarser than required. As described in Section 1.2.1,
the lattice codes are aimed at generating fuel assembly cross-sections in few
energy groups for the core solvers. As a result, the geometry and scales of
the condensation and homogenization processes do not match the criteria
for the fine-mesh simulations. It should be noted that there are examples
of open source lattice codes (e.g. DRAGON [96]) which could potentially
be modified or extended to produce the desired set of cross-sections. How-
ever, also for such alternatives there are severe limitations when it comes to
non-standard geometries (e.g. a spacer) and again a major effort would be
required to extend the code and develop such a model.

3. Compute macroscopic cross-sections with a Monte Carlo approach. This
option has the benefit of a very flexible geometry, where most Monte Carlo
codes supports combinations of a range of primitive mathematical geome-
tries. The obstacle for this alternative is that macroscopic cross-section gen-
eration is not historically a standard functionality of such solvers. The long
term state-of-the-art code MCNP [97] has been user modified for such gen-
eration [98], and the proposed methodology was tested. However, the im-
plementation achieved was found inefficient and inconsistent wherefore the
early attempts were abandoned. It should however be noted that the same
group performed the reversed operation, i.e. performing calculations in
MCNP based on macroscopic cross-section [99], which was successfully ap-
plied in noise calculations related to the current thesis [100]. As an alterna-
tive to MCNP, the code Serpent [101] was tested and found more suitable
since macroscopic cross-section generation is a built-in utility and can be
applied for specific regions of the simulated domain (such as a small part of
a fuel pin).

Decidedly, all three alternatives have benefits and in particular the first option is
tractable from a theoretical point of view. Under transient conditions, where the
reactor is potentially far from critical, a general assumption of criticality might
give significant impact on the cross-section [102]. With the first option, an on-
the-fly approach could potentially compute the cross-sections valid for the actual,
and not necessarily critical, state of the reactor. However, as noted above, such an
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alternative is associated with a large development effort and a significant compu-
tational cost.

From a framework point of view, the third option was judged as the choice
easiest to implement and deploy in the multiphysics solver since Serpent includes
advanced geometries and cross-section generation and extraction. Nevertheless,
the resolution required in this project is still not a default case and the code is not
explicitly prepared for generation of many sets of cross-sections on small parts of
a fuel assembly or fuel pin. For this reason, and to pre-process the cross-sections
for use with the deterministic solver, a wrapper code was developed (described
below).

Given the choice of Serpent it is tempting to entirely discard the idea of the de-
terministic neutron transport solver. Why should we use a discretized, condensed
and homogenized approach to the neutron transport when we can readily per-
form simulations in continuous energy with no discretization errors associated
using Monte Carlo? In particular, the availability of detailed geometrical descrip-
tions and accurate solution to the transport problem are appealing. Although the
arguments for a Monte Carlo approach are indeed strong for steady simulations,
there are still some aspects that support the choice of a deterministic approach:

• Transient simulations – Whereas steady-state coupled reactor problems have
been performed with Monte Carlo methods for a number of years, transient
algorithms are less developed. Examples of simulations of short transients
with Serpent (without delayed neutron handling) exist in the literature [103,
104]. Also methodologies for longer transients, i.e. where delayed neutron
handling is essential have been proposed [105] but still seem to be under
development and not yet sufficiently mature to be a viable option.

• Simulation time – Monte Carlo simulations are associated with a significant
cost, in particular when compared to heavily optimized core simulators. In
the current case of fine meshes the difference could be expected to be smaller
but nevertheless significant.

• Resolution of coupling – In order to perform a direct fine-mesh coupling be-
tween the CFD and the Monte Carlo solvers, a fine geometrical resolution of
the tallies would be required. Consequently, the Monte Carlo simulations
must be run for a long time to reach low statistical errors for each small
volume coupled to the fluid solver. To get a high precision for very small re-
gions in space would induce a much higher cost than getting precise global
parameters.

• Inconsistent parallelization schemes – Due to the independence between the
simulated neutron histories the Monte Carlo software is most conveniently
parallelized by duplicating the system, run on separate processors/threads
and then recombining the data in a statistically consistent manner. In con-
trast, the large scale CFD solvers parallelize by domain decomposition. A
tightly coupled parallelization schemes, such as presented in Figure 2.3,
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would thus not be readily achievable. The monolithic code approach is par-
ticularly important for transient solutions with a lot of data exchanges.

Whereas the latter three points could be overcome by (extended) simulation times,
the first point is decisive for the current project. In the long run, transient simu-
lations are of particular interest and to get a relevant coupling to the CFD solver
and to the scenario length of the transients, requires handling of the delayed neu-
trons.

Cross-section generation using Serpent

To generate cross-sections for the fine-mesh resolution in Serpent a wrapper ap-
plication was developed. Similar to the mesh application described above, the
tool is developed to automatically create a fuel assembly geometry, but here for
the purpose of detailed cross-section generation. The application has the major
benefit that the, quite error prone, input format of the Monte Carlo code is hid-
den. Instead a configuration file with much fewer option and only the necessary
geometry details is sufficient to setup a case. The utility requires the following
information:

• the lattice pitch together with the number of fuel pins, and the respective
type of pin at each position,

• the desired resolution of the cross-section set in terms of radial and az-
imuthal regions in the fuel, gap, cladding and moderator as exemplified
in Figure 2.11,

• the desired number of energy groups,

• the material properties, including densities and isotopic compositions, and

• the radial temperature profile in the fuel as well as in the moderator.

For the moderator, the application computes the relevant density properties
and applies this to the material of the particular region in space associated with
the specified temperature. It should be noted that Serpent handles the Doppler
broadening associated with a certain material temperature, but the application
still need to determine and supply Serpent with the correct cross-section table.

In principle three dimensional sets of cross-sections could be computed with
both a horizontal and axial resolution. However, as discussed above, finer res-
olutions require longer simulation times to get the desired statistical confidence
intervals. Furthermore, as the cross-section generation is not at the core of the
project, a reasonable assumption is to use axially independent cross-sections, i.e.
relying on a horizontal slice with reflective boundary conditions in the axial di-
rection.

Given the above specified information, an input file is created for Serpent and
then run with the same tool. After the simulation is finished, the same application
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Symmetry line

2 % UOX
2 % UOX with 2% Gd2O3

4 % UOX
Water, 1000 ppm boron
Gap, helium
Reflective boundary

Figure 2.11: Fuel pin discretization in horizontal plane, using 4 azimuthal and
8 radial regions per pin cell, in total 1775 regions [Paper IV].

computes temperature dependent cross-section files for the multiphysics and geo-
metrical descriptions of each of the regions (radial and azimuthal information) in
an OpenFOAM R⃝ specific format. The latter is necessary to compute sets of cells
from the computational meshes for which each group of cross-sections should be
applied.

The geometry in Figure 2.11 shows the actual cross-section regions, in total
1775 regions for the multiphysics computation in [Paper IV]. The Serpent input
file for the presented case is more than 8000 lines long, which emphasizes the
need for the automatic procedure. The input for the wrapper is 100 lines long.

Implicitly, the described process includes a number of assumptions whereof
the most notable are that:

• the cross-section generation is performed under the assumption of periodic
boundary conditions, i.e. a system with an infinite number of identical fuel
assemblies, and

• the cross-sections are computed for static temperature profiles, a priori de-
termined but potentially updated by an iterative process between the Ser-
pent wrapper and the multiphysics simulations.

Similar to the meshing utility, the tool is implemented as an object-oriented
library in Python. The object-orientation has many practical features when it
comes to the geometry modeling. The simulation time of the script itself is negli-
gible in comparison to the Monte Carlo simulation.
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CHAPTER 3

Models for the coupled LWR
single-phase problem

After the introduction of the multiphysics problem with current standard and
high-fidelity approaches in Chapter 1 and the overview of the computational
methods in Chapter 2, this chapter introduces the neutronic and thermal-hydraulic
models. Except for describing the transport equations for each of the modules a
brief discussion is given on the options available to solve the non-linear multi-
physics problem.

On a side note, the step going from the mathematical formulation in this chap-
ter to the implementation in the FVM framework described in the previous chap-
ter is seemingly large. To provide enough detail to directly repeat the numeri-
cal experiments is unsatisfactorily difficult (and page consuming). Such a deep
rift between reported equations and actual implementation is commonly seen in
the open literature, and is unfortunate. Although the next chapters (4 and 5) in-
troduce some additional details, the current chapter should be better seen as an
overview description of the neutronics and thermal-hydraulics.

3.1 Formulation of the neutronic problem

The transport of neutrons in the reactor core is governed by the linear Boltzmann
equation, here written in an integro-differential form, such that [106]

∂

∂t
n(r,Ω, E, t) + Ω · ∇Ψ(r,Ω, E, t)+ΣT (r, E, t)Ψ(r,Ω, E, t) =∫

(4π)

∞∫
0

Σs(r,Ω
′ → Ω, E ′ → E, t)Ψ(r,Ω′, E ′, t)dΩ′dE ′+
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χ(E)

4π

∞∫
0

νΣf (r, E
′, t)Φ(r, E ′, t)dE ′, (3.1)

where the neutron density (n(r,Ω, E, t)) is related to the angular neutron flux as

Ψ(r,Ω, E, t) = v(E)n(r,Ω, E, t), (3.2)

which in turn is related to the scalar flux Φ(r, E, t) as

Φ(r, E, t) =

∫
(4π)

Ψ(r,Ω′, E, t)dΩ′. (3.3)

The balance equation eq. (3.1) is not analytically solvable except for simplified
problems and in general we need to rely on numerical methods to resolve the
neutron distribution in the core.

In order to solve eq. (3.1) in the FVM framework as described above, we dis-
cretize the solution space consisting of time (t), space (r), angle (Ω) and energy
(E). The space discretization was already briefly discussed in Section (2.2.1), and
instead, the balance equation is first discretized in terms of neutron energy such
a set of G energy intervals is defined as

[Emin, Emax] =
G∏

g=1

[Eg, Eg−1], (3.4)

with the purpose of writing eq. (3.1) as a set of G discrete equations, coupled in
the discrete energy space. Such a set of relations are computed by integrating the
balance equation over each energy interval g with 1 < g ≤ G. As an example the
scalar neutron flux Φ(r, E, t) is discretized as

Φg(r, t) =

Eg−1∫
Eg

Φ(r, E, t)dE. (3.5)

For the cross-sections and the other energy dependent parameters of eq. (3.1), flux
averaged quantities need to be computed, where e.g. the energy discretized total
cross-section is given by

ΣT,g(r) =

Eg−1∫
Eg

ΣT (r, E)Φ(r, E)dE

Eg−1∫
Eg

Φ(r, E)dE

. (3.6)
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The weighting procedure is a key aspect of the cross-section generation and due
to the complex energy dependence (see the example of the fission cross-section in
Figure 1.1), such weighting must be carefully and consistently performed. In the
current work this is implicitly achieved by the internal flux weighting in Serpent.
After discretizing all terms of eq. (3.1), the balance equation for energy group g is
given by

1

vg

∂

∂t
Ψg(Ω) + Ω·∇Ψg(Ω) + ΣT,gΨg(Ω) =∫

(4π)

G∑
g=1

Σs,g′→g(Ω
′ → Ω)Ψg′(Ω

′)dΩ +
χg

4π

G∑
g′=1

νg′Σf,g′Φg′ , (3.7)

where the space and time dependencies are left out for the sake of brevity and
the neutron density n(r,Ω, E, t) is written in terms of the angular flux according
to eq. (3.2).

For the time dependence, the thesis includes both steady-state and time-dep-
endent neutronics solvers. For the steady-state solver the time dependence in
eq. (3.8) is discarded and a normalization factor 1/keff is multiplying the fission
source of the balance equation such that

Ω · ∇Ψg(Ω) + ΣT,gΨg(Ω) =∫
(4π)

G∑
g=1

Σs,g′→g(Ω
′ → Ω)Ψg′(Ω

′)dΩ +
χg

4πkeff

G∑
g′=1

νg′Σf,g′Φg′ , g = 1, ..., G. (3.8)

The equation now takes the form of an eigenvalue problem where the eigenvec-
tors are the (angular) neutron fluxes and the smallest eigenvalue corresponds to
the inverse of the criticality factor (keff).

For the transient approach the time derivative is retained and in addition the
fission source of neutrons is split in two parts, the contributions from the prompt
neutrons and the delayed neutrons. The prompt neutrons are released immedi-
ately after the fission event. In contrast, the delayed neutrons are released after
decay of the fission products with a varying time delay. In order to account for
the accumulation of such precursors of delayed neutrons and the contribution
to the balance equation, additional conservation equations for the precursors are
added. Due to the large number of different fission products decaying, the pre-
cursors are routinely grouped in I groups, with one conservation equation per
group. The balance equation for the transient problem is then given by

1

vg

∂Φg(r, t)

∂t
∇ · Jg(r, t) = −ΣT,g(r, t)Φg(r, t) +

G∑
g′=1

Σs0,g′→g(r, t)Φg′(r, t)

+ (1− β)χp
g

G∑
g′=1

νg′(r, t)Σf,g′(r, t)Φg′(r, t) + χd
g

I∑
i=1

λiCi(r, t), g = 1, ..., G,

(3.9)
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with the precursor concentrations (Ci) calculated as

dCi(r, t)

dt
= βi

G∑
g′=1

νg′(r, t)Σf,g′(r, t)Φg′(r, t)− λiCi(r, t), i = 1, ..., I. (3.10)

As seen from eqs. (3.9) and (3.10) the equations are interdependent and must be
solved together, either by explicit iteration or in a more implicit manner.

For the angular discretization, two different alternatives will be considered in
this thesis, namely the diffusion approximation, in which the angual dependen-
cies are removed, and the discrete ordinates method.

3.1.1 Diffusion approximation

The diffusion approximation for the angular dependent neutron transport equa-
tion is achieved in three steps. First, the neutron transport equation is integrated
over all angular space such that eq. (3.8) gives

∇ · Jg + ΣT,gΦg =

∫
(4π)

∫
(4π)

G∑
g=1

Σs,g(Ω
′ → Ω)Ψg(Ω

′)dΩdΩ′ +
χg

keff

G∑
g=1

νg′Σf,g′Φg′ .

(3.11)

Secondly, the scattering kernel (Σs,g(Ω
′ → Ω)) is assumed to be isotropic, i.e.

Σs(r,Ω
′ → Ω, E ′ → E) =

Σs0(r, E
′ → E)

4π
. (3.12)

Finally, we apply Fick’s law to approximate the current as [107]

J(r, E) ≈ −D(r, E)∇Φ(r, E). (3.13)

Inserting eqs. (3.12) and (3.13) in eq. (3.11) then gives the final form of the steady-
state diffusion equation as

−∇ (Dg∇Φg) + ΣT,gΦg =
G∑

g′=1

Σs0,g′→gΦg′ +
χp
g

keff

G∑
g′=1

νΣf,g′Φg′ . (3.14)

Advantageously, the diffusion equation efficiently reduces the solution space for
the neutron distribution as only one equation is solved per energy group. How-
ever, the approximation of isotropic scattering and the use of Fick’s law is known
to reduce the accuracy, in particular for heterogeneous regions such as close to the
interface between the fuel pins and the moderator. A more rigorous derivation of
the diffusion equation using P1 theory is given in Bell and Glasstone [107].
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3.1.2 Discrete ordinates method

As an alternative to the diffusion approximation of the angular flux, there are
many methods to actually resolve the angular flux, or at least some degree of
it. Just like space or time, the angular dimension requires discretization. In the
spherical harmonics (PN ) method the angular flux is expanded in terms of a spher-
ical harmonics base of order N (with couplings to higher order terms neglected),
which results in a set of coupled equations for the flux expansions (see e.g. [68,
106]). In the discrete ordinates method (SN ) the angular space is instead covered
with a set of discrete directions. The neutron transport equation is solved for each
such direction. The latter method (SN ) is the method applied in this thesis.

In more specific terms, for the steady state discrete energy problem, eq. (3.8)
is written for one specific ordinate (i.e. streaming direction) Ωm [108]

Ωm · ∇Ψm,g + ΣT,gΨm,g = Sm,g +
1

k
Fm,g, (3.15)

where the fission source (Fm,g) is defined as

Fm,g ≡ χg

M∑
m′

wm′

G∑
g′=1

νg′Σf,g′Ψm′,g′ , (3.16)

and the scattering term is expanded in terms of Legendre ploynomials (Pl) and
written for a discrete number of ordinates M such that

Sm,g ≡
L∑
l=0

(2l + 1)
M∑
m′

Pl(Ωm · Ωm′)wm′

G∑
g′=1

Σs,l,g′→ gΨm,g′ . (3.17)

The scalar flux (Φg) is computed as a weighted sum of the flux for each direction,
such that

Φg = 4π
M∑
m

wmΨm,g, (3.18)

where the weights (wm) are associated with the chosen quadrature set as dis-
cussed next.

The set of discrete directions (Ωm) and weights (wm) is decisive for the accu-
racy of the solution of the M coupled transport equations. The optimal set is
unfortunately problem specific (see e.g. [110]). However, in general a larger num-
ber of discrete directions will recover the angular flux with a better accuracy. In
this thesis specifically, the level symmetric quadrature set is applied (for further
details see e.g. Hébert [68]). An example of the set of directions for such a set of
order 9 is shown for the first octant in Figure 3.1. As seen in the figure, the set of
directions is symmetric as regards all Cartesian axes.

Computationally, the most costly part of eq. (3.15) is the evaluation of the
scattering term, where each evaluation of Sm,g for a specific m and g requires
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Figure 3.1: Example discretization of an octant of the angular space using level
symmetric quadrature of order 8 with µ1 = 0.20 according to [109].

(L × M × G) summations. In order to reduce the cost of this computation the
scattering source is projected on a spherical harmonics basis, specifically the real
spherical harmonic functions as defined by Hébert [68], such that eq. (3.17) can
be written

Sm,g =
G∑

g′=1

L∑
l=0

(2l + 1)
l∑

r=−l

Rlrϕg,l,rSs,l,g′→g. (3.19)

The quadrature set applied in this thesis represents the spherical harmonics or-
thogonality up to a degree L = N/2 [68] and therefore a smaller number of expan-
sion coefficients ϕg,l,r than the actual number of discrete ordinates are required.

The SN method is well known to converge slowly for many types of prob-
lems [111]. Commonly, different accelerating schemes are applied to decrease the
number of iterations required to resolve the angular interdependence between
the different directions in the scattering source (explicitly in eq. (3.17) or implicitly
via the projection on the spherical harmonics in eq. (3.19)). One classical method
is the diffusion synthetic acceleration (DSA) [112]. Successful implementations of
such accelerated schemes are known to be dependent on a discretization consis-
tent with the original SN implementation [113]. Moreover, some classical schemes
like the DSA have been shown to work worse in cases of multidimensional cases
with strong material heterogeneities (which very well describe the systems of in-
terest in this thesis). Another possible approach, is to solve the problem using
a Krylov method, which has been reported to decrease the dependence on the
discretization [113]. What regards the neutronics solver developed for this the-
sis, a Krylov method is by hypothesis a better candidate for the unstructured (or
at least non-Cartesian) approach. However, in the current scope, the coupling

46



3.2. Single-phase fluid flow and heat transfer

between the ordinates was resolved by source iteration.

3.2 Single-phase fluid flow and heat transfer

The single-phase flow problem in a LWR is goverend by the conservation equa-
tions for mass, momentum (the so called Navier-Stokes equations) and enthalpy
written as [114]

∂ρ(r, t)

∂t
+∇ · (ρu) (r, t) = 0, (3.20)

∂(ρu)

∂t
(r, t) +∇ · (ρu⊗ u) (r, t) = ∇ · τ(r, t)−∇p(r, t) + ρ(r, t)g, (3.21)

and

∂(ρh)

∂t
(r, t)+∇·(ρuh)(r, t) = −∇·q′′(r, t)+q′′′(r, t)+¯̄τ(r, t) : ∇⊗u(r, t)+∇·(up) (r, t).

(3.22)
The interpretation of the heat source terms (q′′ and q′′′) is discussed in detail in
Section 3.2.3. The complexity of the equations is manifold. First, eqs. (3.20)–(3.22)
are all interdependent through the fluid velocity (u) and (except for the continu-
ity equation) through the pressure (p). Secondly, the equations are non-linear in
the solution variables u, h and p (or alternatively ρ). Thirdly, all material data
in eqs. (3.20)–(3.22) vary with the thermophysical state of the system, which in
turn will change due to the enthalpy rise in the heated channels in the core. For
all three mentioned reasons, an iterative (or non-linear) algorithm is required to
resolve the dependencies, and this is further discussed in Section 3.2.2 below.

The single-phase problem with low Mach numbers can often be solved as an
incompressible flow, for which the criteria on the density is that

1

ρ

Dρ

Dt
= 0. (3.23)

For the single-phase reactor core problem, the characteristic velocity is indeed
significantly lower than the speed of sound in the coolant (Ma < 0.01). However,
due to the heating of the water the density change will violate the condition in
eq. (3.23). Considering the thermodynamic equation of state we can write [114]

1

ρ

Dρ

Dt
= α

Dp

Dt
+ β

DT

Dt
, (3.24)

where α is the isothermal compressibility and β is the bulk thermal expansion
coefficient. Although α is small in the case of liquid water, the flow should still
be considered as low speed compressible due to the changes caused by the tem-
perature change.

For the incompressible flow, the coupled eqs. (3.20)–(3.21) are typically solved
in terms of pressure and velocity, whereas a compressible solver is often posed
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Chapter 3: Models for the coupled LWR single-phase problem

in terms of velocity and density (see e.g. [65, 115]). In the current case, a so-
called weakly compressible approach is needed, with special attention given to
the dependence on temperature for all transport coefficients.

In addition to the fluid conservation equations, an energy equation for the
fuel pins must be formulated. Such a balance equation is coupled to the energy
equation of the water at the interface of the fuel pin and accordingly results in a
conjugate heat transfer problem between the fuel pins and the fluid. The treat-
ment of the heat transfer is discussed in detail in Section 3.2.3.

3.2.1 Turbulence

The conservation equations (3.20)–(3.22) describe local and instantantaneous flow
and due to the large range of time and length scales involved a direct solution to
industrial scale problems is still not feasible. Indeed, solutions resolving all the
characteristic scales of the flow, i.e. to the smallest dissipation scales of the turbu-
lence, can be computed with Direct Numerical Simulation (DNS) (see e.g. [116]).
However, due to the enormous computational requirements only limited domains
with relatively low Reynolds numbers can be simulated even with the current
state-of-art HPC resources.

Instead of the direct approach, we need to approach the equations with a fil-
tered or averaged approach. From a computational perspective, two methodolo-
gies, or rather classes of methodologies, are commonly found in CFD, namely
Reynolds-Averaged Navier Stokes (RANS) and Large Eddy Simulations (LES),
which are both popular and widely applied in nuclear engineering [117]. In the
current thesis the prior has been used as a first approach. Later experimentation
with LES was performed and due to the generally increased resolution, the cost
of such simulations are significantly larger than the RANS counterpart. Never-
theless, LES is a future candidate for the coupled transient calculations within
the multiphysics tool.

RANS

In RANS, a filtering of the conservation equations is performed via a decomposi-
tion of each field in its mean value and a temporally fluctuating component. The
details of the procedure is well covered in the literature (see e.g. [65, 116, 118,
119]), and here we will be satisfied with the final form of the mass, momentum
and enthalpy equations after the insertion of the decomposed velocity, pressure,
and enthalpies and time averaging the equations given by

∂ρ

∂t
+∇ · (ρU) = 0, (3.25)

∂(ρU)

∂t
+∇ · (ρU⊗U) = ∇ · τ −∇ · ρu′ ⊗ u′ −∇P + ρg, (3.26)
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and
∂(ρH)

∂t
+∇ · (ρUH) = −∇ · q′′ + q′′′ +∇ · (UP ) +∇ · (u′p′) + τ∇⊗U−∇ · (ρu′h′),

(3.27)

where space and time dependence (r, t) is omitted for brevity, capital letters are
used for mean quantities (U, H , P ) and primes indicate the fluctuating compo-
nents (u′, h′, p′).

To close eqs. (3.25)–(3.27), the terms with fluctuating components must be
modeled. As regards the momentum equations, the Reynolds stress tensor u′⊗u′,
could be solved for by using six additional (all permutations of u′

iu
′
j , assuming

symmetry) equations which then model the Reynolds Stresses. Alternatively, and
computationally cheaper, the Boussinesq assumption could be applied such that
in a tensor notation

ρu′
iu

′
j = µt

(
Ui,j + Uj,i −

2

3
Uk,kδi,j

)
− 2

3
ρkδi,j, (3.28)

where the model is posed in terms of a turbulent kinetic viscosity µt and the tur-
bulent kinetic energy k. Instead of solving for the Reynolds stresses, an equation
for k is solved, and in turn additional equations could be added to model some
source term in the k-equation. The open literature contains a plethora of different
models to close the equation for turbulent kinetic energy with different supposed
strengths and weaknesses. In this thesis the standard k − ϵ model is used, i.e. a
two-equation model to compute the turbulent kinetic energy and the turbulent
dissipation combined into a model for the turbulent kinetic viscosity.

In addition to the closure for the Reynolds stresses, models are required for
terms with primed quantities in the enthalpy equation. As regards the last term
of eq. (3.27), this can be modeled as an additional contribution to the thermal
conductivity in the spirit of the Boussinesq assumption (covered in Section 3.2.3)
whereas the term ∇ · (u′p′) is assumed negligible.

It should be noted that the equations above are in principle the Unsteady
RANS equations (URANS) as the time derivatives are kept. For the steady-state
version of the model (RANS) the time-derivatives are taken out, and this is the
model applied in Papers I, II and IV. The interpretation of URANS is not without
controversy (see e.g. [117]) and the fluctuations in the results computed with such
a model are likely doubtful at the best.

3.2.2 Pressure and velocity algorithms

As noted above, eqs. (3.20)-(3.22) are coupled via pressure and velocity and an it-
erative or non-linear approach is required to resolve the dependencies. The most
classical approaches in CFD is to solve the problem linearized and one compo-
nent and equation at a time, i.e. using a so-called segregated approach. The SIM-
PLE algorithm [81] has been the de facto standard for steady-state pressure-based
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incompressible solvers since the 1970s. An important element of the method is
the formulation of a pressure equation given the continuity and Navier-Stokes
equations. Interestingly, the mass (or continuity) equation lacks an explicit depen-
dence on pressure. In a mathematical formalism, eqs. (3.20) and (3.21) written in a
matrix format give a saddle-point problem, essentially lacking the diagonal term
in the system matrix (see e.g. [120]). The solution proposed in SIMPLE could for-
mally be seen as a two stage procedure where the velocity is approximated from
the previous pressure solution, followed by the solution of the pressure field com-
puted via the Schur complement of the system matrix.

In a similar manner as the SIMPLE algorithm, the unsteady PISO algorithm [82]
relies on an iterative approach to resolve the pressure and velocity dependencies
(for further details on the formulation and the implementation see e.g. [80]). The
SIMPLE algorithm was applied in all steady–state simulations in this thesis (Pa-
pers I, II and IV) and PISO for the transient simulations (Papers V and VIII).

3.2.3 Heat transfer problem

The LWR core requires the conjugate heat transfer problem to be solved as the
heat generated in the fuel pins is extracted via the fluid coolant. The enthalpy
balance in the fluid was already described by eq. (3.22). However in order to di-
rectly solve both the fluid and the solid regions in a monolithic, implicit system it
is convenient to use the same solution variable for energy throughout the domain.
As the solid region is described by the temperature conduction equation

ρ(r, T, t)cp(r, T, t)
∂T (r, t)

∂t
= ∇ · (K(T )∇T (r, t)) + q′′′(r, t), (3.29)

the fluid enthalpy equation is re-written in terms of temperature [109]. The result-
ing fluid equation is written as

∂(ρcpT )

∂t
+ ρcpU⃗ · ∇T = βU⃗ · ∇P +∇ · (K∇T ) + q′′′, (3.30)

where β is the termal expansion coefficient of the fluid and where Fourier’s law of
conduction has been applied to model the surface heat flux in terms of a diffusion
term. The thermal conductivity parameter (K) additionally includes a contribu-
tion from the turbulent diffusivity.

Although the volumetric source term q′′′ is kept in eq. (3.30), no actual sources
in the liquid are introduced. In principle the term could have introduced some
source terms due to capture of gamma rays [3], released in the fission events.
However, no transport of the gamma is covered in this thesis. In the temperature
equation for the fuel, the volumetric source term is computed from the recover-
able energy of the fissions and is thus the explicit coupling from the neutronics to
the thermal-hydraulics.
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In contrast to the pressure-velocity coupling described in Section 3.2.2, the
temperature equations require no special procedures in the discretization or equa-
tion reformulation. Instead a potential issue arises from the many solid regions
which are separately connected to the fluid region. To solve the entire heat trans-
fer problem all fuel pins and the fluid region need to be simultaneously con-
verged. For iterative methods, such as the Neumann-Dirichlet method [121], or
in a more general form non-overlapping Schwarz decomposition methods [122],
the many material regions risk to give a very slow iterative problem. As an al-
ternative, all regions could be formulated in a combined system of equations
and consequently solved in a concurrent and fully implicit manner. The latter
approach is applied in this thesis and in practice realized by coupling the temper-
ature at the boundaries implicitly via a harmonic interpolation that preserves the
conservation over the boundary faces between the solid and fluid regions.

In theory, the heat transfer by thermal radiation is required, at least for the gap
and gas inside it which is not opaque to the radiation. As a first approximation,
a frequency independent radiative heat transfer equation could be applied (see
e.g. [123]). The black-body source term for the radiation would then be computed
according to the Stefan-Boltzmann law such that,

Eb(r, T ) = σSBn
2T 4(r), (3.31)

where σSB and n correspond to the Stefan-Boltzmann constant and the refractive
index of the medium, respectively. Due to the large exponent on the temperature,
the thermal heat radiation is either not significant (low temperatures) or com-
pletely dominating the heat transfer (high temperatures). A thermal radiation
model for the gap was included in Paper I. The effect of radiation was studied in
more detail in a previous work [124], where it was found that, for nominal PWR
conditions, the heat transfer due to radiation in the gap was insignificant. For
Paper IV the heat transfer in the gap was therefore modeled similarly to the solid
regions, i.e. as dominated by conduction.

3.3 Multiphysics formulation and algorithms

After the formulation of the separate neutronic and thermal-hydraulic models,
the attention is turned to the multiphysics and the algorithms to solve the com-
bined problem of neutron transport, fluid continuity and momentum conserva-
tion and the conjugate heat transfer between the fluid and the solid fuel pins.

As touched upon in the introduction (Section 1.3.2), the first choice altogether
is whether to solve the coupling in a single code or by application of multiple
tools. Some of the respective benefits and drawbacks of the approaches were
mentioned in Section 2.1.3, and in particular the potential excessive computa-
tional cost of parallelizing the segregated approach was discussed. As outlined
in Section 2.2, this thesis is based on a single code approach.
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To understand the complete multiphysics algorithm, it should be emphasized
that there are many layers to the problem that need to be addressed, namely:

• Multiphysics – The thermal-hydraulic equations rely explicitly on the power
density computed from the neutronics via the source term in the fuel tem-
perature eq. (3.29), whereas the neutronics implicitly relies on the thermo-
physical state via the density and temperature dependence of the cross-
sections.

• Non–linearities – As discussed in Section 3.2 the conservation equations for
the fluid are all coupled and non-linear in the solution variables. Also the
steady-state neutronic problem is non-linear due to the criticality factor.

• Implicit dependencies – Both the neutronics and the thermal-hydraulics rely
on material parameters that are dependent on the thermophysical state and
such dependencies are not expressed in algebraic relations, rather computed
in a black box manner, i.e. relying on e.g. a database of values.

From the above list it is immediately clear that the system cannot be directly de-
scribed with a linear equation system (i.e. Ax = b) rather it is described in a
non-linear manner such that in a generic notation we need to solve

F (x) = 0, (3.32)

where x would be a solution vector of all unknowns (Φg/Ψm,g, U, T , P in the
steady-state case and with turbulence excluded).

In principle a problem like eq. (3.32) could be solved using a non-linear so-
lution method like Newton’s method, by directly computing the inverse of the
Jacobian of the system of equations such that for an iterate m of the solution vari-
able x we have

J(xm)(xm+1 − xm) = F (xm), (3.33)
where the solution of the system would give the next iterate of the solution vari-
able xm+1. To avoid the inverse of the Jacobian, eq. (3.33) can be solved by a
standard linear solver. However, to even formulate the Jacobian might be both
expensive and difficult. Due to the use of ”black-boxes” in terms of the thermo-
physical parameters and cross-sections, a direct analytical form of the Jacobian is
in principle impossible, and for all practical methods based on eq. (3.33) a numer-
ical estimate of J is instead computed.

In the other end of the scale, a fully explicit approach is to solve the system
with Picard iterations, where each separate module of physics is solved for con-
stant values of all other equations. Considering the steady-state problem eq. (3.32)
could be formulated in terms of the above fluid conservation equations and neu-
tron transport equation as

F


ϕ
P
U
T

 =


Fϕ(ϕ, p, T )
FP (U, T )
FU(P, T )

FT (U, P,Φ)

 =


M(T, p)ϕ− 1

keff
F (T, p)ϕ

HP (U, T )P = SP

HU(P, T )U = SU

HT (U, T )T = ST (U, P,Φ)

 = 0, (3.34)
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where the operators M and F are determined from the neutron diffusion equa-
tion (eq. 3.14) or the SN equation (eq. 3.15), and H and S are determined from
the mass conservation (eq. 3.25, formulated as a pressure eq. via SIMLPE or
PISO), the momentum conservation (eq. 3.26) and the temperature equations for
the solid (eq. 3.29) and the fluid (eq 3.30), respectively. It should be noted that the
operators M and F are also dependent on the criticality factor (keff), which could
in principle be added to the state vector above. Although the exact definition of
each of the operators is not important for the reasoning, it should be noted that
each such operator in itself corresponds to a non-linear problem, i.e. even when
considering all other variables fixed.

A Picard iteration would, with the formulation as in eq. (3.34), be computed
by solving each of the four equations with the other parameters frozen. In terms
of coding effort such an approach is simple and the respective algorithms for
solving the neutronics and thermal-hydraulics could be kept without modifica-
tion. For example, the iteration between the pressure and velocity as performed
in the SIMPLE algorithm could be applied unchanged. The direct use of Picard
iterations has been shown to converge slowly for some multiphysics problems (as
discussed in[125]). However, the method avoids formulating the actual Jacobian
and thus a higher number of iterations could be accepted due to the lower cost
per iteration.

Recently, the use of non-linear formulations has drawn a lot of attention in
the multiphysics communities, including formulations such as the Jacobian Free
Newton-Krylov method (JFNK) (see e.g. [126] and applied in [127]) and Ander-
son Mixing (originally in [128] and e.g. applied to reactor multiphysics by [129]).
The former is known to require sufficiently good preconditioning [127], for exam-
ple realized by a Picard style inner iteration. The latter could be seen as a direct
acceleration of the fixed point iterations and constitute an interesting choice as
the modifications required are small.

It should be noted that in principle two layers of non-linear solvers could be
applied to solve eq. (3.34). Besides solving the outer, multiphysics iteration in a
non-linear fashion, a non-linear approach could be applied for the separate equa-
tions, which has been done for neutronics [130, 131]. Also for CFD the implicit
approaches have gained interest (see e.g. [132]) although the segregated fixed
point algorithms like SIMPLE and PISO still prevail.

In the current thesis, the multiphysics couplings and the respective physics
modules are all solved in a Picard iteration manner. The primary reason for this
was the simplicity of the method and that the performance of the multiphysics
iterations was judged acceptable in the early tests of the solver as discussed fur-
ther in the results. The use of acceleration by e.g. Anderson mixing is interesting
and should be a candidiate for further studies on the coupled CFD/neutronics
problem. Notably, many of the referenced examples of application of e.g. JFNK
are targeted at macroscopic models, on the scale of the system codes, whereas the
current thesis is focused on coupling on much smaller scales. The extent to which
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this difference would manifest in better or worse acceleration with the mentioned
methods is not clear and thus it is open for future investigations.

54



CHAPTER 4

Steady-state coupled solver
application and analysis

In this chapter the outlined computational methodology and the defined physical
models are applied together to simulate fine-mesh multiphysics for PWR like
conditions. The chapter includes the results from Papers I, II and IV. Paper I
reports the first version of the code applied to a system of 5×5 fuel pins with
a checkerboard pattern of low and high enrichment fuel pins. Whereas Paper
I is entirely based on a diffusion solver for the neutronics, Paper II presents an
implementation of SN and accompanying results that compare the flux profiles
from diffusion and discrete ordinates. Paper IV is again focused on the overall
behavior of the framework and the code presented corresponds to a re-write as
compared to Paper I.

Many of the presented results are to some extent a proof of principle and an
attempt to present the feasibility of highly-resolved multiphysics simulations of
LWR single-phase systems. As examples of this, the papers include figures for
the computational effort and the relative cost of each of the modules in combi-
nation with the number of iterations required to solve the steady-state problem.
Nevertheless there are results which are of physical interest, such as the results
of the fully resolved simulations compared to some averaged and non-resolved
simulations.

4.1 Implementation and framework details

Although many of the general aspects of the implementation of the multiphysics
FVM code were described already in Chapter 2, some additional details specific
to the steady-state solver are presented here. The framework was re-written be-
tween Paper I and Paper II. One of the major differences between the different
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implementations was that whereas the first version used the same mesh for all
fields of physics, multiple different meshes were supported in the re-written ver-
sion. The single mesh approach was early judged as a drawback and the version
including the mesh–to–mesh transfer capability (see Section 2.3.2), resulted in a
more flexible code. In this summary, the description covers only the methodology
corresponding to the second implementation.

4.1.1 SIMPLE algorithm and heat transfer

The steady–state single phase solver relies on the briefly described SIMPLE algo-
rithm (see Section 3.2.2). The steps of the algorithm are schematically outlined
in Figure 4.1. As seen from the algorithm, the moderator momentum predictor
equations and the turbulence are solved prior to the CHT problem, where the lat-
ter treated with the described monolithic approach for the temperature equation.
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Figure 4.1: Thermal-hydraulics solver methodology.

As regards the stability of the scheme, the SIMPLE approach typically requires
some under–relaxation and for the iterative algorithm presented in Figure 4.1, the
pressure and velocity under–relaxations were typically 0.3 and 0.7, respectively.
For the temperature and the turbulence equations less under-relaxation was gen-
erally needed.
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4.1.2 Discrete ordinates solver

The algorithm of the discrete ordinates and eigenvalue solver, applied in Paper II
and Paper IV, is outlined in Figure 4.2. The approach follows a standard scheme
of an iterative approach to resolve the group and ordinate interdependencies.
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Figure 4.2: Applied algorithm for the discrete ordinates method. [Paper IV]

The solver is applied to the generally unstructured neutronics mesh which re-
quires some additional attention. In the reactor context, discrete ordinates have
often been implemented only for Cartesian grids, although late high-fidelity ex-
ceptions discretized with FEM are notable (see e.g. [133]). Unstructured imple-
mentations of SN with FVM have for a long time been applied for radiative heat
transfer (see e.g. [134]) with a step scheme discretization of the SN equations. The
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latter is in principle identical to an upwind differencing scheme as applied for the
convective terms in the fluid momentum equation. Although the step scheme is
accurate to first order only, it is stable and easy to implement and has therefore
been the choice for this thesis.

As indicated in Figure 4.2, the SN equations are solved using a pre-calculated
sweep order. Since the only spatial dependence coupling with neighbor cells
enters in the streaming term, each given direction (Ωm) can be swept in an order
such that all cells only need to be updated once. The algorithm applied is based
on the work by Plimpton, Hendrickson, Burns, McLendon, and Rauchwerger
[135]. It should however be noted that due to framework technical details, the
parallelization is not modified accordingly (see Paper IV for further details). The
eigenvalue problem is solved by the power iteration method [136].

4.1.3 Picard iteration scheme

The implementation of the fixed point iterative scheme discussed in Section 3.3 is
presented in terms of a flow chart in Figure 4.3. The scheme alternates between
the neutronics and the thermal-hydraulics, applying sub–iterations in each of the
modules to increase the overall convergence rate and limit the number of multi-
physics iterations.
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Figure 4.3: Iterative scheme applied for the coupling of the thermal-hydraulics
and the neutronics [Paper IV]

The most sensitive part of the simulation is the start of the iterations, and, as
seen from Figure 4.3, the algorithm is initiated with an update of the neutronics
and the power profile. In general, the thermal-hydraulic equations were slower
to converge and found most probable to cause failure of the solver and for this
reason the first solution of the temperature equation was delayed to the third mul-
tiphysics iteration. However, after a few of these modified iterations, no under–
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Table 4.1: Geometry specification for the simulated 15× 15 assembly, with con-
trol rod guide tube values in brackets.

Fuel pin radius 0.41 cm
Cladding inner radius 0.43 cm (0.48 cm)
Cladding outer radius 0.49 cm (0.58 cm)
Pitch 1.25 cm
Fuel height 100 cm
Bottom reflector 20 cm
Top reflector 20 cm

Table 4.2: Mesh specification for the simulated assembly.

Region Number of cells
Moderator 6,088,000
Fuel (per pin) 8,000
Cladding (per pin) 4,800
Gap (per pin) 1,600
Neutronics 798,000

relaxation was performed between the multiphysics iterations. An interpretation
of this is that the problem is not sufficiently coupled to give stability issues.

4.2 Application to a 15×15 assembly

To exemplify the results produced with the described algorithms, the system pre-
sented in Figure 2.11 is simulated. The geometry for the fuel pins is provided
in Table 4.1. A summary of the number of computational grids is provided in
Table 4.2. As seen from the table, the moderator mesh is significantly finer than
the one for the neutronics. Further details in terms of boundary conditions and
the domain decomposition are provided in Paper IV, but in overall the thermal
conditions are taken to be typical for the conditions in a PWR.

The neutronic calculations were performed for 8 energy groups and with S8

discretized according to the level symmetric quadrature set. The resulting scalar
flux profile of the system is illustrated for the fastest energy group (g = 0) and
the thermal (lowest energy) group (g = 7) in Figure 4.4. In addition to the surface
plot, a line plot of the scalar flux at the symmetry line is shown.

Both from the line and the surface plot, artifacts of the so called ray effect can
be seen. Such an effect occurs due to the inability of the provided ordinates set
to accurately reproduce the angular neutron flux [137, 138] and the solution to
this problem is generally to increase the number of directions simulated. The
effect was clearly seen in Paper III where a 2D validation of the neutronics was
performed against Serpent. Quadratures ranging from S2 to S16 were compared
and the effect was shown to diminish with the increase in the number of ordinates.
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DeHart [139] emphasizes that the effect in principle decreases with increasing
numerical diffusion (typically due to a coarser grid) and increases with material
heterogeneities. In the fine-mesh approach with resolved material regions, both
factors mentioned are clearly problematic. In addition, the results from Paper II
illustrated the shortcoming of the diffusion solver for the fine-mesh applications
as it induced extensive smearing of the neutron flux as compared to the discrete
ordinates solver.

As regards the thermal-hydraulic results, a visualization of the moderator tem-
perature in the assembly is presented in Figure 4.5. As indicated by the plotted
horizontal planes, the heterogeneities of the fuel temperature are resolved with
the applied mesh resolution. Whereas the total temperature rise for the simula-
tion is a bit more than 10 K for the hot channels, the temperature difference inside
one of the sub–channels is less and, accordingly, the density difference for the liq-
uid is small. In turn, such small heterogeneities mean that the influence on the
cross-sections is relatively small.

In Paper I, a study was performed on comparing keff computed with a hetero-
geneous temperature (as in Figure 4.5 but for a 5×5 system) against a horizontally
averaged profile. It was found that the moderator averaging had no effect on the
criticality value. However, the horizontal averaging of the fuel temperature was
found to give a significant effect. It should be emphasized that significant simpli-
fications are done during the simulations, including the lack of spacers and the
use of the k − ϵ model which has clear limitations (as discussed by e.g. [116]). In
this context, a time averaging from an unsteady simulation utilizing LES would
be of interest to get a second, and potentially more accurate, model for the mag-
nitude of the heterogeneities.

4.2.1 Convergence and performance

To evaluate the performance of the schemes for the separate models (Figures 4.1
and 4.2) and the multiphysics scheme (Figure 4.3) the convergence profiles for
the multiphysics and the separate module iterations are provided for the first
eight outer iterations in Figure 4.6. As described earlier, the first iteration is re-
served for neutronics only, followed by a thermal-hydraulic iteration without the
temperature equation, and from the third iteration all fields are solved. The it-
erations following after the 8 first ones require only a single SN sweep and the
total change in keff from outer iteration 9 to 50 is only 10 pcm (not shown), which
suggests that the multiphysics dependencies are more or less fully resolved after
the last iteration of Figure 4.6.

As seen from the figure, a limit of 100 sub-iterations is applied for the thermal-
hydraulics. Such a limit was found to be increasing the acceleration rate, and in
terms of the reasoning on the iterative schemes in Section 3.3, it is reasonable to
not directly strive for full convergence for each submodule as the sub-iterations
precondition the Picard iterations. In terms of the same section on the coupling, it
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Figure 4.4: Scalar flux at mid-elevation for the fast group (g = 0, bottom) and
the thermal group (g = 7, top) for a quarter of a 15×15 system as outlined in
Figure 2.11 [Paper IV]
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Figure 4.5: Moderator temperature at three horizontal planes, with the axial
dependence at a diagonal cut in the background [Paper IV].

is interesting to consider the potential benefits of a non-linear solver. As regards
the Anderson acceleration, it would be of interest to see the effect on the num-
ber of multiphysics iterations. However, as the number of iterations are already
relatively few, it is perhaps not to be expected that the acceleration would signif-
icantly change the convergence. Instead, as also discussed in Section 3.3, better
solvers for the separate fields of physics would likely be more beneficial.

Needless to say, the relative computational time between the neutronics and
thermal-hydraulics is strongly dependent on degrees of freedom in the equations,
i.e. for neutronics on the number of groups, directions and the grid resolution and
for the thermal-hydraulics only on the latter. Nevertheless, it is interesting to com-
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pare the simulation effort and we found that for the presented discretization (8
groups, S8) the neutronics and thermal-hydraulics had similar computation time.
It should be emphasized that all fields are initiated as flat (i.e. space independent)
which is possibly slow but at least giving an honest view of the convergence prop-
erties of the system.

As regards the earlier descriptions and discussions on the parallelization im-
plementation (Section 2.1.3), the presented case was run on 64 processors and a
steady–state converged solution was computed in a total of 14 wall-clock hours.
A full benchmark of the parallelization would require a varied number of cores
(strong scaling) or by increasing the problem size (weak scaling).
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Figure 4.6: Convergence results for the coupled system, with multiphysics itera-
tion convergence as opaque broader lines and the corresponding sub-iterations
as thinner lines [Paper IV].
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CHAPTER 5

Transient coupled solver
application and analysis

After the steady-state simulations in the previous chapter it follows naturally to
continue to transient cases for the same type of systems. For understandable rea-
sons the unsteady models are computationally even more demanding than the
steady-state equivalents; instead of converging the multiphysics problem once,
all couplings must resolved in every time step. Nevertheless, the transient cases
are potentially of greater interest than the steady simulations as local temporal re-
sponses are recovered, and thus an additional contributor to local heterogeneities
can be investigated.

This chapter includes implementation details and some of the results from Pa-
per V as well as a description and the results of Paper VIII. In the former, the over-
all framework is tested for unsteady simulations of a short transient with chang-
ing the moderator inlet temperature. The latter proposes a verification method
for transient neutronics codes, here applied to a simplified 2D system and shown
to give a good agreement with the analytical expressions.

5.1 Implementation and framework details

The transient algorithm is implemented with an iterative scheme as outlined in
Figure 5.1. In contrast to the steady solver, the transient scheme is purely solving
the diffusion equation for the neutronics. Furthermore, the precursor equations
are solved by additional iterations. Other schemes are proposed in the literature
(see e.g. [140]), where the precursors are implicitly treated directly in the neutron
flux equations, which is an area for future improvement. The solution algorithm
for the transient solver is again very similar to the steady solver, solved with a
segregated approach (PISO).
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Chapter 5: Transient coupled solver application and analysis

As indicated in Figure 5.1, the transient algorithm is initiated with a solution
of the steady multiphysics problem, which was found important for two reasons.
First, a good starting guess was found necessary to avoid stability issues with
the multiphysics coupling. Second, the system needs to be close to criticality, i.e.
keff = 1, at the start of the transient. If the system is far from criticality it either
needs to be modified in terms of geometry or material composition, or a renor-
malization of the fission source needs to be applied. The former remedy was
generally found problematic as it requires a re–computation of the cross–sections
for a new fuel composition or moderator boron concentration (see Paper V). It
should be noted that a desirable (but not implemented) feature would be to in-
clude a criticality search in terms of a dynamic boron concentration. For the case
of fission source renormalization, the criticality value from the steady simulation
is applied as a static (i.e. not changed during the simulation) renormalization.
Although such a measure is not physically correct it provides a simple method to
test and feature the transient solver.
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Figure 5.1: Iterative scheme applied to solve neutronics and thermal-hydraulics
coupling [Paper V].

5.2 Application to a 7×7 assembly

In Paper V the transient solver was applied to a quarter of a 7×7 assembly , again
under PWR-like conditions. The horizontal geometry and the material composi-
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Symmetry line

5 % UOX
3 % UOX
Cladding
Water, 500 ppm boron
Gap, helium
Reflective boundary

Figure 5.2: Horizontal geometry for a quarter of a 7 × 7 system with material
regions and the reflective boundary conditions indicated. [Paper V]

tion of the system are outlined in Figure 5.2. Two different enrichments of fuel
pins were included and the water contained a boron concentration tested to give
a system close to criticality. The overall geometry, the axial mesh resolution and
the number of computational cells are provided in Figure 5.3.

The case is run for 10 seconds and between 2 and 3 simulated seconds the
moderator inlet temperature is linearly decreased from an initial value of 550 K
to 540 K. The uniform temperature decrease at the inlet is propagated through the
system and, as an illustration of the response of the system, Figure 5.4 shows the
instantaneous moderator temperature (Figure 5.4a) and the fuel power density
(Figure 5.4c) after 3 seconds. Similar to the previously presented steady-state
results, the subchannel heterogeneities are resolved in the moderator.

In addition, Figure 5.4b shows the temporal development of the relative differ-
ence between the maximum and minimum horizontal temperatures in the mod-
erator at mid-elevation of the system. As seen from the figure, the response to
the inlet perturbation is not homogeneous, and an increase in the heterogeneity
is seen following the temperature decrease. Similarly, Figure 5.4d shows the mid-
elevation relative difference in the maximum and minimum horizontal power
densities. For the power, the transient leads to an initial decrease in the hetero-
geneity followed by an increase. Such results would argue that the fine-mesh
approach captures the physics not seen when assuming a flat moderator tempera-
ture (as e.g. done in a subchannel code). Notably, the magnitude of the difference
from the beginning of the transient to the end is relatively small and is arguably
of little significance for the presented case.
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Chapter 5: Transient coupled solver application and analysis

Neutronics Thermal-hydraulics Geometry description:
• Core height: 3.5 m
• Fuel pin radius: 0.41 cm
• Cladding thickness: 0.06 cm
• Gap thickness: 0.02 cm

Mesh description:

Region
Cells

(Quarter
pin)

Cells
(7x7 lattice)

Fuel (TH) 3200 153600
Gap (TH) 640 30720

Cladding (TH) 1280 15860
Moderator (TH) 19200 846080
Full system (NK) 2240 114702

Figure 5.3: Description of the geometry and the computational grid for the
7×7 system used for transient simulations. Index TH indicates meshes for
the thermal-hydraulics, whereas NK indicates the mesh for the neutronics [Pa-
per V].

Considering the computational effort, the case was run on 16 CPUs for a total
wall-clock time of 59 hours. In contrast to the case presented in Section 4.2, the
time is now primarily spent with the thermal-hydraulics ( 89%). However, the
simulation was here performed with only 4 energy groups and using the diffu-
sion approximation. It is interesting to note that for the majority of the time steps,
only a limited number of both the multiphysics iterations and the inner thermal-
hydraulics iterations are required. Such an observation suggests that a non-linear
formulation would be of limited value for the presented simulation. Moreover, as
the applied time step is limited by the Courant number in the CFD simulations an
implicit algorithm (e.g. solving all neutronics and thermal-hydraulics equations
together in a non-linear fashion) would not necessarily extend the time step.

5.3 Time-dependent neutronics verification method

To verify a correct code implementation, in terms of the modeled conservation
equations as well as the multiphysics methodology, is typically a difficult task.
Except for a direct validation against measurements, codes are not seldom com-
pared and, speciously, verified against each other. The latter is particularly ques-
tionable if both codes are based on the same method, i.e. likely to produce the
same inaccuracies or similar problems with e.g. discretization. For the fine-mesh
multiphysics simulations presented in this thesis, a direct comparison to numer-
ical experiments is difficult. To the knowledge of the author, no equivalent mea-

68



5.3. Time-dependent neutronics verification method
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Figure 5.4: Axial slices of moderator temperature and power density with cor-
responding time development of maximum and minimum horizontal values at
mid-elevation [Paper V]
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sured data exist. For steady neutronics solvers, verifications against Monte Carlo
codes are often performed, and are in some sense an accepted practice in the nu-
clear field. Such a comparison was done in Paper III for the SN solver.

In Paper VIII a method for transient neutronics verification is proposed. The
foundation of the method is the application of a stationary perturbation and ex-
traction of the point-kinetic component of the system response. A component of
the computed response is verified against an analytical point-kinetic predicition
of the same system. The derivation is given in its full detail in Paper VIII, and
here only the main characteristics are covered together with an example case.

5.3.1 Overview of the methodology

The proposed verification scheme is applicable in both frequency and time space,
where the latter approach is exemplified here. The methodology is based on a
stationary perturbation applied in one of the fuel regions and in Paper VIII im-
plemented as a sinusoidal variation of the thermal group total cross-section, such
that

ΣT,2(r, t) = ΣT,2,0(r) + Asin(ωt), (5.1)

where ΣT,2,0(r) is the unperturbed total cross-section of the thermal group and
A and ω correspond to the amplitude and frequency of the perturbation, respec-
tively. It should be noted that the derivation presented in Paper VIII was done for
a two-group formulation, which is thus followed in the example. In addition to
the two-group diffusion equation, the solution to the adjoint problem is required
and was consequently implemented and added to the neutronics module.

In order to compute the response of the system, the variation of the power
(δP (t)) and the reactivity (δρ(t)) of the system need to be extracted during the sim-
ulation. The quantities are computed as volume integrals (i.e. discrete summa-
tions over the computational grid) involving the adjoint flux, the cross-sections
and the neutron group velocity (for a detailed explanation of the integral expres-
sions refer to Paper VIII). The computed integral values are then fit by a post-
processing utility to estimate the phase change as compared to the original per-
turbation (eq. 5.1) and the amplitude of the responses for δP (t) and δρ(t). The
fitting function is defined as

y(t) = asin(ωt+ p) + kt+ c, (5.2)

where the constant (c) and linear variation with time (kt) allows for an offset and
slow variation of the base line of the fitted functions, which is of importance if
the system is not exactly critical at the start of the perturbation.
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5.3. Time-dependent neutronics verification method

Figure 5.5: Slab system geometry for the example of the point-kinetic verifica-
tion method. The system is compressed in axial direction, actual length of the
system was 50 cm. The blue region indicates the fuel (0.45 cm in width) and the
red region indicates the moderator region (0.25 cm in width). The grey region
corresponds to the region of the fuel where the time-dependent perturbation
was applied. Symmetry boundary conditions are imposed in the horizontal di-
rection. [Paper VIII]

5.3.2 Application to a two-region slab system

As an example of the method, a simplistic 2D slab case is presented. The geometry
and the computational grid are shown in Figure 5.5. The simulations are initiated
from a steady–state multiphysics solution, but performed with a frozen state of
the thermal-hydraulics. In addition, a renormalization of the fission source is
performed (as discussed in Section 5.1).

To verify the solver, the neutronics solver is run for a range of different fre-
quencies, each providing one point for verification. As a result of the many re-
peated runs, the verification process is computationally heavy. On the other hand,
it was found sufficient to run each simulation for a few periods of the perturba-
tion in eq. (5.1), at least as long as the power is not significantly drifting after the
renormalization.

The results of the simulations are provided in Figure 5.6, where the amplitude
and frequency of the point-kinetic components of the system response are com-
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pared to the analytical solution of the point-kinetic equation. As seen from the
figure, the results of the FVM code match both the amplitude and phase well,
with a maximum deviation in the amplitude of less than 5%. Such a result is
important not only for the presented solver but also as an example of a method
with great potential to other 3D transient neutronics codes, thus filling an earlier
vacuum in terms of lacking verification methods.

(a) Amplitude

(b) Phase

Figure 5.6: Frequency dependence of the amplitude (top) and the phase (bot-
tom) of the point-kinetic zero-power transfer function for the slab presented in
Figure 5.5 [Paper VIII]
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CHAPTER 6

On two-phase flow in LWRs

Up to this point in the thesis the coolant of the reactor was considered to be single-
phase liquid water. Such a flow is representative for nominal conditions in a PWR,
but not at all for describing the flow in a BWR. In the latter, the water enters the
core in a subcooled liquid phase but boils and over the height of the channel it
traverses a number of flow regimes. Whereas single-phase flow is relatively well
understood and well reproduced with simulations, two-phase flow is still, after
more than half a century of studies, a very challenging topic.

In this chapter, the two-phase flow problem of liquid and vapor water in the
BWR is briefly introduced (Section 6.1), with primary focus on different strategies
for simulation and modeling (Section 6.2). Due to the difficulties of formulating
a single universal model covering all regimes and scales in a computationally
feasible manner, the problem inevitably needs to be narrowed for the scope of this
thesis. In the current work two aspects are of primary focus, namely simulation of
subcooled boiling flows (Section 6.3) and dynamic characteristics of the two-fluid
model (Section 6.4).

In relation to the previous two chapters on the application of the multiphysics
tool, the current chapter is in a sense more generic. The simulations are per-
formed on simplistic geometries and in parts reduced in terms of model com-
plexity. To a large extent this is done to better illustrate the proposed ideas, and
limit the distraction of the huge number of force models, flow regime correlations,
etc. Furthermore, the purpose of the seemingly reduced models is to clarify some
of the underlying complexities in the models often foreseen in routine application
of multiphase CFD.
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6.1 Perspectives on the simulation challenges

The methods to simulate multiphase flows are in many sense as multifaceted as
the configurations of the flow systems themselves. To model a particulate flow
of gravel requires completely different strategies as compared to a slug flow in a
channel of the BWR. Needless to say, the difficulties are accordingly distinct for
each problem and undoubtedly multiphase flow systems constitute some of the
most outstanding challenges in the field of fluid mechanics.

The BWR core is an important example of the intricacies of two-phase flow in
industrial devices. To extend on the complexities and the motivations for CFD
simulations of BWR subchannels, Figure 6.1 is used as an illustration. The figure
shows a heated channel with flow regimes ranging from bubbly flow to the ex-
treme of single-phase vapor. Some of the reasons for complications include the
phase changes due to boiling and condensation, the different characteristics of the
flow regimes and the issues with overlapping scales of the phase heterogeneities
and the geometry in the narrow channels. In some more detail:

• Phase change – The energy released from fission in the fuel heats the wa-
ter entering the core to the saturation temperature and induces boiling at
the cladding surface. The liquid phase reaches saturation conditions close
to the wall after only a short axial distance (see the sketch in Figure 6.1),
whereafter the water boils at the wall. In addition, during the subcooled
phase the bubbles are transported from the wall to the bulk of the flow and
they condense, which is one of the phenomena targeted in Section 6.3.

• Flow regimes – As the vapor phase continues to increase, the flow regime in
the channel changes. The initial bubbly phase of vapor is transformed into
larger regions of void, depicted in Figure 6.1. If the flow is further heated,
the regime might even become the reverse of the initial bubbly flow, where
instead the liquid phase is dispersed as droplets in the vapor bulk. It should
be noted that the latter conditions, starting from the point of dryout, must
by all means be avoided as there is a risk to melt the fuel due to the severe
decrease in the heat transfer from the fuel.

• Separation of scales – In contrast to the single-phase flow regime, separation
of scales is not trivially fulfilled in the case of multiphase flow. In short, the
lack of separation of scales is a result of that the size of the void regions
approaches the size of the computational grid. As an illustrative example
consider the slug regime in Figure 6.1. It is readily imagined that in order
to resolve the velocity profile of the depicted channel, the computational
cells would need to be on the size of (or rather even smaller than) the void
structures. Such an issue has been a long standing challenge of multiphase
flow [142], and due to the interfering scales it becomes difficult to formulate
a space averaged model to resolve fine scales of the simulations (such as
the flow inside the BWR subchannel) while still fulfilling the separation of
scales [143].
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Figure 6.1: Overview of forced convection boiling phases in a channel (in part
redrawn from [141]).
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As indicated in the motivation for the fine-mesh simulations (Section 1.3.1),
numerical predictions of CHF are both interesting and important challenges in
CFD simulations of BWRs and a major driver for the development of new mod-
els [144]. To accurately model CHF, multiple scales are relevant, ranging from the
micro scales of the growth of a bubble on the surface of the cladding to the trans-
port of bubbles (or larger chunks of void) in the subchannels, and to the scales
of the full fuel assembly. For the first, the growth of the bubble and the depar-
ture from the wall, very detailed descriptions of the flow are generally required
(see e.g. [145]) and this type of simulations fall outside the scope of the current
work. For the latter two scales (bubble departure and the entire subchannel), the
focus is primarily on the flow of two phases and the potential phase change in-
side the fluid which are the topics of the next section, introducing some modeling
approaches of the flow problem.

6.2 Models for two-phase liquid and gas flows

In contrast to the subchannel approach (Section 1.2.2), which to a large extent is
driven by empirical, macroscopic relations and tuned models, the fine-mesh or
CFD approach focuses on a physics-based modeling of the flow. In coarse terms,
the methods could be divided into two groups: interface tracking methods and
averaging methods. The former is sometimes denoted DNS-like methods and the
latter is often deployed as the two-fluid model.

6.2.1 DNS-like methods

The concept of DNS in multiphase flow is not as straightforward as in the single-
phase case. In the latter, the Navier–Stokes equations are resolved on every scale
down to the smallest fluctuations in the flow [116], with small risk of adventur-
ing the separation of scales. For multiphase flow, DNS is occasionally referred to
as simulations in which the interfaces of the multicomponent flow are resolved.
However, the exact nomenclature has for sure been debated (see for example the
note by Yadigaroglu [146]), and it should be noted that the increase in compu-
tational resources has enabled bubbly flow DNS simulations in the single-phase
sense, i.e. with full resolution of each of the phases [147].

Even though the flow fields can be fully resolved with the Navier-Stokes equa-
tions without modifications or models, there are still fundamental challenges
with phenomena such as bubble coalescence and breakage related to the effects
of surface tension. For the latter, a certain amount of modeling is still required
(see e.g. [147]). Furthermore, the systems that can be resolved in a DNS manner
are still small, extremely computationally demanding and primarily focused on
the bubbly flow regime. Consequently, a simulation of a full BWR channel with
anywhere close to realistic void fractions is still out of reach. Nevertheless, DNS
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like simulations are of interest to formulate models for macroscopic correlations,
or to perform multiscale hierarchal simulations (such as reported for gas-solid
flows [148]).

Despite that the BWR subchannel problem does not easily lend itself to full
DNS calculations, interface tracking methods (without all length scales resolved)
are still of interest and relevance. A range of different methods have been pro-
posed, whereof the most notable include the Volume of Fluid method (VOF) [149,
150], the Level Set method (LS) [151, 152] and front tracking [153]. Interesting ex-
amples include single bubble condensation [154, 155], which is potentially valu-
able to formulate correlations for a coarser (two-fluid) model. The DNS simula-
tions alike, the computational effort required also by coarse applications of inter-
face tracking methods precludes their use for full subchannel simulations. For
larger scale CFD simulations an averaging method is instead required.

6.2.2 The two-fluid model

The two-fluid model describes the two phases in an Eulerian-Eulerian frame of
reference [143, 156] and instead of tracking the interface, the phases are treated
as interpenetrating continua. The presence of the phases is described in terms of
a volume fraction, for liquid-vapor systems typically denoted void fraction. Due
to the fact that the interface is not directly tracked, the computational burden
of the method is much smaller than in the case of DNS-like simulations. On
the other hand, the averaging comes with a price. In comparison to the DNS-
like methods described in the previous section, a larger degree of modeling is
required, in particular for the interphase mass and momentum exchanges.

The governing equations of the two–fluid are here briefly outlined for the pur-
pose of the applications in Sections 6.3 and 6.4, but without a detailed derivation
(for a detailed discussion on the procedure see e.g [6]). The model relies on one
or more averages on the Navier–Stokes equations for each of the phases. Such
an averaging can be performed as volume averages (see e.g. [6, 157]), ensemble
average (see e.g. [158, 159]) and/or in terms of time-averages. The result is a set
of mass, momentum and energy conservation equations for each of the phases.
In the current work the mass conservation is given as [157]

∂αiρi
∂t

+∇ · (αiρiUi) = 0, (6.1)

where ρi is the density, αi the phase fraction and Ui is the velocity, and the mo-
mentum equations as

∂αiρiUi

∂t
+∇ · (αiρiUiUi) = −∇ ·

(
αi(¯̄τi + ¯̄τ ti )

)
− αi∇(P ) + αiρig +Mi, (6.2)

again written for each of the phases and where ¯̄τi and ¯̄τ ti are the viscous and tur-
bulent stress tensors, respectively, P is the pressure and Mi represents the inter-
facial momentum transfer. Furthermore, conservation equations for energy are
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required for diabatic simulations, and in the case of boiling or condensation addi-
tional terms appear in all the equations. The latter is the case in Paper VI, whereas
only eq. (6.1) and (6.2) are solved in the stability and dynamics investigations in
Paper III and VII. The set of equations (6.1) and (6.2) is commonly solved in a sim-
ilar manner as the PISO algorithm for single–phase flow. The implementation
utilized in the thesis closely follows the derivations by Rusche [160] and Weller
[159].

As already mentioned the two-fluid model suffers from a number of short-
comings. The following (non-exclusive) list of issues and limitations is notable:

• Lack of stability – It has previously been reported that the two-fluid model
in a pure form (i.e. without additional artificial or physical model-based
viscosity) suffers from lack of hyperbolicity, which might lead to instable
behavior of the simulation [161, 162]. Such instabilities are the topic of Paper
III and Paper VII discussed further in Section 6.4.

• Lack of size distributions – As a result of the averaging, the specific infor-
mation of the phase interface is lost. Consequently, for the example of a
bubbly flow the bubble size distribution is unknown and as a result all size-
dependent correlations (e.g. momentum exchange terms and the conden-
sation rate) cannot be accurately applied. A potential remedy for this is to
regain size distribution information from a PBE, which is the topic of Paper
VI.

• Lack of separation of scales – As the two-fluid model equations are commonly
derived under the assumption of small variations of all fields (at least for
volume averaging) only low void fractions or small bubbles could theoreti-
cally be treated. This is commonly abused as the computer codes often run
also for higher void fractions. Arguably, carrying out ensemble average is
advantageous since separation of scales is not an immediate issue for that
procedure. However, in practical cases the interphase exchange terms are
typically implemented in a volumetric sense [163], thus again a prey for
the mentioned issues. Interestingly there are some (theoretical) examples
of derivations not requiring separation of scales/small local gradients [164,
165], which are of future interest.

From a historical perspective the two-fluid model, in a lower dimensional for-
mulation, has been the standard choice for the system codes to describe the multi-
phase flow. Also in so-called mechanistic CFD modeling, i.e. 3D simulations with
(more or less) well-founded physics-based models (see e.g. [166]), the two–fluid
framework has been and still prevails as the dominant methodology. By large
the two–fluid model should perhaps be seen as the workhorse of the two phase
simulations, and although in many senses imperfect, it enabled interesting 3D
calculations already 20 years ago [167].

In terms of the first part of this thesis, the fine-mesh multiphysics framework,
the two-fluid solver is a good candidate for coupling to the neutronics. In par-
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ticular, the possibility to simulate a complete subchannel is relevant. A DNS-like
simulation of only a few bubbles is arguably too small to be of relevance for the
coupling.

6.3 Population balance for subcooled bubbly flow

As described in the previous section, the averaging of the Navier–Stokes equa-
tions for the two–fluid model results in that the microscopic details of the flow
are lost. For a bubbly flow, as depicted in the region close to the inlet of the chan-
nel in Figure 6.1, the loss of interface information between the vapor and the liq-
uid phase results in an unknown distribution of bubbles. In practical terms, this
implies that the two-fluid simulations are performed for a single size and shape
of bubbles, or potentially estimated from an average interfacial area concentra-
tion [168]. A remedy for the information lost in the averaging is to apply a PBE to
retrieve additional knowledge of the state of the dispersed phase. For gas-liquid
flows it is common to track the bubble size or volume [169–171], but in principle
other parameters such as bubble shape or velocity could also be described with
the PBE.

In particular, for simulations of the onset of boiling and the transport of bub-
bles in a subcooled liquid the size distribution has been argued to be of impor-
tance [172]. Such a distribution is applicable both in the description of the con-
densation in the liquid and the aggregation and breakage of the bubbles. Thus, a
subcooled bubbly flow is an interesting candidate for PBE simulations. In the nu-
clear community, the primary choice for subcooled boiling simulations with PBE
has been the Multiple-size-group method (MUSIG), which represents the size dis-
tribution with a fixed set of, a priori determined, sizes. MUSIG has previously
been successfully applied to subchannel simulations [172–174].

An alternative approach to solve the PBE is given by the Direct Quadrature
Method of Moments (DQMOM), which relies on dynamic sizes allowed to vary
dynamically throughout a simulated domain [175]. An advantage with DQMOM
over MUSIG is that the use of non-fixed sizes allows to describe the distribution
with the same accuracy for fewer degrees of freedom [170, 176]. DQMOM has pre-
viously been applied for adiabatic cases in the field of nuclear engineering [171]
and in other fields for evaporation simulations [177]. In Paper VI, a formulation
for the DQMOM of condensation of bubbles is proposed, implemented and com-
pared to MUSIG. To give relevance to the example provided in Section 6.3.2, a
brief overview of the methodology is given in the following section.
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6.3.1 PBE formulation

The PBE for a bubble size distribution is written as [178]

∂f(ξ, r, t)

∂t
+

∂

∂ξ

(
∂ξ(r, t)

∂t
f(ξ, r, t)

)
+∇ · (U(r, t)f(ξ, r, t)) = S(ξ, r, t), (6.3)

where f is average number density, ξ is the length scale (diameter) of the bubbles,
∇ refers to the convection in space and S is a source term which appears due to
condensation and aggregation of bubbles. The velocity in eq. (6.3) is computed
from the momentum equation for the vapor phase and is in the current method-
ology independent of the bubble size. To simulate condensation, the second term
on the left hand side is written in terms of the condensation as

∂ξ(r, t)

∂t
= C(ξ, r, t). (6.4)

It is particularly important that the condensation model is allowed to have a
size-dependence as empirical models typically introduce the size in the correla-
tions [179]. As briefly mentioned, a two-fluid solver not complemented by the
PBE is limited to a static size of bubbles.

DQMOM

In DQMOM, the average number density is discretized in terms of N abscissas
(ξi) and weights (wi) such that

f(ξ;x, t) ≈
N∑
i=1

wi(x, t)δ(ξ − ξi(x, t)). (6.5)

To close the set of equations for the weights and abscissas, a moment transform is
applied to eq. (6.3). The transform results in coupled transport equations for the
abscissas and the weights based on the 2N first moments of the PBE. An advan-
tage of DQMOM over some similar, moment based, methods is that the equations
are relatively easy to implement, only requiring a discretized time derivative and
convective term. The source terms of the transport equations are computed from
a cell–wise linear system of size 2N × 2N , and to resolve the couplings between
the equations an iterative scheme is applied. For further computational details
the interested reader is referred to Paper VI.

MUSIG

As a reference for the proposed DQMOM formulation for subcooled boiling, a
MUSIG model was implemented. The method is entirely based on models from
the literature, where the PBE is often written in terms of bubble mass. Accord-
ingly, eq. (6.3) is formulated as a set of vapor fraction equations

∂αg,jρg
∂t

+∇ · (αg,jρgUg) = Sj, (6.6)
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System geometry:

• Domain size: 50 cm × 10 cm

• Periodic in horizontal direction

• Mesh size: 100 × 20 cells

Inlet conditions:

• Ug = 0.3 m/s

• Ul = 0.1 m/s

• k = 10−3 m2/s2

• ϵ = 10−3 m2/s3

Figure 6.2: Geometry and boundary conditions for the rectangular, horizontally
confined system applied in Case 3 of Paper VI.

where j is the number of the class, S is again a source term and Ug is common to
all bubble sizes. For MUSIG the condensation is implemented as a source term
coupling the equation for the current j to the sizes below and above (j − 1 and
j + 1).

6.3.2 Application to channel flow with condensation

To exemplify the DQMOM formulation, the case presented in Figure 6.2 is stud-
ied. The simulation domain is a 2D channel with no-slip conditions for the liquid
at the horizontal walls. A small superficial velocity is applied for the bubbles and
the inlet liquid temperature is subcooled by 1 K as compared to the saturation
temperature. Furthermore, all thermophysical properties are computed by inter-
polation from tables handling both the pressure and temperature dependence.
Finally, the inlet bubble size distribution is computed according to a normal size
distribution with an average size of 7 mm bubbles.

The PBE methods (DQMOM and MUSIG) are both coupled to the two-fluid
model with all terms handling the phase change due to condensation included.
As the convection of the bubbles is directly simulated by DQMOM/MUSIG, the
continuity equation is not explicitly solved in the two-fluid solver. The model in-
cludes drag, virtual mass, lift and turbulent dissipation interphase forces, where
the k − ϵ model is used to solve the turbulence in the liquid phase. For the
mentioned forces, the size distribution is used to compute the total momentum
force as a sum of the contributions from each abscissa or class for DQMOM and
MUSIG, respectively. In addition, the condensation model has a size dependence
as previously discussed.

Example results of the simulation are presented in Figure 6.3. The top plot
(Figure 6.3a) shows the development of the void fraction over the simulated chan-
nel. As seen, the initial void fraction quickly decreases as the vapor bubbles con-
dense and shrink. The latter effect is detailed in the bottom plot (Figure 6.3b)
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where the average size of the bubbles in the system is computed as

d43 =

N∑
i=1

ξ4iwi

N∑
i=1

ξ3iwi

. (6.7)

As seen from the figure, the shrinkage of the bubbles accelerates over the chan-
nel, particularly visible for DQMOM, and the effect is explained by an inverse
proportionality of the condensation rate with the bubble size. Due to the fixed
sizes in the MUSIG method, a much smaller range of bubble sizes is covered and
this was in Paper VI shown to be a severe limitation, further emphasized by other
examples in the mentioned paper. It should be noted that both for the void frac-
tion results and for the average size, DQMOM reach minima at around half the
distance of the channel. For intricate reasons of the formulation, a threshold size
of the abscissas is needed to avoid numerical issues. However, as seen from the
figures, such a remedy occurs only at void fractions which are too low to be of
physical significance.

In addition to the example above, different studies of bubbles inserted at the
walls were conducted and a formulation useful for wall boiling models with DQ-
MOM was proposed. Wall boiling is a particularly challenging topic as the inser-
tion of bubbles takes place locally at the wall and in the discretized domain only
in the first layer of cells.

Furthermore, under even more simplistic conditions, DQMOM was shown to
converge for much fewer abscissas than the number of classes needed in MUSIG.
For a case without the coupling to the two-fluid solver and with an initial mono-
size distribution, MUSIG is shown to require more than 100 classes to capture
the size change predicted with only a few abscissas. The difference in number
of required sizes also results in a significant difference in the computational time
which was, advantageously, shorter for DQMOM. However, for the examples
coupled to the two-fluid solver, the differences in the computational effort are
smaller. In practical terms MUSIG seems to have advantages in the simpler im-
plementation and generally more stable characteristics, whereas the primary ad-
vantage of the DQMOM is the feature of dynamic abscissas which can cover very
different ranges of bubble sizes in different parts of the domain.

As clear from the system description of the example case the intention in Pa-
per VIII is neither to directly mimic the geometry nor do reconstruct the exact
conditions in a subchannel in a BWR assembly. Instead, the purpose is to propose
and evaluate a potential candidate for PBE simulations, which is also closely re-
lated to the second objective outlined in Section 1.4.2. In addition, the evaluation
forced additional studies of the coupling between the two-fluid model and the
PBE methods which are of future value for simulations dedicated to the actual
BWR problem.
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Figure 6.3: Vapor fraction (top) and average bubble size (bottom) along the ax-
ial centerline compared between MUSIG and DQMOM and for a void fraction
equation (labeled alphaEqn) with a single static class. [Paper VI]
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6.4 On the dynamics of the two-fluid formulation

As suggested in the introduction to the two-fluid model, the formulation is known
to be prone to instabilities. In particular from the nuclear perspective, the 1D ver-
sion of the conservation equations with no viscosity has been reported to have
issues with such instabilites [161]. From a mathematical point of view, it is well
known that the degree of hyperbolicity in the equations affects the stability and,
for the same 1D formulation, mathematical regularization of the problem has
been proposed as a remedy to achieve hyperbolicity [162]. Another approach of-
ten seen in the literature is numerical regularization, basically achieved by induc-
ing numerical diffusion, either through the use of a coarse spatial discretization
or in many papers, implicitly, by a diffusive turbulence model.

The potential instabilities are not only interesting for the 1D formulation, but
also for the fine-mesh 3D approach in the current thesis. In particular, the influ-
ence of such instabilities on the dynamics of the two-fluid model is of interest.
Although the phases are only predicted in an average sense, the dynamics of the
fields are influential for mass and heat transfer applications. Additionally, it is
of importance to understand any potential discrepancy between instabilities in-
duced only by numerical issues and the heterogeneities actually predicted with
experiments (such as in [180]). Numerical experiments in terms of 3D simulations
with the two-fluid model have previously been studied from a stability perspec-
tive for gas-solid flows. It has been shown that such flows exhibit the so-called
meso-scale instabilities, i.e. regions with fluctuations smaller than the physical
domain but larger than the characteristic size of the particles [181].

From the literature on two-fluid simulations for gas-liquid problems it is clear
that there are still a large number of open questions, and the formulations of e.g.
momentum exchange mechanisms are basically as many as the authors. In addi-
tion, the treatment of turbulence for such systems is an area with a lot of proposed
methods reflected in additional terms for the momentum conservation equations.
A comprehensive discussion on such terms and on the lack of consensus is pro-
vided in Paper VIII.

In the work done for the thesis, the studies of the dynamics of the adiabatic
two-fluid model are deliberately based on a much simplified model. The ap-
proaches reported in Papers III and VII are to prune the studied equations of
any additional (unnecessary) terms and apply the model to simplistic cases. In
Paper III, the two-fluid model according to eqs. (6.1) and (6.2) is simulated includ-
ing only the drag term for the momentum exchange between the phases. For Pa-
per VII the drag-only simulations are extended and compared to simulations also
including the virtual mass force. In specific, the performed simulations are an at-
tempt to understand the possibilities of resolving the dynamics of the gas-liquid
flow with the two-fluid model. Additionally, it has been the goal to formulate,
with physical or numerical arguments, criteria to discern numerical issues from
instabilities of physical origin.
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As regards the presented results, it should be noted that the two included
papers are based on different CFD solvers (ANSYS Fluent and OpenFOAM R⃝).
Furthermore, variations of the implementation of the continuity equations was
studied elsewhere [182]. In Paper III a 2D system was studied and the results
from the paper are omitted here. Instead, the brief discussion in the next section
is based on the results from the 3D system in Paper VIII.

6.4.1 Application to adiabatic cases

The cases studied are simple in the sense that only adiabatic conditions are consid-
ered and the simulated domain is periodic in all directions. The effect of gravity
is included and to outweigh the combined mass of the gas and liquid phases a
jump condition is applied for the pressure. The initial fields and the thermophys-
ical properties are presented in Table 6.1. All fields are initiated with spatially
uniform values, i.e. no initial perturbations are applied to induce the instabilities.

Table 6.1: Thermophysical parameters and initial conditions as applied in Pa-
per VII.

Liquid density, constant ρl 1000 kg/m3

Gas density, constant ρg 1 kg/m3

Liquid viscosity, constant µl 10−3 Pa s
Gas viscosity, constant µg 10−3 Pa s
Bubble size, constant db 0.68 mm

Void fraction, uniform initial condition αg 0.05
Liquid velocity, uniform initial condition (0, 0, 0) m/s

Gas velocity, uniform initial condition (0, 0, 0) m/s
Gauge pressure, uniform initial condition 0 Pa

The simulation is run for 200 s and snapshots of the void fraction distribution
are presented for six chosen time steps in Figure 6.4. The figure presents a com-
parison between simulations performed with only the drag force (upper rows)
or complemented with the virtual mass force (bottom rows). Considering first
the results with only the drag force it is seen that the initially flat distribution
of the void fraction has developed to a non-uniform state. For the results from
t = 40 s to t = 120 s, a pattern with meso-scale structures is evident. However
at t = 200 s, a more disruptive void behavior is seen, with a checkerboard forma-
tion in the horizontal direction. In contrast, the results including the virtual mass
force show initial strange patterns, perceived as being of a numerical character,
whereas a more physically sound void fraction distribution is seen at the later
time steps.

The results from Figure 6.4 are further examined in Figure 6.5, where the tem-
poral development of the void fraction and the velocity field are presented to-
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Figure 6.4: The gas fraction field displayed for 6 time steps (as indicated at the
top of the figure) with the case of no virtual mass (top two rows) and virtual
mass included (bottom two rows), displayed in the horizontal plane (rectangu-
lar figures) and the vertical plane (square figures). [Paper VII]
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Figure 6.5: Temporal development of the void fraction field (top), the unifor-
mity index (middle) and the magnitude of the velocity field for both phases
(bottom). Both cases exhibit an initial transient in the void fraction and the
uniformity index, although significantly faster for the case without the virtual
mass force. The simulations are performed with the initial condition α = 0.05.
[Paper VII]

gether with the time-resolved uniformity index

Φ(t) =
αg,max − αg,min

αg,ave

, (6.8)

where αg,max and αg,min are the instantaneous maximum and minimum void frac-
tions in the domain, respectively. The index is used as a measure of the global
heterogeneity of the system. The average void fraction (αg,ave) is directly given by
the initial conditions for each of the simulations, and, for the presented results,
a flat initial volumetric fraction of 5% gas is applied. The figure again shows a
significant difference in the dynamics of the vapor fraction. For the cases with
the drag only a repetitive instable behavior is visual. Whereas an initial rapid
increase of Φ is seen for the cases with the virtual mass, the later stage of the
simulation follows a smoother behavior.

The results of the simulations are interesting from multiple perspectives. First,
an initially homogeneous distribution of all fields quickly change and a variety of
heterogeneous states is seen. The divergence from the uniform fields is interest-
ing as there are no actual mechanisms in the equations forcing the change, and,
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perhaps even more interesting as there are no mechanisms driving the system
back to the smooth state. Second, the inclusion of the virtual mass force signifi-
cantly changes the characteristics of the void fraction distribution. Although the
actual magnitude of the force is small in comparison to the drag, the alteration of
the behavior is distinct and seems to give a physically more plausible behavior.
Third, it is interesting that the clean formulation, i.e. with no excessive diffusivity
due to coarse turbulence modeling or additional momentum exchanges, exhibits
clear instabilities. Such dynamic behavior would potentially be hidden with the
inclusion of the mentioned type of terms, and arguably the latter would poten-
tially hide the instabilities.

A key question raised in Paper VII is that of the trustworthiness of dynamic
results from the two-fluid model. In detail, although the simulations might ap-
pear as sound and physical after the initial instabilities of numerical character (as
was the case for the simulations including the virtual mass force), how are these
results to be perceived? As argued in the paper, the quantitative values of the
dynamic simulations are not immediately to be trusted which again emphasizes
the complexities of the two-fluid model and the many questions marks yet to be
resolved.
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CHAPTER 7

Conclusions and recommendations
for future work

Finally, the thesis is to be summarized and concluded. As the work was already
split into two parts from the objectives point of view, the fine-mesh multiphysics
and the two-phase flow studies, also the summary is presented in two parts.
Last, I provide an outlook for the future of simulations for the coupled neutronic
and thermal-hydraulic problem and how efforts like the one currently presented
could be of importance for the nuclear industry in the future.

7.1 Fine-mesh multiphysics simulations

As the development of the multiphysics solver has been an integral part of the
thesis, a summary of the methodology is first given. Second, a summary of the
results is provided and accompanied by a conclusion on the achieved fidelity of
the simulations.

7.1.1 Summary of the methodology

The presented methodology is aimed at fine-mesh simulations of the multiphysics
problem of neutronics and thermal-hydraulics. The computational tool described
in the thesis is based on the finite volume method and implemented in the open
source framework OpenFOAM R⃝. The thermal-hydraulic equations are solved
by a CFD approach with segregated pressure and velocity solvers complemented
by a RANS model for turbulence. The neutronic problem is handled by the multi-
group diffusion equation (steady and transient simulations) and the discrete or-
dinates method (steady cases only), and solved with iterative, fixed-point, algo-
rithms. The multiphysics couplings are handled in a Picard iteration style, with
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sequential updates of each of the two modules. The multiphysics solver is par-
allelized based on the MPI implementation in OpenFOAM R⃝, and with specific
handling of the decomposition such that all overlapping cells of the meshes are
kept at the same computational node.

The multiphysics solver is complemented by a utility for cross-section genera-
tion for sub-pin few group simulations. The tool is based on Serpent and handles
a 2D fuel assembly geometry, specified in a configuration file. Similarly, a mesh
tool is developed and to produce multi region body-fitted meshes for the thermal
hydraulic problem, with resolved fuel, gap, cladding and moderator regions and
a single, monolithic, mesh for the neutronics. The meshes are computed based on
a block structure that gives a high level of user influence on the discretization.

7.1.2 Results and conclusions

The multiphysics tool was applied to both transient and steady simulations, where
the results from the latter showed that:

• The fine-mesh simulations are able to provide the fuel and moderator tem-
perature gradients on a sub-pin and resolved subchannel level with an equally
high resolution neutronics solution on a quarter of a 15×15 fuel assembly
with PWR like thermophysical conditions.

• The convergence characteristic indicates that, generally, a few multiphysics
iterations are required to resolve the couplings, whereas large number of
sub-iterations are required for the neutronics and the thermal-hydraulics,
respectively.

• The neutronics diffusion solver is, as expected, inferior to the SN solver as
shown on a two-dimensional case, validated against a Monte Carlo solu-
tion. The discrete ordinates method exhibits a significant ray effect which
diminishes with the increasing order of the method.

As regards the transient simulations the results showed that:

• The fine-mesh simulation of a quarter of a 7×7 fuel assembly captures the
temporal development of the heterogeneities following a ramping transient
at the inlet of the fuel assembly.

• The solver produces transient responses to local perturbations which could
be verified with a novel approach based on the point-kinetic component of
the system response.

In general, it can be concluded that all objectives were fulfilled for this part
of the thesis. Nevertheless, there are also improvements to be developed (or im-
plemented) for nearly every single aspect covered in the thesis and the solver
methodology. To mention a few, it would be of interest and value to:
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• Develop a transient version of the SN solver. The steady-state validation
results suggest that the diffusion approximation induces a significant error,
not the least due to the highly resolved system and the resulting heteroge-
neous material regions. Clearly a transport method is required also for the
transient cases. In addition, the SN solver needs to be significantly acceler-
ated, advisably based on a Krylov approach.

• Investigate the effect of a more detailed geometry, such as spacers. Such an
effort would be even more interesting in combination with a LES approach
to the turbulence to capture heterogeneities in the heat transfer and fluid
thermo-physical state due to resolved fluctuations.

• Develop a multiphase version of the thermal-hydraulics method. As sug-
gested in the introduction, the heterogeneities in the moderator are signifi-
cantly larger for voided cases and thus a stronger fine-mesh coupling could
be anticipated.

• Assess non-linear techniques to handle the couplings in the overall multi-
physics problem as well as the separate modules. In particular, it would be
interesting to implement the Anderson mixing methodology for the multi-
physics problem and a more implicit approach to the pressure and velocity
coupling.

• Add a multiscale methodology to compute boundary conditions for the fine-
mesh simulations. Whereas the presented work was all based on periodic or
symmetry boundary conditions in horizontal direction it would be of inter-
est to investigate the effect of a more realistic environment of the simulated
systems. To limit the computational effort a multiscale strategy would be a
good candidate, simulating a hierarchy of scales in the same solver.

In addition, the implementation and the framework itself could be extended with
other physics modules and with more generic simulation capabilities such as
fluid-structure interaction or thermo-mechanical modules. Finally, it would be
interesting to test the current approach for larger simulation domains, i.e. based
on significantly larger computer resources.

7.2 Two-fluid simulations

The results and conclusions for the two-fluid simulations are separately reported
for the DQMOM methodology and the dynamics investigations.

7.2.1 DQMOM coupled to a two-fluid solver

The presented methodology for subcooled boiling flows is based on a coupled
PBE and two-fluid solver approach. The PBE is solved using DQMOM with a
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newly proposed formulation for the condensation of bubbles. The method is
compared to a MUSIG method, which in contrast to DQMOM applies a set of
fixed bubble sizes.

The comparisons of the mentioned methodologies propose that:

• DQMOM needs significantly fewer discrete bubble sizes to reproduce the
distribution as compared to the same accuracy as MUSIG. This further im-
plies an edge in terms of shorter computational time required for DQMOM.

• DQMOM requires specific treatment for the extreme of very small bubbles,
typical for subcooled flows where the bubbles grown at the wall fully con-
dense in the bulk of the flow. Remedies in terms of regularization of the
weights and the abscissas are shown for this purpose and successfully sta-
bilize the solver.

In addition, the coupling to the two-fluid solver was carefully analyzed and, in
particular, wall conditions for the insertion of bubbles were studied for both DQ-
MOM and MUSIG.

As discussed in the analysis, the simulations presented in the thesis were not
directly targeted to the BWR geometry or conditions. Instead, the study should
be seen as an attempt to extend the field of CFD simulations for bubbly flows,
and with particular focus on algorithms for the solution of PBEs. As a next step
it would be of interest to investigate the benefits and drawbacks of the DQMOM
method on a system more closely mimicking the subchannels in the reactor and
of significantly larger size.

7.2.2 Two-fluid instability results

To investigate the dynamics of the two-fluid model, simulations based on adi-
abatic conditions were performed on fully periodic systems. The momentum
exchange was based on the drag force and the virtual mass force only and no
turbulence model was involved. The simulations showed that:

• The initially uniform void fraction distribution changed to a heterogeneous
spatial distribution, exhibiting meso-scale structures.

• The inclusion of the virtual mass force stabilized the solver and resulted in
a more physical character of the dynamics.

The analysis emphasized that the numerical character of the initial stage of the
instabilities raises questions on the trustworthiness of such simulations and fur-
ther illustrates the complexities of the two-fluid model. For future investiga-
tions it would be particularly interesting to evaluate the above proposed conclu-
sions based on an entirely different methodology. In detail, to prove, or at least
more firmly confirm, the existence of meso-scale structures, a comparison to a
Lagrangian simulations framework should be a reasonable approach.
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7.3 Future outlook

The core of a nuclear reactor is really an astonishing challenge from so many
perspectives, and although high-fidelity multiphysics has been a hot topic in the
last few years, much remains to be done.

For neutronics, the recent rapid development of the Monte Carlo solvers makes
such types of methodologies important candidates for future tools. We have seen
that there are many problematic aspects (not the least concerning the cross-section
generation) which are completely eluded with the Monte Carlo approach and, al-
though there are still gaps as regards transient simulations, this type of solver is
likely to be an important component of future high-fidelity multiphysics tools.

As regards thermal-hydraulics, the areas of applications of CFD for reactor
core simulations are likely to increase in number as well as in importance. The
continuing growth of computational resources will successively allow for ever
finer scales to be resolved and the application of high-resolution turbulence meth-
ods will for sure play an even more important role in future design of fuel assem-
blies and reactor cores. For multiphase CFD much theoretical work still remains,
and, although, larger clusters can allow for more industrial use of interface track-
ing methodologies, full fine-mesh assembly simulations are for a long time still
going to rely on averaged approaches, which are thus a continued important area
for research.

Another future important question is that of validation of the novel multi-
physics approaches. Although many of the suggested modules for the coupled
tools can be separately validated, the community should aim at direct validation
of the multiphysics solvers, in particular on fine-scales.
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a b s t r a c t

This paper investigates the feasibility of developing a fine mesh coupled neutronic/thermal–hydraulic
solver within the same computing platform for selected fuel assemblies in nuclear cores. As a first step
in this developmental work, a Pressurized Water Reactor at steady-state conditions was considered.
The system being simulated has a finite axial size, but is infinite in the radial direction. The platform used
for the modeling is based on the open source C++ library OpenFOAM. The thermal–hydraulics is solved
using the built-in SIMPLE algorithm for the mass and momentum fields of the fluid, complemented by
an equation for the temperature field applied simultaneously to all the regions (i.e. fluid and solid struc-
tures). For the neutronics, a two-group neutron diffusion-based solver was developed, with sets of mac-
roscopic cross-sections generated by the Monte Carlo code SERPENT. The meshing of the system was
created by the open source software SALOME. Successful convergence of the neutronic and thermal–
hydraulic fields was achieved, thus bringing the solution of the coupled problem to an unprecedented
level of details. Most importantly, the true interdependence of the different fields is automatically guar-
anteed at all scales. In addition, comparisons with a coarse-mesh radial averaging of the thermal–hydrau-
lic variables show that a coarse-mesh fuel temperature identical for all fuel pins can lead to discrepancies
of up to 0.5% in pin powers, and of several tens of pcm in multiplication factor.

� 2014 Published by Elsevier Ltd.

1. Introduction

The current deterministicmodelingof lightwaternuclear reactor
systems, both for steady-state and most importantly for transient
calculations, rely on the use of different modeling tools, each tack-
ling the modeling of a specific physical field and/or the modeling
of a specific scale (Demazière, 2013). The different fields to be tack-
led are the neutron density field, the flow field, and the temperature
field. Thefirstfield isusually referred to as ‘‘neutronics’’,whereas the
two last fields are usually referred to as ‘‘thermal–hydraulics’’.

On theneutronic side, a lattice code isused topre-generate sets of
macroscopic cross-sections as functions of instantaneous and his-
tory variables for each fuel assembly individually modeled in a
two-dimensional representation of an infinite lattice. Lattice codes
usually embed several successive computational steps, startingwith
self-shielding of the data, pin cell calculations, assembly calcula-
tions, and finally spectrum corrections. The modeling is essentially
performed using the neutron transport equation, with a rather high
resolution of the neutron density field in space, energy, and angle.
These pre-generated sets are thereafter fed into a three-dimensional

coarse-mesh core simulator, usually based on a simpler formalism
than neutron transport, such as the diffusion approximation. In this
modeling stage, the resolution in space, energy, and angle is rather
poor, but the actual system configuration is accounted for. For stea-
dy-state simulations, such core simulators also account for a simpli-
fied representation of the thermal–hydraulics based on a
macroscopic, modeling of the mass and energy/enthalpy conserva-
tion equations (for single phase systems), complemented by the lin-
ear momentum conservation equation (for two-phase systems). In
this paper, macroscopic modeling refers to a volume integration of
the fields on rather large volumes, typically an axial slice of 15–
20 cm of a fuel assembly. The interdependence between the neu-
tronics and thermal–hydraulics is then resolved by iterating be-
tween the neutronic and thermal–hydraulic solvers.

In case of complex reactor transients, the simplified thermal–
hydraulic modeling is replaced by coupling the neutronic solver
to a dedicated macroscopic thermal–hydraulic solver (also called
system code), essentially based on solving the mass, linear momen-
tum, and energy/enthalpy conservation equations on coarse control
volumes and time bins. This macroscopic approach is actually
equivalent to filtering small scale and high frequency phenomena
from the balance equations, with these phenomena being artifi-
cially reintroduced in empirically-derived closure relationships.

http://dx.doi.org/10.1016/j.anucene.2013.12.019
0306-4549/� 2014 Published by Elsevier Ltd.
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Even though such approaches have been proven to give reason-
able results in most cases, it can be noticed that the different scales
are not fully resolved, since the fine mesh neutron transport solver
(i.e. lattice code) uses thermal–hydraulic variables not known at
the same level of details as the resolution achieved by the neutron
transport solver. Due to the fact that the mean free path of thermal
neutrons is on the order of a few centimeters, not resolving the
neutronic and thermal–hydraulic fields at the same level of
sophistication/details might be challenged when considering
modern fuel assemblies with strongly heterogeneous designs/
conditions.

The modeling of large reactors with a high resolution of the
neutronic and thermal–hydraulic variables still appear to be diffi-
cult. However, a detailed simulation of all the fields in a restricted
part of the system, such as a fuel assembly, might be particularly
interesting.

This work discusses some efforts initiated at the Division of Nu-
clear Engineering, Department of Applied Physics, Chalmers Uni-
versity of Technology, along such directions. More precisely, this
paper considers implementing in the open source C++ library
OpenFOAM, primarily and typically used for modeling flow
dynamics and heat transfer, a fine-mesh neutronic solver, so that
the interdependence between the neutronic and thermal–hydrau-
lic fields can be fully resolved with the same degree of detail. Be-
cause of the novelty of the approach and complexity of the
problem at hand, it was deemed necessary to start the develop-
ment and implementation of the neutronic solver with the sim-
plest possible model, in the present case the neutron diffusion
approximation in a two-energy group structure. On the thermal–
hydraulic side, single-phase flow conditions representative of Pres-
surized Water Reactors (PWR) were assumed. This work should
thus be considered as a feasibility study for the development of a
fine mesh coupled neutronic/thermal–hydraulic solver, rather than
the actual high fidelity modeling of all scales and fields.

The paper is structured as follows. First, the models and meth-
ods used in this feasibility study are presented, both for the neu-
tronics and the thermal–hydraulics. Thereafter, the numerical
solution procedure and treatment of the coupling between the
fields is touched upon. Finally, the application of the developed
tool to a PWR fuel assembly at steady-state conditions is shown,
with emphasis on the convergence of the fields. Conclusions are
then drawn on the applicability and usefulness of the
methodology.

2. Models and methodology

In this section, the models and methodology used for steady-
state coupled calculations are presented. The models tackle neu-
tronics, fluid dynamics and heat transfer.

The work is based on a finite volume method and it makes use
of the open source C++ library OpenFOAM

�
(OpenFOAM, 2012). The

library allows implementation of fields, equations and operator
discretization using a high-level C++ coding interface. Descriptions
of the available mathematical operators, discretization implemen-
tations, matrix solvers and the general use of the software is found
in OpenFOAM (2011).

2.1. Neutronic model

The steady state neutron flux Uðr; EÞ is computed using the neu-
tron diffusion approximation (Bell and Glasstone, 1970):

�r�ðDðr;EÞrUðr;EÞÞþRTðr;EÞUðr;EÞ¼
Z 1

0
Rs0ðr;E0 ! EÞUðr;E0ÞdE0

þvðEÞ
keff

Z 1

0
mRf ðr;E0ÞUðr;E0ÞdE0 ð1Þ

where the meaning of each quantity is given in the nomenclature in
the appendix. The energy dependence is discretized in a multi-
group formalism, such that for

½Emin; Emax� ¼
[1
g¼G

½Eg ; Eg�1� ð2Þ

the neutron diffusion Eq. (1) will read as:

�r � DgðrÞrUgðrÞ
� �

þ RT;gðrÞUgðrÞ

¼
XG
g0¼1

Rs0;g0!gðrÞUg0 ðrÞ þ
vp
g

keff

XG
g0¼1

mRf ;g0 ðrÞUg0 ðrÞ ð3Þ

Since the aim of the present work is to investigate the feasibility
of a coupled neutronic/thermal–hydraulic scheme based on a fine
mesh, the neutron diffusion approximation was chosen for the
sake of simplicity. To take advantage of the fine three-dimensional
resolution of the CFD approach, a neutron transport method will be
implemented in a later stage.

2.1.1. Solution methodology of the neutronic model
A detailed implementation of the neutronics algorithm can be

seen in Fig. 1. In the first stage, the fission source is computed
for all regions (fuel, gap, cladding and moderator) and all energy
groups. A linear matrix system of equations is then assembled,
one group at a time. This corresponds to eq. (3) for each computa-
tional cell, including the contribution from all other groups
through the up and down scattering and the fission source. The
matrix equation is then solved using Krylov space iterative solvers.
This step is performed for all neutron energy groups and corre-
sponds to an inner iteration, i.e. the spatial dependence of the neu-
tron flux for the given energy group is resolved. The new neutron
flux is used to compute the effective multiplication factor accord-
ing to the power iteration method (Nakamura, 1977). Finally the
integral power level is renormalized according to a fixed power le-
vel which is specified as an input parameter.

2.1.2. Cross-sections and macroscopic neutronic data
In order to generate the groupwise macroscopic neutronic data

needed in eq. (3), a methodology based on the Monte Carlo code
SERPENT (Leppänen, 2012) was developed. The set of data com-
puted includes the groupwise cross-sections, the diffusion coeffi-
cients (Dg), the neutron fission yields (mg) and the fission spectra
(vg).

A pin cell that consists of a nuclear fuel rod (including also the
gap and the cladding) with the surrounding moderator is consid-
ered. Its spatial discretization is shown in Fig. 2, and for each region
one set of groupwise macroscopic neutronic parameters is
calculated.

Cross-sections are generated for a set of thermophysical state
points, specifying temperature and, in the case of the moderator,
density. This results in a set of different cross-sections for each
region.

An interpolation is performed each time updating the cross-sec-
tions, and it will only be determined from the temperature and
density in the present computational cell. This means that the
dependencies between the cells are neglected, and consequently
the assumed temperature profile in the pin cell is not exactly fol-
lowed. This will need to be addressed in the continuation of this
work.

2.2. Thermal–hydraulic model

The governing equations for the fluid dynamics are the continu-
ity equation, the momentum equation (i.e. Navier Stokes equation)
and an energy equation (Panton, 2005). In this work only single
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phase flow is modeled, so the moderator will be assumed a liquid
at all times.

To retain the influence of small time scale phenomena as turbu-
lence also in the steady-state equations, a Reynolds decomposition
is performed. Accordingly, the generic quantity f ðtÞ (that can be
velocity, pressure or enthalpy) is decomposed in a mean value
FðtÞ and a fluctuating part f 0ðtÞ:

f ðtÞ ¼ FðtÞ þ f 0ðtÞ ð4Þ

with

FðtÞ ¼ 1
dt

Z tþdt

t
f ðt0Þdt0 ð5Þ

This results in the time averaged, steady-state equations:

r � qUð ÞðrÞ ¼ 0 ð6Þ
r � qU� Uð ÞðrÞ ¼ r � ��sðrÞ � r � qu0 � u0ðrÞ � rPðrÞ þ qðrÞg ð7Þ
r qUHð ÞðrÞ ¼ �r � q00ðrÞ þ q000ðrÞ þ r � ðUPÞðrÞ þ ��sðrÞ : r� UðrÞ � r � ðqu0h0ÞðrÞ ð8Þ

where the overbar indicates time-averaging and the quantities U; H
and P are the mean values of the velocity, the enthalpy and the pres-
sure respectively. The terms including pressure and stress tensor
fluctuations are neglected. The stress tensor, ��s, for Newtonian fluids
is given by Panton (2005):

sij ¼ l Ui;j þ Uj;i �
2
3
Uk;kdij

� �
ð9Þ

The velocity fluctuation term qu0 � u0 is modeled on the basis of the
Boussinesq assumption, and it can be expressed in terms of the tur-
bulent kinetic energy k and the mean flow velocity U as:

�qu0
iu

0
j ¼ lt Ui;j þ Uj;i �

2
3
Uk;kdij

� �
� 2
3
qkdij ð10Þ

The enthalpy and velocity fluctuation term �r � ðquh0Þ can be re-
lated to the turbulent viscosity as follows (Versteeg andMalasekera,
2007):

Fig. 1. Overview of the applied methodology for resolving the neutronic field, with one sub-iteration being detailed.
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�r � ðqu0h0ÞðrÞ ¼ r � lt

Pr
rh

� �
ð11Þ

In the current framework, the standard k� � turbulence model
is applied to determine the turbulent kinetic energy and its dissi-
pation (�) (Ferziger and Peric, 2002):

r � qkUð Þ ¼ r � lþ lt

rk
rk

� �
þ ltðr � UÞ : ðr � Uþ ðr� UÞT Þ � q� ð12Þ

r� q�Uð Þ¼r� lþlt

r�
r�

� �
þC1�

�
k
ltðr�UÞ : ðr�Uþðr�UÞTÞ

�C2�q
�2

k
ð13Þ

with the turbulent viscosity given by:

lt ¼ qCl
k2

�
ð14Þ

The influence of heat transfer by radiation in the gap, is taken
into account by providing a separate transport equation for the
incident radiative heat flux. The radiative heat transfer equation
used in this work is derived from a P1 approximation and inte-
grated over all frequencies (Modest, 2003):

�r � 1
3ðKa � KsÞ � CAKs

rG
� �

¼ Kað4EbðTÞ � GÞ ð15Þ

where Ka is the radiation absorption coefficient, Ks the radiation
scattering coefficient, CA a model constant and EbðTÞ is the black-
body source:

EbðTÞ ¼ rSBT
4 ð16Þ

where rSB is the Stefan–Boltzmann constant. The heat radiation
transport influences the general energy equation through a produc-
tive term (corresponding to radiation absorption) and a dissipative
term (corresponding to black body radiation), with the sum denoted
as q000

rad:

q000
radðTÞ ¼ KaðG� 4EbðTÞÞ ð17Þ

The enthalpy Eq. (8) is implemented as a temperature equation.
To do so, Fourier’s law of conduction and the temperature depen-
dence of the enthalpy are introduced. This yields:

ðqcpðTÞÞU � rT ¼ bðTÞU � rP þr � KeffðTÞrTð Þ þ q000
rad ð18Þ

where the frictional terms, i.e. terms expressed as ��sðrÞ : r� UðrÞ,
are neglected.

The steady state temperature distribution in the solid regions of
the reactor is calculated by Todreas and Kazimi (1993):

�r � Kðr; TÞrTðrÞð Þ ¼ q000ðrÞ ð19Þ

where the volumetric source term is given by the energy released
by fission in the region:

q000ðrÞ ¼ c
XG
g¼1

Rf ;gðrÞUgðrÞ ð20Þ

It is assumed that all energy from fission is dissipated in the same
control volume as where the fission occurred, e.g. no smearing from
gamma radiation is considered. The solid regions (fuel and clad-
ding) are assumed rigid without any thermal expansion or contrac-
tion, consequently no mass or momentum equations are solved for
the solid regions.

2.2.1. Thermophysical data
The material properties (as density, thermal conductivity, lami-

nar viscosity, specific heat capacity) depend on thematerial compo-
sition, temperature and pressure. In this work, the thermophysical
data of the fluids are provided for several temperature values and
one pressure value (1.5 MPa for water and 0.1 MPa for the gaseous
gap). In the case of solid, temperaturedependent thermal conductiv-
ity and specific heat capacity are included.

Therefore, these parameters are associated to the mesh cells
according to the heterogeneities of the systems and their values
are updated during the calculations for each update of the temper-
ature field. The spatial resolution of the thermophysical data is
thus identical to the ones of the fields being solved for. The sources
of the data used are given with the nomenclature in the appendix.

2.2.2. Solution methodology of the thermal–hydraulic model
A schematic of the solution procedure is given in Fig. 3. The con-

tinuity and momentum equations (eqs. (6) and (7)) are solved
using the SIMPLE algorithm (Patankar and Spalding, 1972) as
implemented in OpenFOAM. In this iterative algorithm a predicted
semi-discretized momentum equation is inserted into the continu-
ity equation, producing an equation for pressure. After the solution
of the pressure equation, the momentum equation is processed
and the velocity profile is updated. The turbulence equations
(eqs. (12) and (13)) and the thermal radiation model are solved
using the built-in turbulence routines in OpenFOAM. Under-relax-
ation is applied to the pressure, velocity and turbulence quantities
according to the standard SIMPLE values. For the velocity and tur-
bulent quantities equation systems, Krylov subspace methods are
applied, whereas the pressure equation is computed using an alge-
braic multigrid solver.

The fluid temperature Eq. (18) has been implemented together
with the solid temperature Eq. (19) and they are solved for all re-
gions in a combinedmatrix equation. The full conjugate heat trans-
fer problem is solved accordingly without any iteration between
the solid and fluid regions. Again Krylov subspace methods are
used. Also, in this case no under-relaxation is necessary.

2.3. Numerical solution

The mesh is created with the open source software SALOME
(CEA and EDF, 2012), and the neutronic and thermal–hydraulic
fields are computed with respect to the same spatial mesh.
Although the neutronics does not normally require a grid as fine
as the fluid dynamics, the advantage of a common mesh is that
no interpolation or cell mapping between the two fields are
needed. Moreover, since the methodology is based on an inte-
grated algorithm (i.e. all the equations are implemented in the
same software) an efficient coupling scheme is achieved. In fact
no external data transfer is necessary so that computational time
and memory cost are saved.

Fig. 2. Geometry for cross-section generation. All boundaries are treated as
reflective boundaries. Figure not in scale.
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This approach is different from other recent works, where
standalone neutronic and thermal–hydraulic solvers are coupled.
An example of this can be seen in Kochunas et al. (2012). In con-
trast to the mentioned work, a direct transfer of the power in the
fuel and temperature field in all regions is allowed. This gives a
consistent high-resolution coupling, where transferred fields are
as highly resolved as the separate neutronics and thermal–hydrau-
lics solutions. Furthermore, in comparison to the separate code ap-
proach, solving the full problem in the same software minimizes
the cost of data transfer, avoiding any type of I/O data transfer as
used in Kochunas et al. (2012).

The model equations are spatially discretized using the high-le-
vel C++ coding interface available in OpenFOAM. In particular, the
diffusion terms in eqs. (3), (7), (18) and (19) are treated with a cen-
tral differencing scheme. The convective term in eq. (7) is treated
with an upwind scheme.

2.4. Coupling neutronic and thermal–hydraulic fields

In Light Water Reactors (LWRs), the coolant is also the neutron
moderator. Thus, the neutronics and the thermal–hydraulics are
strongly coupled. On one hand, the neutron density field deter-
mines the distribution of the heat released in the fuel (eq. (20)).
On the other hand, the temperature and density profiles calculated
from the thermal–hydraulic model affect the macroscopic cross-
sections.

The general iterative procedure used to couple the neutronics
and the thermal–hydraulics is shown in Fig. 4. The neutron diffu-
sion equation and the temperature equation are each solved in a
combined manner. All material regions (claddings, gaps, fuel re-
gions and moderator) are assembled into the same system of equa-
tions. The neutron diffusion equation still needs to be iteratively
solved, as, for the inner iterations, only one neutron energy group
is solved at a time. The fluid momentum, turbulence and pressure
equations are solved region by region, one matrix for each gap in
each fuel pin and one for the whole moderator, respectively.

The implemented coupled algorithm allows sub-iterations in
the neutronics and/or the thermal–hydraulics. The number of
sub-iterations is preferably optimized to give better performance
in terms of convergence rate.

For the initialization, spatially constant values are applied to all
fields. In order to ensure convergence the neutronics is first solved
using the constant temperature profile of the thermal–hydraulics.
The outer, coupled, iteration is thus solved first with the neutronics
as indicated in Fig. 4. For the first outer iteration, the sub-iterations
in the thermal–hydraulics do not include the temperature. This en-
sures that physical pressure and velocity profiles are first achieved,
so that the convergence of the problem is somewhat facilitated.

3. Application

The developed method was applied to a simplified nuclear fuel
assembly at PWR conditions, with only single phase flow for the
coolant. First, the system is described, then, the boundary condi-
tions together with other details used for performing the calcula-
tions are discussed, finally the results are presented.

3.1. Description of the fuel assembly

The system used for the verification of the current algorithm is a
simplified 5 � 5 fuel assembly. The geometry is shown in Fig. 5,
and the general characteristics are summarized in Table 1. No
spacers are included. A checkerboard pattern of pins with high
and low enrichments is considered, with the central fuel pin having
a high enrichment.

The radial discretization of a single fuel pin is given in Fig. 6. For
the gap, the cladding and the part of the moderator close to the pin,
a structured mesh is used. The axial discretization varies with
height in order to give better resolution at the inlet and the outlet,
where the flow path changes. The single pin mesh is repeated for
all pins in the assembly. The total number of cells for each pin with
the surrounding moderator is 64,000, split on 80 axial levels.

Fig. 3. Overview of the methodology applied to solve the thermal–hydraulics, with one sub-iteration being detailed.
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Each computational volume in Fig. 6 is associated with one re-
gion in the SERPENT geometry (as seen in Fig. 2). The position is
determined from the center of the computational cell. Following
the update of the temperature in the system, new cross-sections
are calculated using interpolation in the pre-generated sets of mac-
roscopic data. This is done for each cell in the system, based on the
temperature solution from the thermal–hydraulic calculations.
Accordingly, the cross-sections are allowed to vary with the reso-
lution of the fine mesh.

3.2. Setup for the calculation

The choice of under-relaxation and convergence criteria for the
matrix solvers are reported in Table 2. The boundary conditions of
the problem correspond to a realistic PWR case (see Table 3). In the
radial direction, symmetry boundary conditions are assumed. This
corresponds to an infinite lattice of the 5 � 5 system. For the neu-
tronics and the temperature equation, the region to region bound-
ary conditions are not needed. Since the equations for all regions
are solved in one system, the dependencies between the regions
will be implicit in the combined, concurrently solved matrix.

The total power of the 5x5 assembly was chosen to be 12.5 MW.
The neutronics is computed using two energy groups, with the en-
ergy boundary at 0.625 eV.

3.3. Results

Figs. 7 and 8 show the simulated radial and axial neutron flux
for the two energy groups. The expected higher density of thermal

neutrons in the moderator and higher density of fast neutrons in
the fuel are correctly predicted. Axially the fast neutrons peak
slightly below mid-elevation, because of the decrease of the mod-
erator density from the bottom to the top of the system.

Figs. 9 and 10 give the radial and axial temperature profiles in
the moderator. As seen, the variation of the moderator tempera-
ture is captured. The inhomogeneity influences the neutronics
through the cross-sections in the moderator.

Fig. 4. Overview of the applied methodology to solve the coupled neutronics and thermal–hydraulics, with the outer iteration and sub-iterations indicated by full lines and
dashed lines, respectively.

Fig. 5. Outline of the geometry and materials used for the 5 � 5 assembly.

Table 1
Dimensions and characteristics of the 5 � 5 fuel assembly.

Fuel pin radius 4.1 mm
Cladding inner radius 4.2 mm
Cladding outer radius 4.8 mm
Pitch 12.5 mm
Fuel height 3 m
Bottom reflector height 0.2 m
Top reflector height 0.2 m
Fuel UOX (2% and 4% enrichment)
Moderator Water, 1000 ppm boron
Gap Helium, 0.1 MPa
Cladding Zircaloy-2

Fig. 6. Radial discretization of a single fuel pin.
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Cross-sectional results of the radial temperature is displayed in
Fig. 11 for different axial elevations. Every second pin, correspond-
ing to the higher enrichment pins, has a higher temperature, due to
more fissions. The chosen spatial discretization allows resolving
the radial gradient in the fuel, through the gap and the cladding.

The radial power density profile in the fuel is seen in Fig. 12. The
self-shielding in the fuel pins is spatially resolved. Again a differ-
ence is captured between the higher and the lower enriched pins,
respectively. The calculated axial power density profile peaks be-
low mid-elevation (Fig. 13). As earlier explained, and as high-
lighted in Fig. 10, this is due to the increase of the moderator
temperature from bottom to top, thus leading to better neutron
moderation at the core bottom.

In addition, convergence of key parameters (i.e. multiplication
factor, temperature, pressure, fast flux) are analyzed (Fig. 14). The
elapsed time corresponds to the calculational time on a 4 CPU Intel�

Core™ i7-3770 K. Parallelization is applied using the built-in MPI
functionality in OpenFOAM. Different numbers of sub-iterations
for the neutronics and the thermal–hydraulics were tested, and it
was found that a high number is beneficial. The case presented here
is summarized in Table 4, with a maximum of 100 sub-iterations
applied for both the neutronics and thermal–hydraulics. Whereas
the neutronics converges in fewer than the maximum allowed
sub-iterations for all outer iterations, the thermal–hydraulics need
4 outer iteration to converge in less than 100 sub-iterations. In the
first outer iteration the neutronics is allowed to converge indepen-

dently of the thermal–hydraulics. This is necessary to ensure the
convergence of the solution starting from reasonable guesses of
all fields. In the second iteration, the temperature is computed on
the basis of the pressure and velocities calculated in the first itera-
tion, including the power source estimated from the neutronics.
The first fully coupled iteration is number 3. In this iteration, the
temperature profile is used to update the cross-sections. The low

Table 2
Solver settings used for each field, including typical convergence criteria and under-
relaxation factors, where 1.0 means no under-relaxation.

Field Type of solver Conv. criteria Under-relaxation

T Gauss–Seidel 10�4 1.0

U Stab. biconjugate gradient 10�4 1:0

P Precond. biconjugate gradient 10�3 0:3

G Precond. biconjugate gradient 10�5 1:0

U Precond. stab. biconjugate
gradient

10�5 0:7

k Precond. stab. biconjugate
gradient

10�5 0:7

� Precond. stab. biconjugate
gradient

10�5 0:7

Table 3
Boundary conditions used for the different computed quantities.

Field Boundary Type Value

T Inlet Constant value 540 K
Outlet Zero gradient
Region to region Implicit

Ug Inlet Constant value 0 m�2 s�1

Outlet Constant value 0 m�2 s�1

Region to region Implicit

P Inlet Zero gradient
Outlet Constant value 15:5 MPa
Fluid to solid Zero gradient

k Inlet Constant 0.1 m2 s�2

Outlet Zero gradient
Fluid to solid Wall function

� Inlet Constant 2.0 m2 s�3

Outlet Zero gradient
Fluid to solid Wall function

G All Marshak

U Inlet Constant value ð0;0;3Þ m s�1

Outlet Zero gradient
Fluid to solid No slip ð0;0;0Þm s�1

Fig. 7. Radial profiles of the neutron flux at mid-elevation (z = 1.7 m).

Fig. 8. Axial profile of the neutron flux taken in the middle of the central pin.

K. Jareteg et al. / Annals of Nuclear Energy 68 (2014) 247–256 253



number of outer iterations indicates that the system is loosely cou-
pled for a coolant being in liquid phase.

The computational time is balanced between the neutronics
and thermal–hydraulics (see Table 5). This is the result of the same
resolution of the calculations used for both parts. The choice of ma-
trix solver has a major influence on the time spent in each part of
the code.

In order to show the impact of the fine-mesh approach, the sys-
tem was, after full convergence, averaged in radial direction in the
moderator and in the fuel pins, respectively. For the fuel pins, two
averaging procedures were tested: either an averaging on each of

Fig. 9. Radial temperature profile in the moderator.

Fig. 10. Axial temperature profile in the moderator. The profiles are given in the
moderator at the center between two diagonally adjacent pins (solid line), or two
pins in same row (dashed line), respectively.

Fig. 11. Radial temperature profile throughout the assembly. The profiles are given
along lines chosen through the centers of adjacent fuel pins, for different elevations.

Fig. 12. Radial power density profile in the fuel pins. The profiles are given along
lines chosen through the centers of adjacent fuel pins, for different elevations.

Fig. 13. Axial power density profile in the fuel pins. The profiles are given at the
center of a highly enriched fuel pin, and at the center of a low enriched fuel pin,
respectively.

Fig. 14. Convergence with respect to the outer iterations in the coupled method-
ology (see Fig. 4).
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the individual fuel pins, or an averaging on all fuel pins together.
The full axial resolution (80 levels) was kept. For each axial seg-
ment, an averaged enthalpy of the converged results was com-
puted and the cross-sections updated accordingly.

Table 6 and Fig. 15 show the results of such computations. Aver-
aging of the moderator has a minor effect, which is anticipated as
the radial gradients of temperature in the moderator are very
small, as can be seen in Fig. 9. For pin by pin averaging of the fuel,
the power is increased in the center of the fuel. This is the result of
the radial temperature profile (Fig. 11) being flattened, leading to a
colder fuel at the center of the pins. When all the fuel pins are aver-
aged together, an additional effect can be seen. Namely, the overall
temperature in the low-enriched pins increases because of the
averaging, whereas the reverse effect can be noticed in the highly
enriched pins. Therefore, this outcome points out that fine resolu-
tion simulations of the fuel assembly power density can lead to rel-
ative differences of more than 0.5% with respect to those obtained

with radial averages. Moreover, discrepancies of several tens of
pcm are observed in the predicted effective multiplication factor,
as reported in Table 6.

4. Conclusions

In this paper, a first-of-a-kind coupled neutronic/thermal
hydraulic model of a single PWR fuel assembly at steady-state con-
ditions, axially modeled as being finite but radially taken in an infi-
nite lattice, was developed using the open source C++ library
OpenFOAM. This model has the advantage of resolving all physical
fields with the same level of details, in the same computing plat-
form, and in a truly coupled manner.

Comparisons with a coarse-mesh radial averaging of the ther-
mal–hydraulic variables show that using a coarse-mesh fuel tem-
perature identical for all fuel pins can lead to errors in pin
powers of about 0.5% and lead to discrepancies of several tens of
pcm in multiplication factor.

Although this study demonstrates that a fine mesh and coupled
modeling of fuel assemblies is useful for getting information at an
unprecedented level of details, further developments are necessary
in order to achieve a high-fidelity modeling. Among others, work is
on-going to replace the two-group diffusion based solver by a mul-
ti-group discrete ordinates solver, so that a higher resolution in an-
gle and energy of the neutron density field can be achieved. In
addition, the development and implementation of a two-phase
flow solver targeted at the simulation of Boiling Water Reactor fuel
assemblies have been initiated.

The ultimate goal of this approach is to be able to get detailed
simulations for selected fuel assemblies in an actual commercial
nuclear core. In view of this, a coarser modeling of the surrounding
fuel assemblies could be considered. In such a case, the proper
treatment of the neutronic boundary conditions in both the fine-
mesh and coarse-mesh solver as well as their interdependence
need to be particularly looked upon.
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Table 4
Number of sub-iterations per coupled iteration.

Iteration Neutronics Thermal-hyd. Note

1 90 100 Non-coupled iteration
2 1 100 Temperature added in

thermal–hydraulics
3 95 100 Cross-sections first updated
4 16 100
5 8 73
6 3 9

Table 5
Amount of time spent for solving each physical field.

Calculation Elapsed time (s) % of total

Neutronics 2677 47.8
Momentum predictor 1254 22.4
Temperature equation 925 16.5
Pressure equation 748 13.3

Table 6
Change in keff as a result of the homogenization in moderator and fuel, respectively.

Averaged cell region keff Change (pcm)

None (reference) 1.17109
Moderator 1.17109 0
Fuel (pin by pin) 1.17032 �77
Fuel (all pins) 1.16999 �110

Fig. 15. Power change due to averaging in moderator and fuel respectively. The
relative change in power is computed using the heterogeneous solution as a
reference.

Table A.1
Nomenclature, with description and sources, for the neutronic quantities.

Quantity Description Source Unit

Ra Absorption cross-section Monte Carlo [m�1]
D Diffusion coefficient Monte Carlo [m]

Hd Downscattering source term Calculation [m�3 s�1]
c Energy per fission [3:2� 10�11 J]
Rf Fission cross-section Monte Carlo [m�1]
v Fission neutron spectrum Monte Carlo [1]
F Fission source term Calculation [m�3 s�1]
Rs0 Isotropic scattering cross-section Monte Carlo [m�1]
keff Multiplication factor Calculation [1]
m Neutron fission yield Monte Carlo [1]
PN Power density Calculation [Wm�3]
U Scalar neutron flux Calculation [m�2 s�1]
RT Total macroscopic cross-section Monte Carlo [m�1]
Hu Upscattering source term Calculation [m�3 s�1]

K. Jareteg et al. / Annals of Nuclear Energy 68 (2014) 247–256 255



dynamics, heat transfer, and numerical techniques, have gathered
forces in a task force called DREAM (Deterministic Reactor
Modelling).

Appendix A. Nomenclature

The following tables summarize the nomenclature, including
description and sources of the quantities used or computed. The la-
bel ‘‘Monte Carlo’’ means that the quantity is pre-calculated and
tabulated, ‘‘Calculation’’ means that this value is calculated in the
coupled calculational tool implemented in this work. The literature
sources are given as references (see Tables A.1 and A.2).
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Nomenclature, with description and sources, for the thermal–hydraulic quantities.

Quantity Description Source Unit
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NIST Webbook (2011) (fluids)

[kg m�3]

� Dissipation of turbulent kinetic energy Calculation [m2 s�3]
g Gravitational acceleration [�9:81 m s�2 ẑ]
G Incident radiative heat flux Calculation [Wm�2]
Ka Radiation absorption coefficient Fink (2000) (UOX), Murphy and Havelock (1976) (Zircaloy) [m�1]
Ks Radiation scattering coefficient Fink (2000) (UOX), Murphy and Havelock (1976) (Zircaloy) [m�1]
cp Specific heat capacity at constant pressure International Atomic Energy Agency (2006) (solids),

NIST Webbook (2011) (fluids)
[J K�1 kg�1]

s Stress tensor NIST Webbook (2011) [N m�1]
q00 Surface heat flux Calculation [J m�2]
T Temperature Calculation [K]
K Thermal conductivity International Atomic Energy Agency (2006) (solids),

NIST Webbook (2011) (fluids)
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b Thermal expansion coefficient Calculation [K]
H Time averaged specific enthalpy Calculation [J kg�1]
P Time averaged pressure Calculation [Pa]
U Time averaged velocity Calculation [m s�1]
k Turbulent kinetic energy Calculation [m2 s�2]
Pr Turbulent Prandtl Demazière and Mattson (2006) [1]
q000rad Volumetric heat source thermal radiation Calculation [J m�3]
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ABSTRACT

In this paper a study on the influence of a neutron discrete ordinates (SN ) solver within a
fine-mesh neutronic/thermal-hydraulic methodology is presented. The methodology consists
of coupling a neutronic solver with a single-phase fluid solver, and it is aimed at computing
the two fields on a three-dimensional (3D) sub-pin level. The cross-sections needed for the
neutron transport equations are pre-generated using a Monte Carlo approach. The coupling is
resolved in an iterative manner with full convergence of both fields. A conservative transfer
of the full 3D information is achieved, allowing for a proper coupling between the neutronic
and the thermal-hydraulic meshes on the finest calculated scales. The discrete ordinates solver
is benchmarked against a Monte Carlo reference solution for a two-dimensional (2D) system.
The results confirm the need of a high number of ordinates, giving a satisfactory accuracy in
keff and scalar flux profile applying S16 for 16 energy groups. The coupled framework is used
to compare the SN implementation and a solver based on the neutron diffusion approximation
for a full 3D system of a quarter of a symmetric, 7x7 array in an infinite lattice setup. In this
case, the impact of the discrete ordinates solver shows to be significant for the coupled system,
as demonstrated in the calculations of the temperature distributions.

Key Words: coupled neutronics/thermal-hydraulics, discrete ordinates method,
fine-mesh, sub-pin cross-section generation

1. INTRODUCTION

The simulation of a Light Water Reactor requires different fields of physics to be considered. In
the nuclear reactor core, the interwoven dependence of the neutron density, of the properties of the
coolant and of the properties of the fuel pins constitutes a challenging task, from the point of view
of both the modelling and numerical algorithms. Often a ”divide-and-conquer” strategy is applied
to simplify the problem and make it feasible to solve. Therefore, instead of following an implicit
approach, the multiphysics problem is split in separate parts and solved sequentially. To regain
the dependencies between the different fields, an explicit coupling is introduced. Commonly, an
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iterative procedure is used to update the interdependencies. Although some multiphysics aspects
are recovered, the iterative approach often comes with a price. Only macroscopic dependencies
are re-introduced, whereas the different physical phenomena were potentially solved at a meso- or
even microscale level. Such and other simplified schemes can lead to inconsistent coupling or a
coupling that does not resolve the small scales.

Recently, additional focus has been given to direct methodologies where the multiphysics problem
is solved in a more tightly coupled manner. Such a work is often characterized by the use of mod-
ern algorithms and massively parallel computers. The type of issues tackled is not only related to
neutronic/thermal-hydraulic coupling, but also to other phenomena, e.g. fluid-structure interaction,
microscopic modelling of fuel behaviour, and others [1]. MOOSE, developed at INL [2], is one ex-
ample of a framework targeting a wide range of reactor applications. For this and similar codes the
problems are typically solved in an implicit manner, often using non-linear methodologies. Other
works have aimed more specifically at the neutronic/thermal-hydraulic coupling, using a combi-
nation of different softwares with a less integrated approach. Examples of this kind of strategies
include coupling DeCart and StarCCM+ [3] and coupling MCNP and StarCCM+ [4].

In addition, the multiphysics modelling should aim at different level of details depending on the
application. Recent work focused on a wide range of topics, such as microscopic development of
fuel material properties [5], influence of fuel spacer grids on the fluid flow [6] or full-core coupled
neutronics and thermal-hydraulics [3]. Resolving the full system, including the mentioned and
some other phenomena, in a fully coupled solver is still out of reach, and represents a future major
challenge [7].

Furthermore, the interplay between neutronics and thermal-hydraulics is of interest for an accurate
understanding of phenomena at the level of both the core and the fuel assemblies. In fact, high-
resolution predictions of parameters for the fuel assembly and fuel pin (e.g. temperature distribu-
tions) can provide useful information from a design and safety perspective. Again, this resolution
is not affordable at the full-core level, but can contribute to important local information within a
fuel bundle.

In this research project, efforts are addressed to develop a framework for treating the neutronics and
thermal-hydraulics on a fine-mesh in a coupled manner. This is achieved with an iterative scheme,
but applied directly on the fine-mesh. Therefore information at the smaller scales is preserved and a
tighter coupling of the problem is allowed. In our previous work [8, 9], a system of a limited number
of fuel pins was solved using an integrated fully 3D coupled tool. This was done by modelling
single phase flow conditions, the heat transfer within the fuel pins and the coolant, and the neutron
transport in a multigroup diffusion framework.

The current paper presents a further step in which the diffusion approximation is replaced with
a fine, unstructured mesh discrete ordinates method. The underlying theory, discretization and
implementation of SN are described in Section 2, while the previously implemented single-phase
flow methodology is briefly outlined in Section 3. The method and algorithm used for the iterative
coupling scheme are given in Section 4. The SN solver is tested against a 2D case (Section 5.1),
and it is then applied to a 3D coupled problem (Section 5.2).

2/17 PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future
Kyoto, Japan, September 28 - October 3, 2014



Influence of an SN solver in a fine-mesh neutronics/thermal-hydraulics framework

2. NEUTRON TRANSPORT METHODOLOGY

2.1. Discrete Ordinates Method

In our previous work the neutronics was based on a multigroup diffusion solver [8]. In order to
resolve the angular dependence of the neutron flux, a higher order method in angle is required. The
neutron transport equation is here solved using the discrete ordinates method. The theory of the
method is well described and analyzed in the literature (e.g [10, 11]), and the transport equation for
one ordinate and one energy group can be written:

Ωm · ∇Ψm,g + ΣT,gΨm,g = Sm,g +
1

k
Fm,g (1)

where standard notations are used. The scattering source term, Sm,g, is for anisotropic scattering
given by:

Sm,g ≡
L∑
l=0

(2l + 1)
M∑
m′

Pl(Ωm · Ωm′)wm′

G∑
g′=1

Σs,l,g′→ gΨm,g′ (2)

where Pl are the Legendre polynomials and w′
m are the ordinate weights. The fission source term

Fm,g is given by:

Fm,g ≡ χg

M∑
m′

wm′

G∑
g′=1

νg′Σf,g′Ψm′,g′ (3)

The scalar flux is given by the weighted sum of all the ordinates, such that:

Φg = 4π
M∑
m

wmΨm,g (4)

using standard notations for all quantities.

2.1.1. Quadrature sets

Given the equation (1), a set of ordinates and related fluxes Ψm,g is used to approximate the angular
flux. For each ordinate, a direction and weight must be determined, and the set could be chosen
based on different criteria. As exemplified and analyzed elsewhere in literature (e.g. [12]) the selec-
tion of the set has a major influence on the accuracy of keff and the scalar flux solution, in particular
for heterogeneous systems. As pointed out in [13], an optimal quadrature set applicable to all cases
can not be predicted, but will depend on the type of problem. The weights and directions employed
in this work correspond to the level symmetric set as presented in [14].

2.1.2. Expansion on spherical harmonics

As seen from eq. (2), when calculating the scattering contribution to one ordinate m, all other
ordinates have an influence. In general, each scattering source term Sm,g requires (L ×M × G)
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calculations. Considering that the group-to-group scattering is identically zero for most of the pairs
of groups, the computational burden is somewhat lower. Still, as the connectivity of the mesh is
typically on the order of 10, the left hand side of eq. (1) requires much fewer calculations than the
right-hand side.

To reduce the number of summations for the scattering source, a projection on the spherical harmon-
ics is used. The formulation is based on the real spherical harmonics functions as given in [14]. As
fewer expansion coefficients are required for the spherical harmonics functions, fewer summations
are needed on the right-hand side. Further, for a lower L, a lower spherical harmonics expansion
can be used, again reducing the number of calculations. Also, if applying an acceleration to the
lowest expansion using e.g. diffusion synthetic acceleration (DSA), it is desirable to formulate the
right-hand side using an expansion on the spherical harmonics. Here, such an acceleration has not
been implemented.

2.1.3. Discretization and implementation

In the present work the finite volume method (FVM) is applied to discretize all equations. Using
the FVM, only the streaming term in eq. (1) will give a transfer between the different computational
cells. Integrating eq. (1) over the current cell gives:∫

V

Ωm · ∇Ψm,gdV +

∫
V

ΣT,gΨm,gdV =

∫
V

Sm,gdV +

∫
V

1

k
Fm,gdV (5)

where V corresponds to the control volume (the cell in the mesh). The streaming term is trans-
formed to a sum over the surfaces using Gauss theorem which results in:∫

V

Ωm · ∇Ψm,gdV =

∫
S

ΩmΨm,g · nfdS =
∑
f

Ψm,g,fΩm · nfAf (6)

where index f corresponds to a face value and nf corresponds to the unit outward normal to face f .
A more detailed description of the finite volume method and the general discretization procedure
can be found in [15].

In a structured mesh, higher order discretization schemes can be achieved using not only neighbour
cell values but also second neighbours. One example of a higher order scheme would be the dia-
mond differencing scheme. Based on the face-based computational molecule used in the applied
FVM implementation of unstructured meshes, the use of second neighbour values is more compli-
cated. In the case of such an face-based discretization strategy, only the first neighbour, directly
sharing a face with the considered cell, is available. This is illustrated in Figure 1. To determine
the face value of the flux (Ψm,g,f ), an interpolation using only the cell value and the first neighbour
value is used. This interpolation can be written:

Ψm,g,f = fΨC
m,g + (1− f)ΨN

m,g (7)

where C denotes the current cell and N denotes a neighbouring cell. Choosing the interpolation
scheme depending on the current ordinate (Ωm), we can write:

f =

{
1 if nf · Ωm ≥ 0,
0 if nf · Ωm < 0

(8)
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which corresponds to a first order step differencing scheme. While the step differencing scheme
will be unconditionally stable, higher order differencing scheme will only be stable under certain
condition [16].

d
c d

n
n
f

Figure 1. Finite volume discretization for an unstructured mesh

2.1.4. Sweep algorithm

The solution algorithm for each direction and each group is based on a sweep over all cells in the
mesh. This corresponds to a Gauss-Seidel solver with the cells ordered such that when updating the
current cell, all upstream cells are already updated. Thus, to update eq. (1) for a specific direction
and energy group, a single sweep over all cells is necessary.

The sweeping order of the unstructured mesh is calculated at the start of the simulation. Since in the
present case the domain is decomposed and parallelization used, the sweeping order is determined
separately for each decomposed domain (i.e. each CPU in the parallel runs) and each direction.
Algorithms to find a sweeping order are found in e.g. [17], and are based on iteratively finding
cells in which all upstream faces are updated, allowing the downstream faces to be calculated.
The mesh used consists of strictly convex cells, either prisms or hexahedrals, and thus any cyclic
dependencies are avoided. Furthermore, the domains are split in strictly convex domains, avoiding
cyclic dependencies between the different domains.

To conserve the convergence of the domain decomposed case, a modified order of updating the
different directions is needed. This can be achieved by solving different directions at different
CPUs, concurrently. Such scheme is out of scope for the current coupled solver. Instead all CPUs
solve the same direction simultaneously. This introduces a minor penalty for the parallelized case,
not further analyzed.

2.2. Cross-section Generation

The cross-sections are generated in a two-dimensional system. The horizontal geometry corre-
sponds directly to the assembly simulated, whereas an infinite system is assumed in the axial di-
rection. In the current methodology the cross-sections are pre-generated, and they are tabulated
according to the position in the horizontal plane and the thermophysical state point. In the present
case of single phase fluid, only temperature is used to determine the thermophysical state point.
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Since the pressure drop over a fuel assembly is small, the pressure influence on the density in the
moderator is of minor importance, and a fixed pressure is used when calculating the material prop-
erties.

To carry-out discretization in space, the horizontal plane is split into a number of regions. The union
of those regions covers the simulated system completely, without any overlap, and for each of them
separate homogenized cross-sections and macroscopic data are generated. The azimuthal angle
is divided by a multiple of four, and each material region is further divided in a certain number
of radial regions. Generating the data with these splits allows for a sub-pincell resolution in the
cross-sections. An example of the chosen discretization of the geometry can be seen in Figure 2.
The different colors correspond to different material properties, as explained in the legend. Each
enclosed area will have a separate table of homogenized cross-sections and macroscopic data.

Symmetry line

4 % UOX
2 % UOX
2 % UOX with 2% Gd2O3

4 % UOX
Water, 1000 ppm boron
Gap, helium
Reflective boundary

Figure 2. Discretized geometry for generation of cross-sections.

All the macroscopic parameters are calculated using the Monte Carlo code Serpent [18]. The nec-
essary input for Serpent is built with a separate written Python application. This pre- and post-
processing code reads a configuration file specifying necessary discretization, geometry and lattice
pattern. The preprocessing part of the code produces a Serpent input with each discrete region im-
plemented as one volume and universe for cross-section homogenization. After Serpent is run, the
post-processing part of the code analyzes the output and generates the tables of data for each geo-
metrical region. Further options are introduced in the utility code, so that one can control material
types, temperature profiles for all material regions, number of particles and generations simulated,
among others.

The same pre- and post-processing code also provides the geometrical description used to determine
which cells in the unstructured mesh (for the coupled calculations) will fall in to each cross-section
region. Such sets handle the mapping between the cross-section geometry and the unstructured
mesh. This allows for a fully automatic transfer of information, hiding the mapping to the user.
A sketch example of how such mapping is done is seen in Figure 3. The red area corresponds to
a region in the cross-section discretization. This region is mapped to the example fuel pin mesh,
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used in the coupled calculations. All cells with centres within the red region will be using the
cross-sections from the table corresponding to this region.

Cross-section sets Fuel pin mesh

Figure 3. Example of mapping between cross-section discretization and an example mesh for the
fuel pin.

2.2.1. Cross-section interpolation

From the mapping, each cell is pointed to the cross-section table for the cross-section region it
belongs to. Given the correct table, each cell in the unstructured mesh will use the local (cell)
temperature to interpolate between the existing temperatures. This is done each time the temper-
ature has been recalculated in the thermal-hydraulic solver (further described in Section 4). At
the point of performing the interpolation, the global temperature and neutron flux profiles are both
disregarded. This means that, although generated for the full influence of the complete horizontal
geometry (as in Figure 2) and temperature profile, the cross-sections are used locally, independently
of the surrounding conditions. The influence of such an approximation will be considered in later
work.

Both the mapping of cells to cross-sections regions and the interpolation in the tables are done in
the coupled code responsible for all deterministic calculations. As a result, a high-resolution set of
cross-sections is achieved for a small cost in terms of CPU-time.

3. SINGLE-PHASE FLUID DYNAMICS AND HEAT TRANSFER

The single-phase fluid dynamics is solved by applying the continuity, momentum and energy equa-
tions formulated from first principles, and using a fine-mesh method. In the fluid regions, the flow
is assumed incompressible and the pressure and velocity are resolved using the SIMPLE algo-
rithm [19], with the addition of buoyancy and expansion of the heated fluid. All material data are
temperature dependent, including the viscosity and thermal conductivity. However, the change in
density is only considered in the fluid regions. In the presented methodology, the thermal expansion
in the fuel is disregarded.

The energy conservation equation is implemented not only in the fluid regions, but also in the
solid regions. In order to solve these equations using a monolithic approach, all energy equations
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are formulated in terms of the temperature. From this, all regions can be implicitly coupled in a
single matrix system. The implicit approach avoids iteration for the conjugate heat transfer problem
between the fuel pins and the moderator.

As the requirements for the resolution of the meshes are different for the neutronics and the thermal-
hydraulics, the fluid dynamics and heat transfer are solved on their own meshes. This has impli-
cations for the transfer of information between the neutronics and thermal-hydraulics. Such issues
are discussed further in Section 4.2.

A full description of the models and the implementation of the single-phase fluid dynamics and the
heat transfer can be found elsewhere [8].

4. COUPLING IMPLEMENTATION AND MULTIPHYSICS ASPECTS

For this work, we use OpenFOAM-1.6-ext[20] to implement, discretize and solve the multiphysics
problem. The software provides general structures for solving partial differential equations (PDEs),
which are discretized with the finite volume method. The systems of linear equations can be solved
using intrinsic matrix solvers and full parallel support is implemented using domain decomposition
and MPI.

OpenFOAM-1.6-ext is an open-source software, with the C++ source code freely distributed. To
succeed with a high performance coupled multiphysics framework, the availability and modifia-
bility of the source is of major importance. OpenFOAM-1.6-ext is modular, based on the object-
orientation paradigm complemented by the use of templates. The extensions made for the neutron-
ics, especially for SN , are added as new modules, using a similar structure as in the original source
code.

4.1. Coupled Algorithm

In this work the steady-state coupled problem is computed using the iterative algorithm displayed in
Figure 4. To ensure a realistic power profile, the neutronics, solved by the power iteration method,
is first converged. This first solution is based on the initial guess of the temperature in the system.
In an equivalent manner, the pressure and velocity are allowed to converge in two outer iterations
before the temperature equation is added.

Full convergence is reached by ensuring that the residuals are lower than a set of criteria in both the
neutronics and thermal-hydraulics. The residual error is checked when entering the neutronic and
thermal-hydraulic modules, respectively. Due to the large number of equations solved, many dif-
ferent tolerances are applied. Tuning such parameters can substantially improve the performances
of the iterative algorithm.

Based on the present implementation and under the currently run conditions, there is no need to
apply under-relaxation between the neutronics and thermal-hydraulics. However, for the pressure
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and velocity coupling an under-relaxation is necessary. Such behavior is typical for the SIMPLE
algorithm. Yet, no error will be transferred to the neutronics since the fluid pressure and velocity
couplings are fully converged in each thermal-hydraulic iteration.

4.2. Mesh to Mesh Interpolation

As different meshes are used for the thermal-hydraulics and the neutronics, accurate and conserva-
tive transfer of shared quantities is of vital importance. Considering that the finite volume method
is applied, an algorithm conserving each quantity based on the cell volume average is needed. To
achieve this we apply a mesh intersection algorithm. This method is based on finding the volumet-
ric overlap between cells in the different meshes. The cell intersections are computed at the start of
the simulation.

Given that a cell i in the first mesh overlaps with a set of cells J in the second mesh, a conservative
transfer from the second to the first mesh is achieved using volumetric intersections such that:

ci =
∑
j∈J

cjIijVj
Vi

(9)

where c is some extensive property to be transfered, Iij is the volumetric intersection of cell j with
cell i and Vi and Vj are the cell volumes of cell i and cell j, respectively.

The intersection calculation algorithm is implemented for arbitrary convex polygons in the hori-
zontal plane, allowing an extruded mesh in the axial direction. The calculation is applied on each
decomposed domain separately and causes no significant extra burden in terms of computational
time. This algorithm allows for two different meshes to be applied with a fully automatic mesh
mapping between them.

5. RESULTS

5.1. Benchmarking the Discrete Ordinates Implementation

First the discrete ordinates solver is applied to a two-dimensional benchmark case. The test case is
defined by the material composition and geometry already presented in Figure 2. The mesh applied
for the neutronics is presented in Figure 5, and is created by a Python application, with a format
consistent with OpenFOAM. The cross-sections are generated for an isothermal system at 540 K.
Even though a system with constant temperature is considered, there are large variations of the
cross-sections because of the heterogeneity of the system.

Reference solutions are extracted from Serpent while producing the cross-sections. A uniform grid
detector, with 16x16 cells per pin cell is used to record the scalar flux. It should be noted that the
discrete ordinates solution is calculated with a discrete set of energy groups (2, 4, 8 or 16) whereas
the Serpent reference solution is using the internal continuous approach.
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Update temperature

Update cross-sections

SN

Is res(Ψm,g) < tol?

Update keff

∆keff < tol

Update power

yes

no

yes
no

Convergence?
Convergence check

for pressure, velocity
and temperature

Pressure

Temperature
Temperature updated
first in 3rd outer itera-
tion

Velocity

Update power profile in fuel

no

yes

Coupled
problem

converged?

Initiate End

no

yes

Mesh to
mesh in-

terpolation
of enthalpy

Mesh to
mesh in-

terpolation
of enthalpy

Figure 4. Coupled algorithm for the neutronics and the thermal-hydraulics.

Table I summarizes the different test cases and the results. Considering first the error in keff , a
better result is reached increasing the number of ordinates. However, as seen in comparing S8 and
S16, this increase in order does not give any major difference. Increasing the number of groups up
to eight gives a better keff as compared to the reference calculation. The results for 16 groups are
similar to the results for eight groups.

The flux error is calculated along the symmetry line given in Figure 2 as the average error compared
to the reference solution:

∆Φg =

√√√√√√
N∑
i=1

(
Φg,i − Φref

g,i

)2

N
(10)

where i is taken over all the Serpent detector cells along the symmetry line, with a corresponding
point from the SN solution. In total N points are compared with N = 56 for the 16x16 detector
cells per pin cell.

In contrast to the error in keff , the flux error in the lowest energy group decreases when going from
S8 to S16. This can be explained by the so-called ray effect, which gives unphysical artifacts in the
scalar flux profiles. These artifacts appear due to the inability of the quadrature set to represent the
true angular flux [21]. The effect is clearly distinguishable for the low orders, whereas for S16 it is
much less significant, as shown in Figure 6. In the cases of 8 and 16 groups, the largest error in flux
is seen for the highest energy group (g = 1). To further decrease the flux error a higher number of
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Figure 5. Horizontal mesh discretization of a 7x7 pin system, using quarter symmetry.

ordinates are needed, as to better reproduce the angular flux.

5.2. Application of SN in the Coupled Framework

The discrete ordinate solver was also coupled to the thermal-hydraulic solver according to the
scheme described in Section 4. To assess the influence of the transport solver on the fine-mesh sys-
tem, the coupled calculations are run on a system with 1 m in active core height and with 0.2 m of top
and bottom reflectors. The horizontal meshes are seen for the thermal-hydraulics and the neutronics
separately in Figure 7. In the axial direction there are a total of 140 layers in the thermal-hydraulics
mesh and 30 layers in the neutronics mesh. In total 172000 cells are used in the neutronics mesh
and 1.28 M cells in the moderator.

The cross-sections are generated for a set of temperature profiles to be able to simulate the tem-
perature variation in the system. The profiles are chosen to correspond to a set of different power
profiles in the assembly. A radial profile is assumed in the fuel pins.
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Figure 6. Comparison of different number of ordinates plotted along the symmetry line (see Fig-
ure 2) for the highest (g = 1) and lowest energy group (g = 16). The error bars on the Serpent
solution indicates the error corresponding to 1σ.
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Table I. Comparison of the error in keff and scalar flux for different quadrature orders and number of
groups for the 2D reference system. The Serpent reference solution gives keff = 0.93130±0.00009,
where the error is given for 1σ.

G N keff ∆keff [pcm] ∆Φ1 ∆ΦG

2 2 0.91262 -1868 0.03100 0.01957
2 4 0.91934 -1197 0.00640 0.00875
2 8 0.91868 -1263 0.00635 0.00777
2 16 0.91800 -1330 0.00730 0.00780
4 2 0.91134 -1996 0.09874 0.09032
4 4 0.91972 -1158 0.02280 0.03658
4 8 0.92001 -1129 0.01621 0.03146
4 16 0.91990 -1140 0.01086 0.03117
8 2 0.92230 -900 0.10246 0.02185
8 4 0.92833 -298 0.02418 0.00844
8 8 0.92861 -270 0.01727 0.00718
8 16 0.92852 -278 0.01153 0.00710
16 2 0.92178 -953 0.09978 0.00810
16 4 0.92775 -355 0.02318 0.00306
16 8 0.92808 -322 0.01684 0.00258
16 16 0.92796 -335 0.01160 0.00255

Table II. CPU time for the 3D cases. All cases were parallelized using 32 CPUs.
Energy groups Methodology Wall-clock time [s] Total CPU-time [h]

4 Diffusion 5998 53.3
4 S8 9631 85.6
8 Diffusion 6039 53.7
8 S8 15434 137.2

Calculations done with different approximations are compared, namely diffusion theory in 4 and 8
energy groups and SN theory in 4 and 8 energy groups. The applied CPU times are given in Table II.
To characterize the influence on the coupled framework, not only the neutronics behaviour should
be compared, but also the results for the thermal-hydraulics, showing the implicit dependence on
the neutronic method used. As an example, the calculated temperature distributions for the different
cases can be seen in Figure 8. The relative temperature variation shows significant discrepancies for
the diffusion solver in comparison to the transport solver. Primarily the fuel temperature is much
lower when using the neutron diffusion solver for the coupled calculations and thus the diffusion-
based results are not conservative.

6. CONCLUSION
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Figure 7. Horizontal meshes for thermal-hydraulics (left) and neutronics (right) for the 3D case.

We presented a solver based on the discrete ordinates method within a fine-mesh coupled frame-
work for neutronics and thermal-hydraulics. The implementation was described together with the
procedure to generate the cross-sections by making use of a Monte Carlo method. The iterative
algorithm was illustrated and accompanied by an explanation of the field interpolation, fully con-
serving the transferred data at the fine-mesh level.

Applying the SN solver to a two dimensional, strongly heterogeneous system using the fine-mesh
uncoupled neutronic solution procedure identifies the need of a large ordinate set as well as a large
number of neutron groups. The results from the three dimensional, coupled calculations emphasizes
the difference in using a neutron transport solver method in comparison to the diffusion method,
also for the combined neutronics/thermal-hydraulics problem. A significant underestimation of the
fuel temperature is seen for the diffusion solver in comparison to the discrete ordinates solver.

The influence of the full-core neutronics will be investigated in the future, so that proper boundary
conditions can be modelled for the small system solved for in our test problem. Future research is
planned on complementing the single-phase fluid solver with a two-phase solver, aimed at perform-
ing the coupled analysis with a fine-mesh resolved void fraction.
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Figure 8. Temperature profile and relative temperature difference at mid-elevation along the hori-
zontal symmetry line. The relative difference is calculated using S8 with 8 groups as reference.
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Abstract: In the present work, we formulate a simplistic
two-fluid model for bubbly steam-water flow existing
between fuel pins in nuclear fuel assemblies. Numerical
simulations are performed in periodic 2D domains of
varying sizes. The appearance of a non-uniform volume
fraction field in the form of meso-scales is investigated
and shown to be varying with the bubble loading and the
domain size, as well as with the numerical algorithm
employed. These findings highlight the difficulties
involved in interpreting the occurrence of instabilities in
two-fluid simulations of gas-liquid flows, where physical
and unphysical instabilities are prone to be confounded.
The results obtained in this work therefore contribute to a
rigorous foundation in on-going efforts to derive a con-
sistent meso-scale formulation of the traditional two-fluid
model for multiphase flows in nuclear reactors.

Keywords: two-phase flow, bubbly flow, gas-liquid flow,
nuclear reactors

1 Introduction

The modeling of the current fleet of nuclear reactors
traditionally relies on macroscopic approaches modeling
different fields of physics, namely neutron transport,
fluid dynamics, and heat transfer, among others. The
reason behind the choice of macroscopic models lies
in the fact that the verification and validation of models
being used by the nuclear industry is a lengthy and

expensive process that involves many actors, such as
research institutes, code manufacturers, plant and fuel
manufacturers, and safety regulatory bodies. The industry
is thus heavily relying on capitalization, i.e. on the con-
tinuous improvement of codes and models, rather than on
developing of entirely new modeling approaches. In this
respect, the advancement of computer resources in the
1970s resulted in the start-up of large developmental pro-
jects in the simulation of nuclear reactors. Due to the size of
such systems though, and because of the rather limited
computing power available at that time, macroscopic mod-
els represented the only possible modeling approach. In the
area of two-phase flow, this resulted in the development of
the two-fluid model at a macroscopic level, where the high-
frequency and small scale filtered phenomena were artifi-
cially introduced via the use of experimentally-derived clo-
sure relationships.

The present work investigates the performance of the
two-fluid model on smaller scales than what is typically
used in the nuclear industry today. In the investigations
reported hereafter, we formulate a simplistic two-fluid
model for bubbly steam-water flow. Numerical simula-
tions are performed in periodic 2D domains of varying
sizes, investigating the spontaneous emergence of non-
uniform bubble volume fraction fields in the form of
meso-scales. The results obtained in this work contribute
to a rigorous foundation in on-going efforts to derive a
formulation of the traditional two-fluid model for multi-
phase flows in nuclear reactors that takes the effects of
meso-scales into account.

It is well known, particularly from the literature on
gas-solid flows, that solutions to the conventional two-
fluid model exhibit the emergence of meso-scale structures
at sufficiently high volume fractions of the dispersed
phase. These structures can be seen as non-uniformities
in the obtained volume fraction fields and thus represent
structures whose characteristic sizes are of the order of
several (more than ten) dispersed phase diameters.
Falling in between the micro-scales (determined by the
size of the dispersed phase) and the macro-scales
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(determined by the size of the bounding geometry), these
structures are termed meso-scale structures. The formation
of these structures is due to clustering of the dispersed
phase and takes place because of inherent instabilities of
the system. Meso-scale structures may therefore manifest
also under uniform flow conditions in unbounded
domains. The occurrence of meso-scale structures in
numerical simulations of two-phase flow using the two-
fluid model was first investigated by Agrawal et al. (2001)
and has since then received great interest. Investigations
of instabilities and filtering approaches for taking the
effects of unresolved meso-scale structures into account
in coarse-grid two-phase simulations has also been inves-
tigated in great detail, mostly for gas-solid flows (Agrawal
et al. 2001; Zhang and VanderHeyden 2001; Benyahia and
Sundaresan 2012; Wang, van der Hoef, and Kuipers 2009)
but also more recently for gas-liquid flows (Yang et al.
2011). It has been shown that the appearance of instabil-
ities related to clustering and voidage formation in two-
phase systems requires neither macroscopic shear nor the
presence of boundaries (Agrawal et al. 2001). In fact, it is
sufficient that there is an interaction between the inertia of
the dispersed phase, gravity and the interphase drag
(Agrawal et al. 2001).

The motion and stability of bubbly suspensions have
been studied on single bubbles in periodic 2D- and 3D-
domains (i.e. representing an infinite regular array of
rising bubbles) (Sankaranarayanan and Sundaresan
2002; Sankaranarayanan et al. 2002), and it is known
that the uniform bubbling state loses stability at some
critical bubble volume fraction (Joshi et al. 2001; Mudde,
Harteveld, and van den Akker 2009). Freely evolving
swarms of near-spherical two-dimensional bubbles were
also shown to produce meso-scale structures, although
they rise faster than a regular array of bubbles at the
same volume fraction (Esmaeeli and Tryggvason 1998).

Several different scenarios have been proposed for
the underlying physical mechanisms responsible for a
transition from a homogeneous to a heterogeneous bub-
bly flow. Sankaranarayanan and Sundaresan (2002)
found that the hindered motion of the dispersed phase
gives rise to vertically travelling waves (just as in gas-
solid flows) whereas cooperative motion of the dispersed
phase tends to create columnar structures. They also
showed that a lift force is not necessary to trigger an
instability. On the other hand, Lucas, Prasser, and
Manera (2005) and Lucas et al. (2006) concluded that
the lift force is of utmost importance, and that a positive
sign of the lift force coefficient practically acts as a sta-
bility criterion. Finally, Monahan and Fox (2007) attribu-
ted the loss of stability to yet another mechanism – that

bubble wakes are suppressed as the gas holdup increases,
which triggers the instabilities due to a decreased
effective viscosity. Even though the experiments of
Mudde, Harteveld, and van den Akker (2009) show
that uniform bubbly flows are indeed unstable, theore-
tical works seem to predict lower critical gas fractions
for the transition to unstable behaviour. We find this
observation very interesting, as we believe that it hints
at some of the difficulties in interpreting the occurrence
of instabilities in two-fluid model predictions of gas-
liquid flows.

In addition to the physical reasons for the unstable
behaviours observed in gas-liquid two-phase flow, there
are namely also well-documented mathematical difficulties
associated with the two-fluid model as such. The most com-
monly used version of the two-fluid model for gas-liquid
flows is based on an assumption of pressure equilibrium
between the phases, which leads to a non-hyperbolic ill-
posed model in the inviscid limit (Dinh, Nourgaliev, and
Theofanous 2003; Yström 2001; Prosperetti and Satrape
1990; Ransom and Hicks 1984, 1988). Although it has been
argued that the ill-posedness arises when local discontinu-
ities (i.e. interfaces) are homogenized by an averaging pro-
cedure, there is still no general consensus on whether the
non-hyperbolicity of the equation set reflects the presence of
physical instabilities or whether instabilities are artificially
augmented by an inadequate mathematical representation
(Dinh, Nourgaliev, and Theofanous 2003; Prosperetti and
Satrape 1990). In practice, the appearance of instabilities in
numerical solutions to the two-fluid model is often sup-
pressed by the use of excessively dissipative numerical
schemes or by regularization of the physical model
(Prosperetti and Satrape 1990; Pokharna, Mori, and
Ransom 1997). Unfortunately, little is known about the effect
of such measures on the simulation of large-scale flow
oscillations over long times (Prosperetti and Satrape 1990;
Pokharna, Mori, and Ransom 1997; Stewart 1986).
Understanding the uncertainties inherent in these types of
simulations is absolutely critical in an effort to use numer-
ical results obtained with a two-fluid model at fine resolu-
tion to derive appropriate relations for the effects of
unresolved meso-scale structures at a coarser resolution.
Most notably, there is a significant risk that solutions of an
ill-posedmodelmight suffer from excessive numerical diffu-
sion and/or exhibit unphysical instabilities (Dinh,
Nourgaliev, and Theofanous 2003), which could inadver-
tently be transferred along to the meso-scale closures.

The aim of the current work is to investigate the
performance of the two-fluid model for nuclear reactor
applications. More specifically, the aim is to assess the
dependence of the behaviour and stability of the two-
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fluid model on the specifications of the computational
setup and the case properties in a vein similar to that of
previous studies related to gas-solid flows (Agrawal et al.
2001; Zhang and VanderHeyden 2001; Benyahia and
Sundaresan 2012; Wang, van der Hoef, and Kuipers
2009). The results obtained in this work may therefore
form a rigorous foundation in on-going efforts to devise
a meso-scale formulation of the traditional two-fluid
model for multiphase flows in nuclear reactors, as the
two-fluid model used here will be subsequently extended
to also allow descriptions of other forms of momentum
exchange, as well as heat and mass transfer.

2 Modelling

This work investigates the occurrence of instabilities, fluc-
tuations and deviations from the uniform state in two-fluid
model simulations of bubbly flow in nuclear reactors.
Consequently, the two-fluid model employed must be
made simple enough to enable the direct observation of
the effects of each feature added to the model. It is there-
fore assumed that the flow of interest can be represented
by spherical, rigid bubbles occupying a certain volume
fraction in a continuous liquid. The momentum exchange
between the two phases is assumed to be dominated by
the drag force. The flow is isothermal and there is no mass
transfer between the phases. There is no coalescence or
breakup of bubbles. These assumptions are not adequate
for a real nuclear reactor, but are deemed necessary to
make the formulation of a two-fluid model relevant for the
steam-water flow that is stripped of all complexities except
for those inherent in the two-fluid model.

2.1 Simplistic two-fluid model

The two-fluid model formulated for a continuous liquid
phase and a mono-sized dispersed bubbly phase, under
the set of restrictive assumptions noted previously, is
presented in the following. The continuity equation for
the dispersed phase becomes:

∂

∂t
αbρbð Þ+∇ � αbρbubð Þ=0 (1)

The continuous phase volume fraction field is obtained
from the condition that the sum of the volume fractions
everywhere must be equal to unity:

αl = 1− αb (2)

In this notation, l represents the liquid phase and b the
bubbly phase.

The momentum balance equations become:

∂

∂t
αkρkukð Þ+∇ � αkρkukukð Þ=

− αk∇p+∇ � αkμk ∇uk +∇uk
T� �� �

+ αkρkg +K uq −uk
� �

(3)

Here, k is either l or b, and q is the other phase (not
currently represented by k). The pressure p is shared by
both phases, and the viscosity used is the sum of the
turbulent viscosity (when a turbulence model is used)
and the molecular viscosity of the continuous phase.

Two things should be emphasized in relation to
(eq. (3)): Firstly, there is no discrete phase pressure and
thus no repulsive term that prevents overpacking of the
discrete entities. This choice is in line with the current
ambition to perform a transparent investigation with as
few complications as possible. At relatively low discrete
phase volume fractions, such as in this work, overpacking
is generally not an issue and this approach can be justi-
fied a posteriori by investigations of the obtained volume
fraction fields. At higher volume fractions, a dispersed
phase pressure would be needed to prevent overpacking,
but such models are known to be sensitive to the choices
of model parameters (Benyahia and Sundaresan 2012). In
this work, the isotropic contribution to the discrete phase
stresses thus come from the shared pressure field.
Secondly, the deviatoric contribution to the discrete
phase stresses is here obtained from the product of the
continuous phase viscosity with the discrete phase velo-
city gradients. In similar previous studies, other
approaches have been suggested for the treatment of
these terms, such as neglecting them altogether (Benyahia
and Sundaresan 2012) or to assume them to be identical to
the continuous phase deviatoric stresses (Zhang and
VanderHeyden 2001). As the effect of the deviatoric contri-
bution to the discrete phase stresses is related to the growth
rate of disturbances in the flow field (the discrete phase
viscosity determines the length scale of the dominant
instability), but not to the existence of disturbances as
such (Anderson, Sundaresan, and Jackson 1995), the treat-
ment of these terms is deemed acceptable for the purpose
of the current work. Furthermore, it has been shown for
gas-solid flows that the meso-scale stresses dominate over
the molecular stresses (Agrawal et al. 2001).

The momentum exchange coefficient K is obtained
using the following relation:

K = αlαb
18μl
db2

CDRep
24

(4)
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Here, CD is evaluated using the Morsi and Alexander drag
law (Morsi and Alexander 1972), which is applicable for
spherical particles over a wide range of particle Reynolds
numbers (from the Stokes flow regime up to above
10,000).

The two-fluid model used here is somewhat simpler
than a conventional two-fluid model for nuclear appli-
cations. We therefore stress that there has been no loss
of generality from the simplifications involved with
respect to the occurrence of instabilities. The origin of
the mathematical instabilities lies in the one-pressure
formulation and the energy equations, if included, do
not affect the hyperbolicity of the equation set (Ransom
and Hicks 1984, 1988). Furthermore, the model is com-
prehensive enough to capture at least some of the pos-
sible physical instabilities known to exist in gas-liquid
flows (Agrawal et al. 2001; Sankaranarayanan and
Sundaresan 2002). In addition, the main emphasis in
the current work is not on wall-bounded systems,
where velocity gradients develop and may affect the
stability of a uniformly bubbling suspension via the
bubble lift forces (Sankaranarayanan and Sundaresan
2002; Lucas, Prasser, and Manera 2005; Lucas et al.
2006). Instead, we aim to study whether loss of stability
is possible in a periodic domain.

The two-fluid model derived in this way and applied
to a periodic domain is well-posed locally in time if the
initial data are smooth, but is known to possess a med-
ium to high wavenumber instability. In practice, a
smooth solution to such a two-fluid model is therefore
exponentially unstable. Linearization around an assumed
smooth solution, followed by a freezing of coefficients,
yields that the exponential growth rate of the instabilities
is (to the first order) (Gudmundsson 2005):

r =
urj jð Þ2αbαl ρlμb2αl + ρbμl2αbð Þ

μlαb + μbαlð Þ3
(5)

Although it is still unclear how well this result transfers
to the original non-linear problem (Gudmundsson 2005;
Keyfitz 2001), it is deemed valuable in the assessment of
the growth rate observed in our simulations. It has also
been shown that, even though there is an exponential
instability, the solutions can still be bounded if they
become highly oscillatory or if they form shock-like struc-
tures (Gudmundsson 2005; Keyfitz 2001; Kreiss and
Yström 2002). In practice, the numerical results obtained
will be influenced also by the algorithms and discretiza-
tion schemes used in the solution procedure (Coquel et
al. 1997). It is the purpose of this work to investigate the
sensitivity of the obtained solutions to both the physics

(as specified by the model itself and its initial and bound-
ary conditions) and to the numerics.

2.2 Standard k-ε model

The bubbly flow inside a nuclear reactor is highly turbu-
lent, which typically motivates the inclusion of a turbu-
lence model in the computational framework (Bestion
2012). On the other hand, if large-scale vortical structures
are expected to be a more significant source of velocity
fluctuations than bubble- or shear-induced turbulence
(as should indeed be expected for a fully periodic bubbly
flow at low to moderate bubble loading), a turbulence
model is generally not needed (Ojima et al. 2014). In this
work, we compare simulations using a turbulence model
(Section 3.5) with simulations where no turbulence model
is employed (Sections 3.1–3.4). In line with the aim to keep
the current investigation transparent and simplistic, the
standard k-εmodel (Launder and Spalding 1972) is chosen.
Note that the model is applied to the mixture and not for
the individual phases. However, it should be stressed here
that due to the large density difference between the
phases, the modeled turbulence will be most significantly
affected by the liquid phase. Even though turbulence
modeling in dense, dispersed two-phase flows is a highly
complex issue, this approach is deemed appropriate given
the aim and scope of the current work.

2.3 Computational cases

The pressure-velocity coupling is handled via the phase-
coupled SIMPLE algorithm (Vasquez and Ivanov 2000).
In the discretization of the convective terms of all balance
equations, the third-order accurate, bounded QUICK
scheme is used with structured hexahedral meshes. The
diffusion terms are discretized using a second-order accu-
rate central-differencing scheme.

The geometry chosen is a fully periodic 2D system
similar to that used by Benyahia and Sundaresan (2012).
The domain height is four times its width (0.1 × 0.4 m),
and gravity acts downwards in the vertical direction. The
weight of the carrier and the dispersed phase in the
domain is balanced exactly by a prescribed pressure
drop in the vertical direction. This system is not typical
of the flow channels in nuclear cores, but designed to
represent a situation where the flow is unbounded. The
material properties are assumed constant. The spatial
discretization, unless otherwise noted, is the finest one
used by Benyahia and Sundaresan (2012), i.e. 64 by 256.
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The trends reported in this work were confirmed to be
mesh-independent with this resolution.

The choice to use a 2D domain is based on the need
to reduce the computational cost when performing many
simulations over long times. It should therefore be
stressed that physical meso-scale structures, as defined
here, arise as the continuous phase will bypass clusters
of the dispersed phase more easily than it will flow
through a completely homogenized system. This effect
therefore appears in both two- and three-dimensional
numerical simulations, albeit with quantitative differ-
ences (Agrawal et al. 2001). Furthermore, instabilities
of unphysical origin are known to manifest already in
1D simulations (Pokharna, Mori, and Ransom 1997).

Since the purpose of the current work is to investigate
the possible onset of instabilities inherent in the two-fluid
formulation applied to typical nuclear reactor cases, we are
not primarily interested in whether such instabilities even-
tually develop at all, but rather whether they develop over
length and time scales relevant to the thermo-hydraulics of
nuclear reactors. Taking 4 m as a representative height of a
nuclear reactor (Demazière 2013) and 2 m/s as a represen-
tative liquid velocity (Anglart et al. 1997; Ustinenko et al.
2008), we obtain a macroscopic time scale of 2 sec. Hence,
in theory it should be sufficient to study the system for a
period of 2 sec. On the other hand, all simulations are
started at time zero with a uniform volume fraction field,
and it is likely that the time needed for instabilities to
manifest will be the longest for such initial conditions. In
order not to neglect instabilities that would develop within
a short time frame only if the initial conditions are favor-
able, we therefore choose to study a longer time period of
20 sec. This time period corresponds to more than 100
passages through the periodic computational domain in
the streamwise direction for the mean flow.

As a means to quantify the magnitude of the meso-
scale structures, we define a global, time-resolved uni-
formity index Φ(t) such that:

Φ tð Þ= αq, max tð Þ− αq, min tð Þ
αq, avg

(6)

where αq,max is the current maximum volume fraction of
phase q in the solution domain at time t, αq,min is the
corresponding current minimum volume fraction and
αq,avg is the domain-average value of the volume fraction.
With this definition, a value of Φ equal to zero corresponds
to a uniform volume fraction field and complete phase
separation would correspond to Φ = 1/αq,avg.
The occurrences of non-zero values of Φ with time are
indicative of the appearance of a non-uniform volume
fraction field.

3 Results and discussion

3.1 Case #1 – Gas-solids case

We first investigate the same gas-solids flow as the one
that was simulated by Benyahia and Sundaresan (2012).
The case specification is presented in Table 1. The simu-
lation is started with a uniform volume fraction field of
the dispersed phase and advanced in time with a time
step of 10−4 s. The simulation results for the volume
fraction field are shown in Figure 1. Using the results
from Benyahia and Sundaresan (2012) as a reference
solution, it is verified that our numerical setup can repro-
duce the qualitative behavior of this gas-solids flow,
including the appearance of meso-scale structures and
fluctuations in the slip velocity, and we use this setup
as a basis for going towards bubbly flow relevant to
nuclear reactors.

3.2 Case #2–gas-liquid case 1

As a first test for a gas-liquid system, we adjust Case #1
so that the terminal velocity of a bubble is similar to that
of the solid particles. Under the simplified assumption of
Stokes flow around the dispersed phase, the new bubble
size can be found from:

db = dp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μl
μg

ρs − ρg
���

���
ρb − ρl
�� ��

vuut
(7)

We then rerun Case #1 with the material properties
of both phases representative of a gas-liquid flow
(cf. Table 2). The properties are chosen to reflect relevant
orders of magnitude, and could represent either an air-
water system or a steam-water system (with the steam
being either saturated or superheated). All other para-
meters are kept the same.

The resulting bubble diameter for this case is 0.68 mm,
which is a relevant bubble size for the onset of bubble
creation at sub-cooled boiling conditions (Anglart et al.

Table 1: Gas-solids case.

System size (width × height), m . × .
Fluid density, ρf kg m−

.
Fluid viscosity, μf Pa s . × 

−

Particle density, ρp kg m−
,

Particle diameter, dp μm 

Average particle volume fraction .
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1997). The behavior of the time-resolved uniformity index is
shown in Figure 2. There are clear non-zero values after a
few seconds of real time. A visual inspection of the volume
fraction field (Figure 3) reveals meso-scale structures in the
form of very thin vertically stretched zones of bubble-rich
and bubble-lean areas.

Soon after the emergence of the “striped” structures in
Figure 3, the time-resolved uniformity index starts to

decrease slowly and the meso-scale structures become
less sharp and develop a smoother, somewhat undulating
character. These phenomena are attributed to the

Table 2: Gas-liquid case.

Fluid density, ρf kg m−
,

Fluid viscosity, μf Pa s  ×−

Particle density, ρp kg m−


Figure 1: Snapshots of discrete phase
volume fraction at t= 2.5 s (left) and 3.5 s
(middle). Blue and red indicate dilute and
dense (volume fraction of 0.2 and higher)
flow regions. To the right: Time-resolved
uniformity index for Case #1.

Figure 2: Time-resolved uniformity index for Case #2. To the left:
linear scale, to the right: semi-log scale.

Figure 3: Snapshot of the discrete phase volume fractions in Case #2.
Top: scaled by the maximum and minimum values observed in each
snapshot. Bottom: scaled by the maximum and minimum values
observed throughout the simulation (colour legend to the left). Streaks
of high (red) and low (blue) volume fraction emerge slowly as a
“striped” pattern and can be clearly discerned after 10 sec.
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exponential growth of small initial disturbances (in the
uncertainty pertaining to the numerical precision). The
solution eventually goes through a maximally unstable
state, where gradients become so large that they will start
to become smoothed out again by diffusive mechanisms.
These diffusive mechanisms originate both from the phy-
sical model and from the numerical procedure. In the
present model, it is primarily the viscous stresses that
tend to stabilize disturbances (Arai 1980), but also the
momentum exchange between the phases could play a
similar role (Stewart 1979). There are several steps in the
numerical solution procedure that influence stability,
most notably the discretization of the convective terms
in (eqs (1) and (3)) (Toumi 1996 and Prosperetti 2003).
After the peak in the instability, the solution remains
non-homogeneous throughout the rest of the simulation.

These observations are consistent with the previous
literature investigations of the stability of the two-fluid
model: the current formulation is unstable, but its solutions
are still bounded. It is also interesting to note that the
(material and case-specific) properties of this bubbly flow
are very similar to one of the examples investigated by
Sankaranarayanan and Sundaresan (2002). For this system,
they found that the bubbles remain nearly spherical and the
bubbly flow loses stability due to a growth of vertically
traveling wavefronts having no horizontal structure. This
mode is associated with the inertia of relative motion
between the two phases and is thus the same as the domi-
nant instability mode in typical gas-solid flows. The lift
force, which is not taken into account in the present work,
plays an important role in the loss of stability through a
different mode and is thus not required for these instabilities
to manifest (Sankaranarayanan and Sundaresan 2002).
On the contrary, the addition of a lift force or a discrete-
phase pressure to the model would act so as to stabilize the
system under these conditions (Sankaranarayanan and
Sundaresan 2002; Gudmundsson 2005; Coquel et al. 1997).

The effect of the numerical procedure to obtain the
solution on the behavior and the stability of the solution
itself is illustrated in Figure 4, where the results are com-
pared for two simulations that differ only in the choice of
either a lower-order scheme (First Order Upwind) or a
higher-order scheme (QUICK) in the discretization of the
convective terms in all balance equations. The First Order
Upwind scheme is known to be robust but to give rise to
false (numerical) diffusion, which should generally be
expected to increase the stability and delay the transition
to the unstable state on the same mesh. These are also the
inferences that indeed can be drawn from Figure 4.
Additionally, it is observed that neither scheme produces a
growth rate as large as the theoretical one predicted by

(eq. (5)). It is also concluded that the effect of the choice of
the numerical solution procedure on the behavior of the
system is significant, and it should thus be emphasized
that the exact time-history obtained (as shown in Figure 3)
is unlikely to reflect a true physical behavior of the system,
but should be interpreted rather as a display of the unstable
character of a bubbly two-phase flow and the complex inter-
play between the design of the mathematical model and the
choice of numerical algorithms dedicated to solving it.

Ransom and Hicks (1984, 1988) use the term “unphy-
sical instabilities” to differentiate unbounded instabilities
from bounded instabilities (which they refer to as “physi-
cal instabilities”), and they argue that mathematical mod-
els of physical instabilities (e.g. interface instabilities in
two-phase flows) will start to exhibit unphysical behavior
when the physics included in the model is insufficient
(Ransom and Hicks 1984, 1988). They propose that
instabilities will result from the inadequate pressure equi-
librium assumption inherent in the single-pressure two-
fluid model, but that these instabilities may remain
bounded because of the combined effects of, for example,
viscous stresses and numerical diffusion. These specula-
tions agree with our observations. As the simulations are
advanced in time, the miniscule numerical round-off errors
in the predicted pressure, velocity and volume fraction
fields tend to grow with time throughout the domain.

Given the fact that the current formulation of the two-
fluid model for a bubbly gas-liquid flow exhibits these
characteristics, we will now investigate the sensitivity
of this behavior to changes in the case specification

Figure 4: Time-resolved uniformity index for Case #2: the effect of
using a lower-order (First Order Upwind) or a higher-order (QUICK)
discretization scheme for the convective terms in (eqs (1) and (3)).
The theoretical growth rate for the instabilities obtained from
(eq. (5)) is also plotted for comparison.
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(e.g. changes to the bubble loading and the domain size)
and to the inclusion of a turbulence model.

3.3 Case #3 – Gas-liquid case 2

It is known that a uniformly bubbling suspension loses
stability at bubble loadings of a few percent or more, and
that the suggested critical bubble loadings span a wide
range (cf. Sankaranarayanan and Sundaresan (2002), Joshi
et al. (2001), Mudde, Harteveld and van den Akker (2009)).
However, the simplistic formulation of the two-fluid model
that is under investigation here is known to be unstable for
all non-zero bubble loadings (Gudmundsson 2005).
Numerical simulations are performed to investigate the
behavior of the volume fraction fields predicted by this
two-fluid model for three different average bubble loadings:
1, 5 and 10%. The results are shown in Figure 5. It is clear
that the growth rate of the initial instabilities is a function of
the bubble loading, and that the growth rate increases with
increasing loading. The non-uniformities in the casewith 1%
bubble loading are still extremely small after 20 sec, but a
growth is still clearly there. The behavior at 5 and 10%
bubble loading are qualitatively similar, with the difference
that stability is lost earlier with the higher bubble loading.

3.4 Case #4 – Nuclear reactor case 1

The bubbly flow in a nuclear reactor occurs in between
the fuel rods and is therefore geometrically restricted in
the horizontal direction. Representative values of the dis-
tance between the centers of the fuel rods are in the range
1–3 cm, with the distance between the outer radii of two
consecutive fuel pins being approximately 3–8 mm

(Anglart et al. 1997; Ustinenko et al. 2008). In other
words, the characteristic length of the bounding geometry
in a nuclear reactor case is approximately an order of
magnitude smaller than in the previous computational
cases. At the same time, the variation in the typical bubble
size can be very significant in the vertical direction. The
initial creation of bubbles at sub-cooled boiling condi-
tions, however, results in small, spherical bubbles of
0.15–1.5 mm in diameter (Anglart et al. 1997), but bubble
diameters up to 5 mm are relevant (Ustinenko et al. 2008).
The resulting ratio between the discrete phase diameter
and the length scale characterizing the bounding geometry
is thus of the order of 0.015–0.625 in a nuclear reactor,
whereas it was 0.0068 in the previous computational
case. In other words, for the investigations to be fully rele-
vant to nuclear reactor applications, it is necessary to also
study higher values of dp/L. Here, we choose to scale the
computational domain so that it becomes 1 cm wide (main-
taining the aspect ratio) and to maintain a bubble diameter
of 0.68 mm, yielding a value of dp/L equal to 0.068. This
value is in the correct range and represents a significant
increase from the previous cases. Finally, we also change
the boundary conditions on the vertical sides from periodic
to free-slip walls. The presence of a wall introduces the
sought-after geometrical limitation on themeso-scale struc-
tures, and the free-slip boundary condition allows us to
probe the influence from this restriction without imposing
sharp gradients in the velocity field that are likely to have
an additional influence of their own on the instabilities.

The time-resolved non-uniformity index obtained
with a 1 cm wide, horizontally bounded geometry with
free-slip walls is displayed in Figure 6. The instabilities
are there but the non-uniformity index remains lower

Figure 5: Time-resolved uniformity index for Case #3.

Figure 6: Time-resolved uniformity indices for Case #4: a small
(1 cm) domain with free-slip walls.
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than 10−3 for the first 20 sec for this case. The effects of
imposing a no-slip boundary condition are shown in
Figure 7 for the original 10 cm wide domain. The large
gradients in the velocity field that result from the no-slip
boundary condition trigger the instabilities much faster
than for the fully periodic case. Here, meso-scale struc-
tures appear already within the first 3 sec. The trend with
respect to the domain size is as expected: the instabilities
are less pronounced in a smaller (1 cm) domain, but
their magnitude are still larger when employing no-slip
boundary conditions than with free slip.

3.5 Case #5 – Nuclear reactor case 2

As described previously, the two-fluid model is typically
used together with a Reynolds-Averaged Navier-Stokes
(RANS)-based turbulence model in the simulations of
nuclear reactors. The most important effect of adding a
RANS model to these computations is the introduced
change in the effective viscosity. Consequently, we revisit
the previous nuclear reactor cases with the addition of
the Standard k-ε turbulence model.

The Standard k-ε model predicts energy-containing
turbulent eddies of approximately 1.8 cm in the bounded
10 cm domain. The ratio of the turbulent to the dynamic
viscosity of the liquid becomes of the order of several
hundreds, implying that the effective viscosity is signifi-
cantly increased, as expected. In comparison, large eddy
simulations of the turbulent liquid (single-phase) flow in a
three-dimensional mesh of identical resolution with the
dynamic Smagorinsky subgrid model yields turbulent visc-
osities of the same order of magnitude as the molecular

viscosity or lower. These large eddy simulations hence
suggest that the mesh resolution is almost sufficient for a
direct numerical simulation of the turbulence.

The effect on the meso-scale structures from the
addition of the Standard k-ε model is to effectively dam-
pen out all fluctuations, and the non-uniformity indices
(not shown) remain very small throughout the simula-
tions. This observation is not so strange after all, since it
has been known for decades that the addition of an
“artificial viscosity” in the numerical algorithm employed
to solve the two-fluid model helps dampen out high-
frequency oscillations and therefore assists in achieving
numerical stability (Ransom and Hicks 1984; Ishii and
Mishima 1984).

It should be stressed here that the physical relevance
of turbulence as an inhibitor of the emergence of meso-
scale structures is very dubious. The two-fluid model
employed here is derived by averaging over the spatial
and temporal resolution employed in the computational
setup. The meso-scale structures then appear when
employing the two-fluid model with adequate resolution;
that is, when using a resolution that is significantly finer
than the meso-scales. Such a numerical simulation pre-
supposes that the velocities used in (eqs (1) and (3)) are
obtained with the same resolution as the volume fraction
fields. A RANS-based turbulence model, on the other
hand, is derived by averaging out all of the turbulent
velocity fluctuations. Combining the two-fluid model
with the Standard k-ε model therefore results in an
attempt to solve for fluctuations in the volume fraction
fields without accounting for the fluctuating components
of the phase velocities. Consequently, RANS-based turbu-
lence modeling can only be considered compatible with
the two-fluid model if the flow is steady or quasi-steady
(i.e. there is a clear separation of scales between the
mean flow variations and the turbulence and two-phase
intermittency) (Bestion 2012).

It is interesting to relate the current results to those
obtained when applying some variant of a two-fluid
model together with a RANS-based turbulence model to
a bubble plume in a flat geometry (Sokolichin and
Eigenberger 1999; Pfleger et al. 1999; Mudde and
Simonin 1999). If the depth of such a domain is neglected
and the geometry described as two-dimensional, the tur-
bulent viscosity becomes much too high and the
unsteady motion of the plume is suppressed entirely. In
three-dimensional simulations of the thin geometry, the
effective viscosity however decreases and a dynamic
behavior can be recovered. Of specific interest here is
the fact that Sokolichin and Eigenberger (1999), who did
not use a full two-fluid model, obtained good agreement

Figure 7: Time-resolved uniformity indices for Case #4: the effect of
no-slip walls.
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with the experimental data of Becker, Sokolichin, and
Eigenberger (1994), whereas Mudde and Simonin (1999),
who used a single-pressure two-fluid model, obtained
close agreement with the same experimental data only
after incorporating the effect of virtual mass into the
interfacial momentum transfer term. These results are
very interesting in the light of the fact that the virtual
mass terms are generally small but affect the hyperboli-
city, and hence the stability, of the two-fluid model
employed (Lahey et al. 1980).

In summary, employing the Standard k-ε model to
take the effects of turbulence into account produced high
effective viscosities that dampened out the occurrence of
meso-scale structures. This numerical experiment high-
lights the difficulties in describing turbulent two-phase
flow using a combination of averaged mathematical mod-
els (i.e. a two-fluid model and a RANS model) that are
averaged on different length scales. In a mesh refinement
study of such a model, small-scale fluctuations in the
volume fraction fields that are permitted by the model
as such are prevented to appear, as the corresponding
velocity field cannot be retrieved. In effect, the correlated
fluctuations between the dispersed phase volume fraction
field and the continuous phase stress gradient are
neglected in the momentum exchange (Igci et al. 2008).
The details of the interaction between turbulence and the
dispersed phase meso-scale structures must therefore be
studied using more comprehensive mathematical frame-
works. If meso-scale structures are deemed important for
the overall behavior of bubbly flows in nuclear reactors,
more work will be needed in the derivation of models for
the unresolved fluctuations and their cross-correlations.
It is to be expected that more sophisticated turbulence
models will be necessary for such simulations (e.g. LES or
possibly URANS). It is therefore interesting to note that
such turbulence models do not in general work well with
dissipative discretization schemes, as these tend to dam-
pen out the resolved turbulent fluctuations and therefore
limit the accuracy of the underlying subgrid-scale model.
Such issues, which are manageable in single-phase
flows, will continue to pose challenges to simulations of
gas-liquid flows with a two-fluid model until the complex
boundaries and interplay between physical and unphysi-
cal instabilities are fully understood.

4 Conclusions

In the present work, we formulate a simplistic two-fluid
model for the bubbly steam-water flow existing between

the fuel pins in nuclear assemblies. The appearance of
non-uniform volume fraction fields is investigated and
shown to be a function of the bubble loading as well as
the domain size. The combination of the two-fluid model
with a RANS-based turbulence model is shown to dam-
pen the instabilities and to prevent the non-uniform
fields from emerging.

In conclusion, the findings in this work highlight the
importance of a consistent filtering approach in the treat-
ment of the volume fraction field and the turbulence in
simulations of two-phase flows in nuclear reactors.
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Annals of Nuclear Energy 84 (2015), pp. 244-257





Coupled fine-mesh neutronics and thermal-hydraulics – Modeling
and implementation for PWR fuel assemblies

Klas Jareteg a,⇑, Paolo Vinai a, Srdjan Sasic b, Christophe Demazière a

aDivision of Nuclear Engineering, Department of Applied Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
bDivision of Fluid Dynamics, Department of Applied Mechanics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

a r t i c l e i n f o

Article history:
Received 31 March 2014
Accepted 20 January 2015
Available online 18 March 2015

Keywords:
Fine-mesh solver
Neutronics
Thermal-hydraulics
Parallelization
Coupled deterministic nuclear reactor
modeling

a b s t r a c t

In this paper we present a fine-mesh solver aimed at resolving in a coupled manner and at the pin cell
level the neutronic and thermal-hydraulic fields. Presently, the tool considers Pressurized Water Reactor
(PWR) conditions. The methods and implementation strategy are such that the coupled neutronic and
thermal-hydraulic problem is formulated in a fully three-dimensional (3D) and fine mesh manner, and
for steady-state situations. The solver is built on finite volume discretization schemes, matrix solvers
and capabilities for parallel computing that are available in the open source C++ library foam-extend-
3.0. The angular neutron flux is determined with a multigroup discrete ordinates method (SN), solved
by a sweeping algorithm. The thermal-hydraulics is based on Computational Fluid Dynamics (CFD) mod-
els for the moderator/coolant mass, momentum, and energy equations, together with the fuel pin energy
equation. The multiphysics coupling is solved by making use of an iterative algorithm, and convergence is
ensured for both the separate equations and the coupled scheme. Since all the equations are implement-
ed in the same software, all fields can be directly accessed in such a manner that external transfer and
external mapping are avoided. The parallelization relies on a domain decomposition which is shared
between the neutronics and the thermal-hydraulics. The latter allows to exchange the coupled data local-
ly on each CPU, thus minimizing the data transfer. The code is tested on a quarter of a 15� 15 PWR fuel
lattice. The results show that convergence is successfully reached, and correct physical behaviors of all
fields can be achieved with a reasonable computational effort.

� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

To simulate the behavior of a nuclear reactor core, multiple
fields of physics need to be considered. The distribution of the neu-
trons determine the amount of energy released by fission in the
fuel. In a Light Water Reactor (LWR), the released energy is con-
ducted through the solid fuel pins to the conjugate liquid (or
vapor) water, and it is removed by the forced water flow. The water
is not only acting as coolant, but also as moderator for the neu-
trons. In turn, the density of the water couples to the neutron dis-
tribution. Besides, the fuel temperature, which depends on the
power and the coolant conditions, gives another feedback to the
macroscopic neutron cross-sections via the Doppler effect. Other
phenomena such as thermal expansion of the solid fuel and other
core structures, fluid–structure interaction and material properties
also impact the behavior of the core.

Furthermore, the reactor core is a multiscale system, with the
scales ranging from the core width and height to the atomic ones
governing nuclear reactions. For the neutronic solvers, the multi-
scale problem has typically been solved using a multistage proce-
dure: the macroscopic cross-sections are generated in advance
with a high order lattice solver and are employed for full core cal-
culations performed with a low order coarse mesh solver. For ther-
mal-hydraulics an equivalent multistage scheme can be seen in the
use of subchannel codes and lower dimensional system codes,
although such codes are not sequentially applied.

The multiphysics and multiscale can be tackled using a wide
variety of schemes and methodologies. A splitting approach is
often utilized, which consists of separate methodologies and codes
for each field of physics and scale. The dependencies could then be
regained using an a posteriori coupling, applying iterative schemes
(for an overview see e.g. Ivanov and Avramova, 2007). Due to the
split schemes, the couplings are usually only retrieved at the coars-
est level, whereas the multiphysics coupling will take place at mul-
tiple scales. Therefore, these schemes might be inconsistent. This
issue has recently gained a renewed interest, where the use of
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more computational power has allowed for direct coupling at finer
scales, and thus leading to more integrated approaches to the mul-
tiphysics problem (see e.g Gaston et al., 2009). Such methodologies
typically rely on tightly coupled solvers, using implicit, non-linear
techniques to handle the couplings. In other works, fine-mesh mul-
tiphysics couplings have been achieved using multiple codes, with
a varying level of sophistication for the couplings (see e.g.
Kochunas et al., 2012; Hamilton et al., 2013).

The large increase in computer resources has also allowed new
applications of numerical simulations in the reactor core. Examples
include integrated approaches for direct simulation of fuel material
properties (Newman et al., 2009) and numerical simulations of
resolved grid-to-rod fretting in a fuel assembly (Bakosi et al.,
2013). High-fidelity simulations of a nuclear reactor that include
all the mentioned aspects are challenging from a modeling per-
spective and are beyond the computational capacity available
today. Instead, different approaches are still required for the differ-
ent parts of the multiscale problem.

However, such insight does not imply that smaller scales (as
compared to the core global scale) could be discarded. On the con-
trary, from a higher resolution coupled simulation, the models and
correlations used for the coarse scale couplings can be evaluated
and improved. In the view of the earlier statement, there are incen-
tives to work with the coupled neutronic and thermal-hydraulic
problem already on the fine-mesh level. In fact, a more detailed
prediction of the interplay between the two fields can provide a
better understanding of, e.g., the local temperature and power dis-
tributions in the fuel pins, as well as the conjugate heat transfer
between the fuel and the coolant. Such and other fuel assembly
parameters and aspects are important both from economical and
resource utilization perspectives, and also from safety
considerations.

The goal of this article is to describe a fine-mesh simulation
framework that has been developed at Chalmers University of
Technology, and that aims at reproducing the coupling between
neutronics and thermal-hydraulics within PWR fuel assemblies.
In particular, the solver can handle steady-state problems with
respect to fine meshes, and it includes models for single-phase flu-
id dynamics, heat transfer in the solid and fluid regions, and neu-
tron transport. We aim to give both specific example and also a
more general overview of the key points for such a framework.
The full coupled problem is solved using a single code approach,
allowing fine-mesh direct multiphysics coupling.

The paper is structured as follows. The implications of the fine-
mesh approach are described in Section 2, highlighting some of the
key concepts and main issues to be tackled. The specific models
used for the neutronics, the fluid dynamics and heat transfer are
given in Sections 3 and 4, respectively. In Section 5, we describe
the treatment in our methodology of the coupling and data transfer
between the different fields. In Section 6, strategies for the paral-
lelization of the coupled system are outlined and discussed. The
described models and implementations are then tested on a sim-
plified 15� 15 PWR system and reported in Section 7. Finally, a
summary and a number of important conclusions are given in
Section 8.

2. Fine-mesh considerations

As mentioned above, the target of this work is to couple the
neutronic and thermal-hydraulic fields on a sub-pin level. Follow-
ing the choice of resolution, limitations and approximations will be
imposed for other scales. With the chosen level of detail, full core
calculations are extremely computationally expensive. Instead,
the fine-mesh approach is applied to the fuel assembly calcula-
tions, where the computational burden is still relatively large,
but can be handled with the available computer resources.

The application of a fine-mesh approach gives a possibility of a
full three-dimensional representation of the fuel assembly. This
fact is beneficial for two main reasons. First, the geometrical
complexity of the fuel assembly can be taken in account with a bet-
ter resolution. Second, physical phenomena can be better captured,
avoiding one dimensional (1D) or two dimensional (2D)
approximations that may be questionable.

To preserve the geometry on the sub-pin cell scales in an effi-
cient manner, an unstructured computational mesh is required.
This allows for a correct representation of the fuel pins and other
structural parts and avoids homogenization of the simulated sys-
tem. The choice of resolution of the mesh influences the discretiza-
tion method applied to models and equations. In this work the
discretization is based on the Finite Volume Method (FVM). FVM
allows unstructured meshes to be used, and ensures local conser-
vation on each cell (Ferziger and Peric, 2002). It is also a well pro-
ven method for neutronics and fluid problems, and is a standard
practice for Computational Fluid Dynamics (CFD) codes.

To handle the fine-mesh requirements, the use of unstructured
meshes, and the coupling of multiple fields of physics, a versatile
computational code is necessary. Such a tool could consist of mul-
tiple specialized softwares, combined using an external coupling
(see e.g. Cardoni and Rizwan-uddin, 2011; Kochunas et al., 2012).
An advantage of this scheme is the possibility to use a set of
validated tools, limiting the amount of new code to be implement-
ed and tested. However, the external transfer approach introduces
not only an expensive overhead, but it also limits the resolution of
the coupling and imposes constrains on the coupling algorithms.
An alternative to the split software scheme is to include all fields
of physics and the coupling in the same code (see e.g. Gaston
et al., 2009), which is the approach followed in this work. This
allows for a coupling directly on the finest scale, avoiding the com-
putational and methodological penalties associated with external
or a posteriori coupling schemes. Further benefits will be discussed
in Section 6, where the integrated approach is described, and also
used to handle the parallelization in an efficient manner.

To benefit from an existing code, we use the open source C++
library foam-extend-3.0 as a base for the coupled code. foam-
extend-3.0 is a fork of OpenFOAM�, earlier named OpenFOAM�-
dev and OpenFOAM�-ext (Wikki, 2014). The software gives access
to a high performance library with a flexible code with many dif-
ferent applications. In particular, full availability of the source code
allows for extending the code at any level, including implemented
equations, physical models as well as for the linear solvers and the
discretization schemes.

As a consequence of the chosen resolution and using a 3D rep-
resentation of the system, the computational requirements for this
kind of effort can not be overlooked. The fine-mesh approach must
be solved using high performance computations (HPC), including
fast programming languages, efficient algorithms and use of paral-
lelization to efficiently tackle the problem. Furthermore, the prob-
lem is parallelized using the Message Passing Interface (MPI) (MPI
Forum, 2009) as implemented in foam-extend-3.0 (further
described in Section 6).

3. Neutronics for the sub-pin cell calculations

For the type of system and resolution under study, the selected
neutronics solver methodology needs to handle the strong material
heterogeneities and the angular dependence. In the case of the sub-
pin neutronic calculations, the diffusion approximation is not an
accurate choice. Instead a full transport methodology is required.
Here, we use the discrete ordinates method, formulated for a gen-
eral unstructured mesh and using the finite volume method to dis-
cretize the equations. We solve the steady state neutronic
eigenvalue problem using the power iteration method.
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3.1. SN method

The discrete ordinates method is based on solving the neutron
transport equation on a set of directions (or ordinates). The equa-
tion to be solved for each separate direction is given by (Larsen and
Morel, 2010):

Xm � rWm;g þ RT;gWm;g ¼ Sm;g þ
1
k
Fm;g ð1Þ

where the anisotropic scattering source term is given by:

Sm;g ¼
XL

l¼0

ð2lþ 1Þ
XM
m0¼1

PlðXm �Xm0 Þwm0

XG
g0¼1

Rs;l;g0!gWm0 ;g0 ð2Þ

which is formulated in terms of the Legendre polynomials (Pl) and
the ordinate weights (w0

m). The fission source term in terms of the
angular flux reads:

Fm;g ¼ vg

XM
m0¼1

wm0

XG
g0¼1

mg0Rf ;g0Wm0 ;g0 ð3Þ

The scalar flux can then be retrieved by performing the weighted
sum over all the different directions such that:

Ug ¼ 4p
XM
m

wmWm;g ð4Þ

The fission source with respect to the scalar flux will read:

Fm;g ¼
vg

4p
XG
g0¼1

mg0Rf ;g0Ug0 ð5Þ

Standard notations are employed for all quantities.
We assume the most general case with a fully anisotropic scat-

tering. Thus, in each inner iteration while solving Eq. (1) (i.e. for
each energy group (g) and each ordinate m), the full dependence
of all other groups and directions will enter through the scattering
term Sm;g . To reduce the computational cost of evaluating the scat-
tering source, an expansion of the angular flux on real spherical
harmonics is used, such that:

Sm;g ¼
XG
g0¼1

XL

l¼0

ð2lþ 1Þ
Xl

r¼�l

Rlr/g;l;rSs;l;g0!g ð6Þ

where /g;l;r are the expansion coefficients and Rlr are the real sphe-
rical harmonics as given in Hébert (2010).

The choice of directions (Xm) and weights (wm) for SN can poten-
tially have a large influence on the accuracy of the solution, as dis-
cussed by e.g. Abu-Shumays (2001). The directions and weights in
this work are based on the level symmetric quadrature set as given
in Hébert (2010).

3.2. Solution and parallelization of SN

Due to the nature of Eq. (1), the discretized equation can be
solved with a sweeping algorithm that corresponds to the solution
of a lower diagonal matrix using a Gauss–Seidel method, and based
on the ordinate direction Xm. For an unstructured (as well as a
structured) mesh such sweeping order can be found starting from
an inlet boundary and iteratively transversing the cells of the mesh
(Plimpton et al., 2005). Cyclic dependencies are avoided if only
convex cells are used, which is the case in this work. A brief outline
of the applied sweep order methodology is given in Fig. 1.

When the problem is parallelized by splitting the space in dif-
ferent domains (as further discussed in Section 6.3), the sweeping
order also needs to be parallelized. In order to conserve the single
sweep over the mesh, each separate domain must wait for neigh-
boring upstream domains to finish their sweeps. To still utilize

the time waiting, the different domains should optimally start with
different directions. Such algorithm is not implemented in the cur-
rent work. Instead all domains are concurrently sweeping for the
same direction. This will introduce a penalty for the parallelized
version of the discrete ordinates solver. However, the used algo-
rithm is easier both to implement and to maintain in terms of gen-
eralization and implementation.

Much effort has been spent on the development of acceleration
techniques for the discrete ordinates method (see e.g. Larsen and
Morel, 2010). Nevertheless, no acceleration is used in this work,
and the problem is instead solved by iteratively updating the direc-
tions, group by group.

An outline of the applied solution methodology is given in
Fig. 1. During the initialization, the decomposed mesh is read by
each CPU, whereafter the sweeping order is determined. Finally,
the cross-section sets are determined (see Section 3.3). Each neu-
tronic iteration starts with an update of the cross-sections based
on the current temperature distribution in the system. Thereafter
an outer iteration is used to update the eigenvalue problem, using
an inner iteration to update the angular flux. After convergence of
the outer iteration, the power profile is updated. Optionally, we use
a diffusion solver during the first iteration. This allows an approx-
imate fission source and criticality value to be calculated with a
smaller computational cost, which can be used to increase the
acceleration and convergence of the SN solver.

3.3. Cross-sections and macroscopic data

To close Eq. (1), cross-sections and macroscopic data are need-
ed. Such data are here generated using a Monte Carlo approach. We
use the software Serpent (Leppänen, 2012), to create a set of two-
dimensional condensed and homogenized cross-sections. The
details of this approach can be found in Jareteg et al. (2014b).

To match the resolution of the system, sub-pin cell dependent
cross-sections are needed. The data are thus generated for regions
split azimuthally as well as radially and tabulated according to
position. Furthermore each specific radial and azimuthal region is
run for a set of temperatures, as to give a temperature-dependent
macroscopic data in all regions of the fuel.

The radial and azimuthal discretization used in this work can be
seen for a quarter of a 15� 15 fuel pin array in Fig. 2. The regions
displayed in Fig. 2 are automatically mapped to an unstructured
mesh of the deterministic calculations (as exemplified in Fig. 3).
In this manner the code is kept very general, and more physics
and different geometrical structures can be easily added later.

The scheme followed is given in Fig. 3. The first part, covering
the generation of the cross-sections, takes place before the coupled
deterministic calculations, and it provides geometrical sets and
cross-section tables for each region as displayed in Fig. 2. The pro-
duced sets are then used to calculate a mapping based on the
geometrical information generated by the Python script and the
cell centers in the unstructured mesh. Once a mapping is deter-
mined for each cell in each CPU, the correct table can be read. Each
time the cross-sections are updated (as seen in Fig. 1), the mapping
information is re-used, and the cross-sections updated locally for
each cell.

4. Thermal-hydraulic model for the fine-mesh calculations

In this work the thermal-hydraulic problem is solved using
mass, momentum and energy equations, all formulated from first
principles. The equations and the models applied are aimed at
the sub-pin cell resolution, and are consistent with the neutronic
calculations. This means that the moderator gradients of velocity,
density and temperature between the fuel pins and the tem-
perature gradient within the fuel pins must all be resolved. The
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3

Fig. 1. Applied algorithm for the discrete ordinates method.

Fig. 2. Fuel pin discretization in horizontal plane, using 4 azimuthal and 8 radial regions per pin cell, in total 1775 regions.
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approach followed here is thus more representative for CFD than
for typical lower dimensional codes, which are to a larger extent
based on empirical correlations.

Using a CFD methodology introduces new type of equations and
solvers, both with the aim to reduce the reliance on measured or
approximated quantities and to reach a higher resolution. As an
example, in this work a two equation turbulence model is solved
on the same mesh resolution as the momentum equation. This,
in combination with the wall boundary conditions, allows for the
pressure drop over the channel to be directly calculated, avoiding
the use of pressure drop correlations.

The work is limited to pure single phase liquid systems, i.e. at
this stage the existence of multiple phases encountered in Boiling
Water Reactors (BWRs) and in the subcooled boiling region in
PWRs are not taken into account. Such gas–liquid heated problem
is however the focus of the next developmental stage.

Even though a single phase methodology is applied, the heat
transfer from the fuel pins will still lead to a change in density in
the moderator and thus also influence the momentum and mass
conservation equations. This is accounted for by solving the full
conjugate heat transfer problem, including the moderator, the
cladding encapsulation, the gaps and the fuel pins, in one fully cou-
pled system.

4.1. Pressure–velocity solver

The momentum equation is formulated for the steady state
problem and by time-averaging the Reynolds decomposed velo-
city. This results in a filtered momentum equation such that:

r � qU� Uð Þ ¼ r � ��s�r � qu0 � u0 � rP þ qg ð7Þ

with the mean velocity given by U, the fluctuating contributions
given by u0 and with the density q, the pressure P and the gravity

g. To close the momentum equation, the stress tensor (sij) is mod-
eled as (Panton, 2005):

sij ¼ l Ui;j þ Uj;i �
2
3
Uk;kdij

� �
ð8Þ

where l is the viscosity. The velocity fluctuation term is related to
the stress tensor and a kinetic viscosity according to:

�qu0
iu

0
j ¼ lt Ui;j þ Uj;i �

2
3
Uk;kdij

� �
� 2
3
qkdij ð9Þ

where k is the turbulent kinetic energy which is computed based on
a two-equation turbulence model, here formulated as (see e.g.
Ferziger and Peric, 2002):

r � qkUð Þ ¼ r � lþ lt

rk
rk

� �
þ ltðr � UÞ

: ðr � Uþ ðr� UÞTÞ � q� ð10Þ

where rk is a model constant and with the turbulent dissipation �
calculated by the second equation:

r � q�Uð Þ ¼ r � lþ lt

r�
r�

� �
þ C1�

�
k
ltðr � UÞ

: ðr � Uþ ðr� UÞTÞ � C2�q
�2

k
ð11Þ

where r�;C1� and C2� are model constants. After solving the turbu-
lent kinetic energy and the turbulent dissipation, Eqs. (10) and (11),
the turbulent kinetic viscosity in Eq. (9) is computed as:

lt ¼ qCl
k2

�
ð12Þ

Finally, the time-averaged, steady state mass equation reads:

r � qUð Þ ¼ 0 ð13Þ

C
ro

ss
-s

ec
ti

on
ge

n
er

at
io

n

Create Serpent inputs

Run Serpent

Create tables

Cross-section
tables

Geometrical
sets

Handled by
Python scripts

Sets as
in Figure 2

M
ap

p
in

g
to

u
n
st

ru
ct

u
re

d
m

es
h

Map cross-section regions
to unstructured cells

Cross-section sets Example pin mesh

Mapping based on
unstructured cell center

T
ab

le
s

an
d

m
ap

p
in

g
on

ea
ch

C
P

U Read cross-sections from table
Read mapping

At initialization of
deterministic calculations

Read cross-section table from
local cell temperature

Cross-sections updated
for each cell each
coupled iteration

Fig. 3. Mapping scheme for the cross-sections.

248 K. Jareteg et al. / Annals of Nuclear Energy 84 (2015) 244–257



The momentum and mass equations are used to solve for the cou-
pled pressure and velocity distribution in the moderator. Such a for-
mulation is typical for incompressible flow CFD calculations (see
e.g. Ferziger and Peric, 2002). To resolve the steady state coupling,
the SIMPLE algorithm is applied (Patankar and Spalding, 1972). This
algorithm relies on first solving a momentum predictor step based
on Eq. (7), resulting in an estimated velocity field. The momentum
equation is then reformulated and inserted in the mass conserva-
tion equation, now solved for the pressure field, based on the pre-
dicted velocity field. Finally, the momentum equation is updated
from the newly calculated pressure field.

4.2. Conjugate heat transfer

Since the moderator acts also as the coolant, the thermal cou-
pling to the fuel pins must be taken into account. The flow pattern
has an impact on the coolant ability to extract the heat at the wall
of the cladding and the heating of the moderator causes a change
in the density leading to a change in the flow.

The regional dependence of the conjugate heat transfer can be
solved either based on an iterative approach or a monolithic,
implicit approach. Using the iterative approach, each region or a
group of regions are computed separately. The dependence is then
handled by imposing alternating Dirichlet and Neumann boundary
conditions. For the system here simulated, consisting of a quarter
of a 15� 15 fuel assembly, with the gap and cladding explicitly
modeled, in total 184 different material regions are encountered.
The high number of regions makes the system unattractive to solve
in an iterative manner. If, instead, formulating and computing the
full system in an implicit manner, the couplings between the
regions are treated implicitly in the equation system. Such an
approach, applied in this work, avoids the iterations between the
regions.

We express energy conservation in terms of temperature. This
allows to directly couple the equations on the faces of the cells
at the region boundaries. The moderator temperature conservation
equation is derived from the energy conservation equation consid-
ering steady state conditions only and applying a Reynolds decom-

position to filter the rapid fluctuations. The procedure followed is
further described in (Jareteg et al., 2014a), and the final equation
will read:

ðqcpðTÞÞU � rT ¼ bðTÞU � rP þr � Keff ðTÞrTð Þ ð14Þ

where cp is the specific heat capacity, b is the thermal expansion
coefficient and Keff is the effective thermal conductivity that
includes the heat transfer enhancement from turbulence.

The temperature equation for the solid regions is derived by
applying Fourier’s law to the heat transfer equation, such that:

�r � KðTÞrTð Þ ¼ q000 ð15Þ

where K is the thermal conductivity of the material and q000 is the
power density, that is only non-zero in the fuel and is given by
the energy released per fission and the computed neutron flux.
The heat transfer in the gap is solved using Eq. (15), neglecting
the radiation heat transfer.

4.3. Solver methodology

An outline of the combined pressure–velocity and conjugate
heat transfer algorithm is given in Fig. 4. In the first stage the
momentum predictor and the turbulence equations are solved
for the moderator. This is followed by the implicit solution of the
conjugate heat transfer problem between all solid material regions
and the moderator. Given the new temperature field, all thermo-
physical properties are updated. Finally, the effect of buoyancy is
accounted for using the Boussinesq approximation (Ferziger and
Peric, 2002), the pressure equation is solved and the momentum
is calculated according to the new pressure. The scheme presented
in Fig. 4 corresponds to one sub-iteration in the thermal-
hydraulics.

In the applied methodology no explicit thermal expansion in
the fuel is treated. The influence of such an approximation will
be considered in later work.
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Fig. 4. Thermal-hydraulics solver methodology.
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5. Multiphysics treatment and coupled aspects

Based on the separate models for the neutronics and thermal-
hydraulics presented in the previous Sections 3 and 4, the aspects
related to coupling of those phenomena will be discussed here-
after. Focus will be given on the discretization of the separate
fields, on the scheme used for a consistent and conservative spatial
mapping and on the iterative algorithm for resolving the multi-
physics dependencies.

5.1. Mesh resolutions

In order to calculate accurate solutions for all separate fields of
the problem, we should apply different computational meshes.
Considering, for example, the different characteristic length scales
present in the neutron angular flux and the near wall turbulent
flow in the moderator, using the same mesh for all fields is not
an efficient solution procedure. Instead of a common resolution,
the mesh for each separate field should be optimized for the type
of physics encountered. In the example mentioned, the near wall
flow will (based on our models) require a finer mesh close to the
fuel pins than for the neutron flux, so that a comparable precision
can be obtained for the simulated system.

The application of different meshes also allows the computa-
tional effort to be optimized. Again, it would be a waste of
resources to perform the neutronic calculations directly on the flu-
id flow mesh. Each part of the problem will thus be discretized
with a mesh in such a way that a consistent level of detail is
reached for the coupled problem. In this work the mesh for the
moderator is chosen to have twice the number of cells in the azi-
muthal direction as compared to that for the solid heat transfer
and the neutronics, as displayed in Fig. 5. In general, the validity
of mesh resolution should be judged both from the grid depen-
dence of the separate fields as well as from the grid dependence
for the coupled problem.

The foam-extend-3.0 internal mesh format applied in this work
primarily relies on mesh faces with two connecting cells. However,
when solving the conjugate heat transfer problem, a single tem-
perature equation is desired even in the case that two moderator
faces meet a single cladding face (see Fig. 5). Since the discretiza-
tion of the solid regions is more coarse than the moderator dis-
cretization, a matrix level mapping of the faces is required. This
is handled with the general grid interface routines available in
foam-extend-3.0 (Jasak, 2009).

Whereas the specific implementation and choice of resolution
and mesh will depend on the chosen framework, the importance
of such elements should be stressed. Again, a larger flexibility as
well as a better consistency, are reached using a single framework
for all calculations, as exemplified here by the seamless use of dif-
ferent mesh discretizations in the solid regions and the moderator
region.

5.2. Consistent spatial mapping

As a consequence of using multiple meshes, a consistent and
conservative mapping scheme is needed for overlapping meshes.
As regards the mapping of the power density from the neutronic
to the thermal-hydraulic fuel pin mesh, the correct energy released
by fission is needed in the heat transfer problem given by Eq. (15).
In the same manner, a correct thermophysical state must be
mapped from the thermal-hydraulic to the neutronic mesh, in
order to accurately update the cross-sections.

The mapping scheme here implemented is based on finding
volumetric overlaps between cells in the different meshes. We
apply a collocated finite volume method, where the cell values
are calculated for all quantities. Since these cell values are consid-
ered constant over the cell, an exact and conservative mapping can
be achieved if the volumetric overlaps between the cells are
known. An example is seen in Fig. 6. Given a cell j in mesh A and
a cell i in mesh B, the overlap is calculated using a polygon inter-
section algorithm in the horizontal plane and a direct overlap in
the axial direction. The polygonal intersection algorithm relies on
the Sutherland–Hodgman algorithm (Sutherland and Hodgman,
1974), as earlier implemented in foam-extend-3.0 (Page et al.,
2010). The calculation of the overlap in the axial direction relies
on all cells having parallel faces in the axial direction. This is
assured by using only hexahedron and prism elements.

Given the calculated volumetric intersections Iij for all cells j
intersecting with cell i, an extensive property c can be transferred
from mesh A to mesh B as follows:

ci ¼
X
j

cjIijV j

Vi
ð16Þ

where Vi and Vj are the cell volumes of cell i and cell j, respectively.
The implemented scheme is fully automatic and the calcula-

tions are performed at the initialization of the code, completely
removing any hard coding or manual calculation of the mappings
between the neutronic and the thermal-hydraulic meshes. This
also means that the meshes can be changed without any further
intervention in the code or in any input files. In order for the map-

Fig. 5. Horizontal mesh discretization exploded for the thermal-hydraulics (left) and the neutronics (right).

Fig. 6. Example of mapping of two overlapping meshes.
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ping to occur correctly, the material boundaries should, however,
be preserved between all the meshes. If this is not the case, the
transferred quantity will not be interpreted correctly in the receiv-
ing cells.

In the chosen mapping scheme based on intersection calcula-
tions and not on point interpolation, only extensive quantities
should be transferred. Since temperature is not an extensive quan-
tity, the enthalpy is used in the transfer from the thermal-
hydraulic cells to the neutronic cells.

The mapping utility also opens for other fields of physics to be
coupled to the problem, all potentially using separate meshes. This
can further be exploited to introduce different scales of the same
physics. A coarse neutron solver can be applied on its own mesh,
then automatically coupled to the fine-mesh solver.

5.3. Coupling scheme

The multiphysics coupling can be resolved using either a fully
implicit technique, an explicit approach or a combination of both.
Whereas the fully implicit techniques are based on combining the
fields in a non-linear problem, the fully explicit techniques will
rely on iteration between the different fields. Potentially a non-lin-
ear scheme will increase the convergence rate and possibly also
reach convergence for systems not possible to solve in a segregated
manner (Gaston et al., 2009). However, the implicit approach will
also increase the memory usage, and will require implementation
of good preconditioners for each separate field of physics (see e.g.
Zou et al., 2013).

We apply an explicit approach in this work, where we solve
each field in a separate manner. However, the coupled dependen-
cies are fully resolved, iterating between the different physics. In
the steady state problem solved in this paper, it will be shown that
reaching a global convergence is not a major problem. Further, the
number of iterations between the thermal-hydraulics and the neu-
tronics are few, and thus the incentive for the non-linear approach-
es are limited. In the presented case, acceleration of the neutronics
and thermal-hydraulics problems separately would be of higher
priority as future developments.

As we address each part separately, the independence between
the modules is increased, which also simplifies the development of
each separate module and gives a larger freedom to the solution
procedure of each field. Nevertheless, in future development,
approaching transient simulations and adding more physical phe-
nomena, an outermost non-linear solver might be beneficial or
even necessary.

The iterative procedure followed in this work can be seen in
Fig. 7. After initialization of all fields the neutronics is solved first.

Given the new power profile the thermal-hydraulics is then solved,
resulting in a new temperature and enthalpy field.

During the first full iteration, only the diffusion equation neu-
tronics is solved (as described in Section 3.2). In the second
iteration, the thermal-hydraulics is processed, without the tem-
perature equation, but only pressure and velocity. Finally, in the
third iteration all fields are calculated. Consequently, the fourth
iteration is the first iteration with the cross-sections updated
according to a new temperature profile. Such a procedure allows
the problem to converge in a more stable manner, not starting
the full coupled problem only with the initial guesses.

Sub-iterations are used both in the neutronics and thermal-hy-
draulics. In earlier work such sub-iterations were avoided (Jareteg
et al., 2013). It was, however, found that an overall faster conver-
gence was reached if all fields were allowed to converge within
each outermost coupled iteration (Jareteg et al., 2013). Yet, a max-
imum number of sub-iterations are deployed for both neutronics
and thermal-hydraulics, since full convergence is still not neces-
sary until the full coupled problem has converged.

6. Efficiency and scalability; implementation and parallelization

Due to a large number of degrees of freedom in the fine-mesh
calculations, a severe computational cost needs to be tackled
already for a single fuel assembly. Consequently, the code imple-
mentation and the use of high performing computer languages
are both of significant importance. This is true for the separate
models as well as for the coupling scheme. Furthermore, we must
make it possible for the full problem to be parallelized in a scalable
manner.

6.1. Model and equation implementation

The separate parts of the multiphysics problem are all imple-
mented using foam-extend-3.0. The library foam-extend-3.0 is
based entirely on C++ programming language and contains a large
set of solvers for different type of problems in fluid mechanics as
well as heat transfer. For the implementation of the neutronics,
the existing internal structure is used for the equation discretiza-
tion, for the equation solvers, and for all general structures such
as matrices and meshes.

When selecting a framework, or writing a completely new, the
performance of the code is not the only point of concern. In fact,
the code should be easy to extend and it should be written in such
a way that it is simple to maintain. Also from this aspect foam-
extend-3.0 is a seemingly viable choice. The code uses modern

Fig. 7. Iterative scheme applied for the coupling of the thermal-hydraulics and the neutronics.
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C++ functionalities such as templates and polymorphism to allow
for easy and convenient extensions and modifications to the code.

The code foam-extend-3.0 contains a high level equation for-
mat, which makes possible a fast implementation of additional
equations. This is used for the heat transfer equations, (14) and
(15), whereas the pressure and velocity solver is based directly
on the existing solvers. For the cross-section formalism, the map-
ping algorithm, and the sweeps for the discrete ordinates method,
more extensive coding work was needed.

6.2. Coupling implementation

For the multiphysics couplings, different potential approaches
were described in Section 5.3. The implementation of the coupling
method could be based on different schemes. Irrespective of
whether an implicit, non-linear coupling or an iterative segregated
approach is used, two setups could be followed. Either all equa-
tions are solved in the same code entity (a single code approach)
or multiple different softwares (multiple codes approach) address
different subsets of the equations.

Using the multiple codes implementation, an external transfer
of information is necessary to exchange the coupled states. In the
present case, the power density would be passed from the neutron-
ics to the thermal-hydraulics, while the thermophysical state
would go in the reverse direction. In many cases such data transfer
can severely reduce the efficiency of the code and take a major part
of the program execution time (see e.g. Yan et al., 2011).

Further, the possibilities to obtain efficient parallel couplings
between the neutronics and thermal-hydraulics are limited. In
many approaches two different softwares are used, each perform-
ing its own parallelization. The communication is in such a case
often handled by a central application, running on a single CPU,
and therefore all the information must be gathered to and shared
via this CPU. An example of the multiple codes scheme can be seen
in Fig. 8. Typically, a coupling application is placed between the
different codes, handling the transfer of data (see e.g. Kochunas
et al., 2012). This type of coupling is especially limiting for tran-
sient calculations where a high number of transfers between the
codes is necessary.

In the single code approach, that is chosen in the present work,
all parts of the problem are solved in the same code. This spares
not only the external transfer but raises possibilities for a more
efficient parallelization. Avoiding any external transfer of data via
IO also permits a higher resolution of the coupling since the over-
head is basically removed. An example of such a scheme is given in
Fig. 9. The transfer of information can now be done by direct mem-
ory access. The iterative algorithm can also be switched between

the different fields without the overhead cost of the multiple codes
approach, which is also typically needed for the time stepping in a
transient calculation.

6.3. Parallelization by shared domain decomposition

To parallelize the problem, different strategies could be fol-
lowed. The domain could be split in different spatial regions, corre-
sponding to a domain decomposition, or the problem could be split
in its different fields of physics each solved on a separate set of
CPUs, corresponding to a functional decomposition (Calvin and
Nowak, 2010). Equivalent to multiple codes parallelized on sepa-
rate CPUs (as in Fig. 8 and discussed in Section 6.2), the coupled
data information transfer in a functional decomposition becomes
an obstacle. If the parallelization is instead based on a common
domain decomposition for all fields, as displayed in Fig. 9, the
exchange of information will take place locally for each CPU,
minimizing the amount of data that needs to be updated between
CPUs. Such an argument is of particular importance since the fine-
mesh direct coupling results in a large quantity of data to be
shared.

Applying the domain decomposition method, only the data at
the domain interfaces need to be exchanged during the solution
of the equations. While the foam-extend-3.0 structure for paral-
lelization is employed, the information transfer is handled accord-
ing to a zero-halo layer approach, i.e. there is no overlapping
between the decomposed domains. In practice, the boundary data
exchange occurs only at the point of the sparse matrix solution, or
prior to a sweep in the neutronics (corresponding to prior to
‘‘sweep to update Wm;g ’’ in Fig. 1).

To get the same decomposition for the neutronic and thermal-
hydraulic meshes, the geometry is in this case decomposed along
planes parallel to x, y and z-axis of the system. In general, the
decomposition should be done such that the amount of work to

Fig. 8. Example of data transfer in the multiple codes approach.

Fig. 9. Example of single code coupling scheme avoiding external transfer.
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be done by each CPU is equivalent. Since the loading will potential-
ly be different for different equations, there must be a compromise.
The shared decomposition restricts all used meshes to have faces
along the chosen lines for splitting, so that every cell in all meshes
exists entirely on a single CPU. In the case of the regular pattern of
a fuel bundle this condition is not a major restriction. An example

of the decomposition can be seen in Fig. 10 for a 7� 7 fuel pins sys-
tem. The example system is split between the fuel pins and at mid-
elevation.

Fig. 10. Example of decomposition for a quarter of a 7� 7 pins lattice.

Table 1
Geometry specification for the simulated assembly, with control rod guide tube
values in brackets.

Fuel pin radius 0.41 cm
Cladding inner radius 0.43 cm (0.48 cm)
Cladding outer radius 0.49 cm (0.58 cm)
Pitch 1.25 cm
Fuel height 100 cm
Bottom reflector 20 cm
Top reflector 20 cm

Table 2
Mesh specification for the simulated assembly.

Region Number of cells

Moderator 6,088,000
Fuel (per pin) 8000
Cladding (per pin) 4800
Gap (per pin) 1600
Neutronics 798,000

Table 3
Selected boundary conditions and inlet conditions.

Quantity Initial condition Inlet Outlet

Temperature 540 K 540 K Zero gradient
Pressure 15 MPa Zero gradient 15 MPa
Velocity 2 m/s ẑ 2 m/s ẑ Zero gradient
Neutron

angular flux
1.0 Outgoing direction: zero gradient

Incoming direction: fixed value zero

Table 4
Neutronic parameters.

N (Eq. (1)) 8
G (Eq. (1)) 8
L (Eq. (6)) 2
Total power 400 kW

Fig. 11. Moderator temperature at three horizontal planes, with the axial depen-
dence at a diagonal cut in the background.
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7. Application and results

To illustrate the capabilities of the methods and implementa-
tions described above, we apply the developed code to a quarter
of a 15� 15 fuel lattice, with reduced height with respect to a fuel
assembly. The steady-state problem is solved for conditions typical
of a PWR.

7.1. Geometry and mesh

The geometry of the simulated system is specified in Table 1,
and the material composition in the horizontal plane corresponds
to the presented case in Fig. 2. No spacers are included in the
simulated system. Reflectors are modeled at the bottom and the
top of the assembly, here consisting of moderator only without
any other structural parts, as the inlet orifice and the top nozzle.

The applied mesh is summarized in Table 2. All meshes consists
of prism and hexahedron elements only. The mesh is generated
using an in-house developed software, which utilizes the repeating
lattice structure of the assembly to generate a discretization with
the same mesh characteristics for all pin cells. The generated mesh

is written in a foam-extend-3.0 mesh format. The developed
application also generates and prepares all boundary and initial
conditions for all fields calculated.

7.2. Boundary and initial conditions

The axial boundary conditions are given as inlet and outlet
boundary conditions, specified for all fields at the lower faces of
the bottom reflector mesh and at the upper faces of the top reflec-
tor mesh. The conditions are specified as fixed value (Dirichlet) or
zero gradient (homogeneous Neumann) conditions, with a special
treatment for the case of the angular neutron flux. In the horizontal
direction, reflective boundary conditions are used for all fields.

For the angular neutron flux (Wm;g), a special implementation of
the reflective boundary conditions is needed. Using the symmetry
of the level symmetric weights and directions for SN, a reflected
direction can always be found for planes with normals parallel to
the Cartesian coordinate axes. Thus for an incoming direction,
the corresponding (i.e. reflected) outgoing direction is determined
and the outgoing value of the flux is directly applied as an inlet
condition for the incoming direction.

0.2

0.4

0.6

0.8

1.0

0.04
0.08
0.12
0.16
0.2

Fig. 12. Scalar flux at mid-elevation for the fast group (g ¼ 0, bottom) and the thermal group (g ¼ 7, top).
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Constant initial conditions are used in all fields, but, as
described in Section 5.3, during the first iterations not all fields
are solved. Selected boundary and initial conditions are given in
Table 3.

7.3. Domain decomposition

The system is decomposed into 64 parts, using 3 cutting planes
in each of the Cartesian directions and in such a way that each cut-
ting plane is along faces in all of the meshes, as described in Sec-
tion 6.3. No automatic load balancing is applied. However, due to
the computational burden of the discrete ordinates method, the
neutronics mesh is the most important to balance, with the aim
of an even computational effort on all CPUs.

The choice of decomposition is not unique and to optimize the
performance not only an even distribution of cells should be the
target. In our case with an axially coarser and horizontally finer
mesh, also the cutting plane direction will have a major sig-
nificance on the performance. Since only face values will need to
be transferred, as few faces as possible should be transferred. Con-
sequently, from a data transfer point of view, in our case it is better
to cut in planes with normals x̂ and ŷ.

7.4. Neutronic parameters

The settings for the neutron transport solver are given in
Table 4. Eight discrete energy groups are used, based on the group
structure from CASMO-4 (Studsvik Scandpower, 2009). We apply
S8, which corresponds to 80 discrete directions for each energy
group, for a total of 640 neutron flux fields. A larger set of tests
for the discrete ordinates, applying the same code was performed
and reported elsewhere (Jareteg et al., 2014b). The total power is

the power integrated over all the fuel pins, and is employed to nor-
malize the scalar and angular neutron fluxes.

7.5. Results

The presented case was run on 64 Nehalem CPUs (Intel� Xeon�

E5520, 2.27 GHz), divided on 8 computational nodes, with a total
wall-clock running time of 48,000 s (�14 h).

The moderator temperature distribution is shown in Fig. 11. As
can be seen, both horizontal and axial heterogeneous distributions
are achieved. The maximum axial temperature occurs at the top of
the lattice, just below the top reflector, and the maximal horizontal
temperature at the points where the distance between the pins is
smallest.

Fig. 12 gives the scalar flux at mid-elevation for the fast and the
thermal group. The flux profile along the symmetry line at mid-
elevation is also given. The lowest energy group flux has strong
minima in the pins which partially consist of burnable absorber,
and maxima in the empty fuel rod channels. In contrast, the high-
est energy flux has minima in the water channels.

Considering both the slices and the line plots, some ray effect
can be found. Such artifacts are typical for the discrete ordinates
methods, and arise from the inability to reconstruct the angular
flux with a set of few ordinates (Lewis and Miller, 1984). The easi-
est remedy against this is to increase the order of the method,
which will however also increase the computational time.

The convergence of the coupled system, with residuals for each
separate equation, is given in Fig. 13. The diagram displays the first
eight outer iterations (each corresponding to a full loop in Fig. 7),
with the convergence for the subiterations.

As explained in Section 5.3, during the first iteration only the
diffusion neutronics is solved, whereas in the second iteration

Fig. 13. Convergence results for the coupled system, with outer iteration convergence as opaque broader lines and the corresponding inner iterations as thinner lines.
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the pressure and velocity are calculated. In the third iteration the
SN solver, as well as the temperature equation, are added and dur-
ing the fourth iteration the first update of the cross-sections
occurs. As seen from the figure, the interdependence is close to
convergence after the seventh iteration. From iteration nine a sin-
gle SN sweep occurs for each outer iteration, and the total change in
keff is only 10 pcm from iteration 8 to iteration 50. The thermal-hy-
draulics solver takes in total 50 iterations to converge. However,
much less than 100 subiterations for most of the iterations are
required. The slower convergence of the thermal-hydraulics solver
is a property of the applied CFD-algorithm, and is not connected to
the coupled solver.

From Fig. 13, it is shown that the largest effort is spent for the
first neutronic iteration including SN (Iteration 3). After this itera-
tion the thermal-hydraulics requires the majority of the time. Sum-
ming over all iterations, the thermal-hydraulic and neutronic
calculations take 45.1% and 54.1% of the total time, respectively.
For such comparison it should also be noted that the thermal-
hydraulic mesh is in the presented case finer than the neutronic
mesh (see Table 2) and also that the computational time for the
neutronics depends on the chosen number of energy groups and
directions.

For the thermal-hydraulics the subiteration convergence is not
monotonic. Instead, a periodic behavior was observed, where the
axial velocity and the pressure residuals decrease and increase
out of phase. Again, such a behavior is a property of the algorithms
and matrix solvers applied and not any artifact of the coupling.

8. Summary and conclusion

We present a fine-mesh solver for the coupled neutronic and
thermal-hydraulic problem that can be applied to PWR sub-pin
level calculations. The work focuses on the methods and the imple-
mentation strategy of such a framework.

The use of HPC and fully parallelized solvers are both pointed
out as key issues. The fine-mesh approach results in a large num-
ber of computational cells, relying on the use of computational
clusters to solve the problem in a feasible time. The implementa-
tion of the decomposition necessary for the parallelization is
described, along with a scheme minimizing the amount of data
transfer by keeping all fields of physics in the same spatial region
on the same CPU.

The methodology is implemented as a standalone application
based on the open source C++ library foam-extend-3.0. It includes
a neutronic solver based on the discrete ordinates method, and a
thermal-hydraulic solver based on the mass, momentum and ener-
gy equations, complemented by a turbulence model. Both fields of
physics are solved using the same simulation framework. This fea-
ture is essential to directly formulate the coupling on the fine-
mesh level. In addition, a fully conservative mesh mapping scheme
is included, and it aims at exchanging coupled data between differ-
ent meshes using the finite volume methodology.

The fine-mesh solver is tested for the case of a quarter of a
15� 15 fuel pin lattice, and a converged coupled solution is
reached. Physically correct dependencies are obtained for the
simulated variables and the results confirm that the present cou-
pled scheme works. It also shows that the algorithms and imple-
mentations are efficient enough to produce converged results on
a fine-mesh within 14 h using 64 CPUs. The convergence behavior
of the coupled solver points out that there is much room for
improvement of the separated models for neutronics and ther-
mal-hydraulics. However, the convergence of the multiphysics
problem demonstrates that the presented iterative scheme is
working well to resolve the coupled dependencies.

Many interesting and challenging areas need to be investigated,
including a future extension to two-phase flow simulations, so that

BWR cases and departure from nucleate boiling in PWRs can also
be considered. Such an extension requires not only to formulate
and implement accurate two-fluid models, but it also poses a
new type of coupled problem, including new conjugate heat trans-
fer regimes, and an anticipated stronger feedback to the neutron-
ics. Furthermore, other fields of physics could be fit in the same
framework, including explicit thermal expansion, fluid–structure
interaction and others.

In the presented simulation, reflective boundary conditions are
used for all fields in the horizontal direction, disregarding the glob-
al dependence of all fields. Future work could tackle this
approximation by either running a larger case using the presented
framework (thus realized by investing more computational effort)
or by coupling multiple scales of resolution, only adding a coarse
layer to the simulation. Whereas the first approach is easier but
more computationally expensive, the second method is more chal-
lenging but a it has the potential for a better use of the resources at
hand.
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ABSTRACT

We present a framework for fine-mesh, transient simulations of coupled neutronics and thermal-
hydraulics for Light Water Reactor (LWR) fuel assemblies. The framework includes models of single-
phase fluid transport for the coolant and conjugate-heat transfer between the coolant and the fuel pins,
complemented by a neutronic solver. The thermal-hydraulic models are based on a CFD approach,
resolving the pressure and velocity coupling via an iterative algorithm. Similarly, the neutronics is for-
mulated in a fine-mesh manner with resolved fuel pins. The neutronic and thermal-hydraulic equations
are discretized and solved in the same numerical framework (foam-extend-3.1). A test case of a quarter
of a fuel pin is used to test the transient behavior of the code for a set of different initial reactivities. The
same geometry is used to simulate a decrease of the inlet temperature, which demonstrates the response
both in the CFD and the neutronics for an increase in reactivity. Furthermore, a system of 7 × 7 fuel
pins is simulated with the same inlet temperature decrease and we present the temporal development
of the temperature as well as an analysis of the heterogeneities captured by the fine-mesh approach.
The solver is shown to capture the transient multiphysics couplings and demonstrates the numerical and
computational applicability based on the presented cases.

Key Words: Coupled neutronics/thermal-hydraulics, CFD, nuclear reactor multiphysics, transient
analysis, fine-mesh

1 INTRODUCTION

The core of a LWR constitutes a major challenge from a modeling point of view. A wide range
of physical phenomena, such as fluid transport, heat transfer, neutron transport and the dependen-
cies on the material properties, govern the behavior of the core. In addition to the multiphysics
perspective, the reactor core is also a multiscale system, with scales ranging from the atomic scales
to the global behavior on the core scale. To accurately model the system, all those scales must be
taken into account.

The multiphysics problem of the reactor core has typically been resolved by only modeling the
larger scales, ultimately solving for the global behavior of the core with smaller scales information
provided by pre-computed data or empirical correlations [1]. The neutronic solver is commonly
based on piece-wise homogenized fuel assemblies, where the finer scales are not fully recovered
but accounted for when generating macroscopic, i.e. assembly-wise, parameters. In a similar
manner, the thermal-hydraulic solver is often applied to a number of channels corresponding to the
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number of fuel assemblies or less. Again, the microscopic scales are not directly treated. Although
successfully applied to transient safety calculations, such a coupled computational scheme can
only capture the multiphysics on a coarse scale. The sub-fuel assembly couplings are disregarded,
or at the most only recovered by the use of empirical relations.

The development of computational power has in recent years led to an increased use of Com-
putational Fluid Dynamic (CFD) calculations for nuclear reactor applications. CFD has been ap-
plied to a large range of problems including both single- and two-phase flow calculations. Phe-
nomena considered include Grid-to-Rod fretting [2], thermal mixing due to spacers [3], two-phase
flow in fuel assemblies [4] and many more. The fine-mesh approaches, typical for the mentioned
calculations, allow for solving the problems using first principles and thus avoid or limit the use of
empirical relations and macroscopic models.

Recently an increased interest in doing coupled neutronic and thermal-hydraulic calculations
on fine scales has been seen. Instead of the coarse-mesh multiphysics, the different fields are
combined with a higher resolution of the coupling terms. Although moderately fine resolution
calculations of coupled CFD and neutronics have been applied to full core problems [5], the com-
putational burden of such calculations is still severe, especially compared to routine reactor core
calculations. In contrast to the full core calculations, algorithms and models aimed at and appli-
cable on one or a few fuel assemblies can give valuable insight to the coupled physics and still be
solved with a moderate computational cost. Such sub-core scale simulations are still of relevance
and importance for the global core problem, e.g. spacer CFD calculations can aid the design pro-
cess and thus lead to improved designs of fuel assemblies. Also for the coupled neutronics and
thermal-hydraulics problem, fuel assembly calculations could provide interesting results consid-
ering aspects such as the interplay between the local moderator density and the neutronic fields
in Boiling Water Reactor (BWR) fuel assemblies. It should be noted that the core-wise, global
dependencies still need to be taken into account as boundary conditions in the fine-mesh approach
and a multiscale approach is thus required. Although here focused on CFD and neutronics, other
areas of coupled fine-mesh calculations are also of interest, e.g. high resolution simulations of
fuel performance analysis [6]. In the same manner that CFD calculations allow for higher resolu-
tion and fewer correlations and can produce correlations for coarser methods, the resolved coupled
problems could potentially be used to refine the coarse coupled models and give new insights for
optimal design of nuclear fuel assemblies.

In some coupling methodologies the fine-mesh calculations have been achieved by combining
existing CFD and neutronic solvers (e.g. [7, 8]). On the other hand, some presented methodolo-
gies are based on an integrated coupling, where all fields of physics are solved in the same solver
(e.g. [9]). Whereas coupling of existing software has intrinsic benefits, especially considering ver-
ification and validation, there are also major drawbacks, as further discussed in [10]. One of the
main benefits of using a single code for the whole multiphysics problem is the advantage in com-
putational performance. Using a single software or single code allows for a direct sharing of all
coupled quantities and also permits parallelization schemes shared between the neutronics and the
thermal-hydraulics. The advantage in computational efficiency is particularly important for tran-
sient multiphysics calculations where a large number of information exchanges or data transfers
between separate codes could otherwise limit the performance. As a result of the computational
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burden and novelty of the field, few transient fine-mesh methodologies are present in the literature.

In this paper we present a fine-mesh coupled neutronic and thermal-hydraulic solver, imple-
mented as an integrated single solver. The solver is based on a deterministic, finite volume, fine-
mesh framework and the code is parallelized based on domain decomposition. The capabilities
include a neutronic diffusion solver as well as CFD algorithms for single-phase flow calculations
and conjugate heat transfer between fuel and coolant. Furthermore, the geometry is recovered on
an unstructured grid, and each separate material region (fuel, gap, cladding and moderator) are
separated, resulting in a heterogeneous system. Whereas earlier work based on the same frame-
work has been successfully applied to coupled fine-mesh steady-state problems [9, 10], we here
focus on the transient multiphysics problem.

The presented methodology and simulations are focused on the coupling algorithm and its
implications for a fine-mesh LWR transient system. We investigate the convergence properties as
well the computational costs associated with the multiphysics problem. The transient solver is
applied to an example case including a small lattice of fuel pins with single phase liquid water as
the moderator. The solver is successfully applied to sub- and supercritical initial conditions and to
time-dependent inlet temperature variations. The solver allows calculating the time-dependent and
space-dependent neutronic and thermal-hydraulic fields, including temperature, flow properties,
power distribution as well as the neutron flux.

2 METHOD

In this section, we present the method used to solve the neutronics and thermal-hydraulics,
followed by an overview of the coupling algorithm. To achieve a consistent coupled solver, it is
of importance to select methods which result in comparable spatial and temporal precision and
accuracy. In the presented approach, an unstructured grid, finite volume approach is followed for
both the neutronics and thermal-hydraulics.

2.1 Neutronic solver

For the neutronics, we apply a multigroup diffusion method to resolve the spatial resolution,
temporal resolution and the energy dependence of the neutron distribution. It has previously been
shown that the diffusion approximation is inferior to a discrete ordinates approach for a resolved,
heterogeneous fuel pin lattice [11]. However, since the focus of the present paper is primarily on
the coupling to the CFD approach, a diffusion solver is applied in the first attempt to perform the
transient fine-mesh simulations. The time-dependent multigroup diffusion equation for the neutron
flux (Φg) is given by

1

vg

∂Φg(r, t)

∂t
= ∇ ·Dg(r, t)∇Φg(r, t)− ΣT,g(r, t)Φg(r, t) +

G∑
g′=1

Σs0,g′→g(r, t)Φg′(r, t)

+(1− β)χp
g

G∑
g′=1

νg′(r, t)Σf,g′(r, t)Φg′(r, t) + χd
g

I∑
i=1

λiCi(r, t), g = 1, ..., G, (1)
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with the precursor concentrations (Ci) calculated as

dCi(r, t)

dt
= βi

G∑
g′=1

νg′(r, t)Σf,g′(r, t)Φg′(r, t)− λiCi(r, t), i = 1, ..., I, (2)

and where standard notations are employed for all quantities. The equations are coupled through
the neutron flux as well as the precursor concentrations. Furthermore, both Eq. (1) and Eq. (2)
are coupled to the thermal-hydraulics via the dependence of the cross-sections on the temperature
of the fuel and the density of the moderator. Based on the finite volume method, we discretize
the diffusion term using a second order linear Gauss approach. It should be noted that the precur-
sor equations are ordinary differential equations, and thus solved without any operator spatially
discretized.

The required cross-sections and macroscopic parameters are pre-generated from lower di-
mensional simulations (2D) based on the Monte Carlo software Serpent [12]. There are multiple
benefits of utilizing a pre-generated, temperature and density dependent table of cross-sections.
First, whereas the diffusion solver is computationally cheap, the Monte Carlo solver requires con-
siderably larger computational efforts. This implies that a pre-generated table, applied throughout
the whole simulated transient, is more efficient than separate Monte Carlo runs for each time-step.
Second, the Monte Carlo method is general in terms of the assembly geometry. This is useful
for the resolved fuel pin lattices here simulated, where sub-pin resolution of the cross-sections are
required. The cross-section generation is described in further detail elsewhere [10].

Given the cross-sections, the macroscopic parameters and the temperature, an iterative algo-
rithm is applied to resolve the precursor and flux dependencies in Eqs. (1)-(2). The scheme is
presented in the left hand side of Figure 1. After convergence of the energy and spatial dependence
of the diffusion equations (Eq. 1), only a single sweep through the delayed precursor equations
(Eq. 2) is necessary. An outer neutronics iteration is performed to ensure that the dependencies
between the flux and neutron precursors are resolved. Whereas more sophisticated algorithms to
resolve the dependence on the neutron precursors exist, the presented algorithm is used as a first
and intuitive approach for the multiphysics solver.

2.2 Thermal-hydraulic solver

The thermal-hydraulic solver is based on a CFD approach for time-dependent and heated
single-phase flow. The equations solved in the fluid include the mass continuity equation

∂ρ

∂t
+∇ · (ρU) = 0, (3)

the Navier-Stokes equations
∂(ρU)

∂t
+∇ · (ρU⊗U) = ∇ · τ −∇P + ρg (4)

and a temperature equation
∂(ρcpT )

∂t
+ ρcpU · ∇T = βU · ∇P +∇ · (K∇T ) + q′′′. (5)
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The pressure and velocity coupling is resolved by a standard PISO approach (see [13]). Further-
more, a Reynolds averaging is performed on all the equations, followed by the formulation of
turbulence equations to close the set of averaged equations. In the presented simulations, we use
the Standard k − ε turbulence model with wall functions for all simulations.

For the solid regions, the temperature equation corresponds to

ρcp
∂T

∂t
= ∇ ·K∇T + q′′′, (6)

where the volumetric source term (q′′′) corresponds to the energy released from fission in the fuel,
as provided by the power density calculated in the neutronic solver. The volumetric source term
is zero in the cladding. The energy equations for all material regions are formulated in terms of
temperature. This allows for an implicit solution methodology. Instead of solving the temperature
equation in each region separately and iterating between the regions, a common matrix is formu-
lated. This allows all regions to be solved for at once, without iteration and it thus considerably
accelerates the solver.

Given the volumetric heat source (q′′′), an iterative algorithm is applied to resolve the pressure
and velocity dependence, the temperature equation and the coupling to the thermo-physical state.
The iterative scheme is presented on the right-hand side of Figure 1. It should be noted that an
update of the thermo-physical properties influences all material properties in the fluid equations
(cp, ρ, β, K, τ ) as well as the neutronic cross-sections. We account for the temperature dependence
of all mentioned fluid quantities by interpolation in thermo-physical tables. Due to the small axial
variation of pressure over the core in a typical PWR, the pressure dependence is not accounted
for in the thermo-physical data. An outer thermal-hydraulics iteration is performed to ensure the
convergence of the coupling between pressure, velocity and temperature in all regions.

2.3 Coupling methodology

We apply an iterative scheme in space and time to resolve the coupling between the neutronics
and the thermal-hydraulics. Recently, much attention has been given to implicitly coupled, non-
linear approaches (e.g. [6]). Such coupling schemes have potential advantages in terms of conver-
gence rate for strongly coupled problems and it is feasible to use longer time steps with the same
temporal accuracy. However, if only a few multiphysics iterations are required, the segregated
methods will in many cases be less computationally expensive and more intuitive than a nonlinear
approach. Furthermore, a segregated scheme often has the advantage of simplicity in contrast to the
implicit approaches for which mathematically formalized interdependencies between the different
fields of physics are required. For the segregated approach a black-box approach can be applied,
solving each field separately but based on the coupled data. The argument of simplicity is particu-
larly strong for complex methods, where the coupling to other fields is not easily formulated. From
a CFD point of view, segregated schemes are commonly used for both pressure-velocity coupling
and also for the coupling to the turbulence models. It should be emphasized that a fine-mesh cou-
pling is still achieved since the fully resolved fields are used between the two different modules,
i.e. neutronics and thermal-hydraulics.
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In order to avoid an explicit scheme in time, iteration must be applied within each time step to
resolve the dependencies in the segregated approach. We apply a multiphysics iteration for which
the coupled convergence of the neutronics and thermal-hydraulics is evaluated. Two alternative
time-schemes are evaluated: either based on a shared fixed time step or a shared time step negoti-
ated between the neutronics and thermal-hydraulics. For the thermal-hydraulic solver, a maximum
Courant number is typically applied. In the presented cases we use a fixed time-step, where the
maximum Courant number never exceeds 0.3.

To best optimize the computational cost, separate meshes are used for the different fields of
physics. This allows a finer mesh to be used in areas of large gradients for each separate field
without applying the same refinement for all resolved quantities. The use of different meshes
requires computational algorithms for mapping the meshes for the transfer of common data such
as the temperature field. A fully automatic algorithm based on the volumetric overlap between
different cells is used in the presented methodology [10].

The coupling scheme is outline in Figure 1. As seen from the figure, the multiphysics iteration
is performed until convergence for each time step. No underrelaxation is performed in either
neutronics, thermal-hydraulics or for the multiphysics coupling.
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Figure 1. Iterative scheme applied to solve neutronics and thermal-hydraulics coupling.
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2.4 Implementation and code framework

The coupled solver is based on foam-extend-3 [14], formerly known as OpenFOAM R©-1.6-
ext. The code is an open-source, C++ library for solving CFD problems. The code is written in
a generic, object-oriented manner and new fields of physics can be added. For the present paper,
existing fluid solvers were extended to allow multiple material regions and to solve the temperature
equation. For the neutronics, a previously developed solver [9, 10] was further extended to handle
time-dependent simulation cases.

3 CASE DESCRIPTION AND NUMERICAL TESTS

To evaluate the validity of the coupled scheme and to present the functionality and perfor-
mance of the implemented solver, two different test cases are presented. The first case, consisting
of a quarter of a single fuel pin, is used to perform a reactivity analysis during an inlet temperature
ramp as well as with constant boundary conditions for a set of different boron concentrations. The
second test case, consisting of a quarter of a 7×7 lattice, is used to investigate the coupled scheme
for a larger case and to give an account of the heterogeneities that are resolved with the fine-mesh
methodology.

3.1 Geometry and boundary conditions

The geometrical regions and the mesh for the quarter fuel pin system is presented in Figure 2.
The boundary conditions represent PWR conditions and the initial conditions are calculated by
running a steady-state solver (earlier presented [10]) normalized with a total power condition. The
power condition corresponds to a Hot Zero Power (HZP), i.e., corresponding to a low total power
with a warm coolant. In the horizontal direction fully reflective boundary conditions are used. The
conditions presented in Figure 2 are applied also to the 7×7 lattice. The horizontal material regions
of the 7 × 7 case are displayed in Figure 3. The presented cases include no axial reflectors. Four
neutronic energy groups and six delayed neutron precursor groups are used for all the presented
results.

3.2 Case 1: Variation of boron concentration

In order to demonstrate the behavior of the solver for different initial reactivities, the boron
concentration in the coolant is increased in five steps. This is actuated by generating cross-sections
sets with different concentrations. In accordance with the methodology (see Figure 1), the initial
state is determined by a criticality calculation. Probed values of the power density corresponding
to each boron concentration are presented in Figure 4 for 10 simulated seconds.

As displayed in the figure, all cases except the 700 ppm case starts with a fast transient in the
power density. This is explained by a prompt jump due to the initial reactivity as calculated from
the keff eigenvalue problem in the steady-state solver. For 400 ppm, 500 ppm and 600 ppm an initial
positive reactivity is seen. On the other hand, the 800 ppm steady state solution gives a negative
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....

Neutronics

.

Thermal-hydraulics

.

(a) Mesh resolution displayed for a
quarter of a fuel pin with moderator

.

Geometry description:
• Core height: 3.5 m
• Fuel pin radius: 0.41 cm
• Cladding thickness: 0.06 cm
• Gap thickness: 0.02 cm

Mesh description:
Region Cells

(Quarter pin)
Cells

(7x7 lattice)
Fuel (TH) 3200 153600
Gap (TH) 640 30720

Cladding (TH) 1280 15860
Moderator (TH) 19200 846080

Full system (NK) 2240 114702

Boundary conditions:
Field Inlet Outlet
U (0, 0, 4) m/s Zero gradient
P Zero gradient 15.5 MPa
Φg 0 0
k 0.02 m2/s2 Zero gradient
ε 0.4 m2/s3 Zero gradient
T 540 K Zero gradient

Figure 2. Geometry and mesh description for the two systems used in the simulations. Index
TH indicates meshes used for thermal-hydraulics, whereas NK indicates the mesh used for
neutronics.

initial reactivity. For the 700 ppm case, the steady-state calculation resulted in keff = 1.00002 and
accordingly there is no initial jump in the reactivity. Figure 4 also presents the reactivity (ρ) at
ten time-steps for the 700 ppm case. The reactivity values are calculated posterior to the transient
calculation by applying the steady-state solver with all thermal-hydraulics data frozen to the values
as calculated by the transient solver.

Due to the temperature feedback in the fuel and the moderator, the initially supercritical cases
first rapidly increase in power, later to asymptotically approach a constant power density. The
small overshots in the power density profile confirm slightly different time scales for the feedback
of the neutronics and the thermal-hydraulics. The initial fast increase in power is after some tenths
of a second somewhat lowered by the slightly postponed increase in temperature.

3.3 Case 2: Inlet temperature variation

In addition to the variation in boron concentration, we perform an inlet temperature variation
for all previously presented cases. The temperature at the inlet is at t = 2 s lowered with a constant
rate from 550 K to 540 K at t = 3 s. The resulting power density probes are presented in Figure 5.
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...

Symmetry line

.......

5 % UOX

.

3 % UOX

.
Cladding

. Water, 500 ppm boron.

Gap, helium

.

Reflective boundary

.

Probe B

.

Probe A

Figure 3. Horizontal geometry for a quarter of a 7 × 7 system, including horizontal probe
locations used for post-processing.

Whereas the first two seconds of the simulations are identical to Figure 4, the temperature ramped
condition results in an increase in reactivity for all of the cases due to the enhanced moderation
and the lowered fuel temperature. Considering the 700 ppm case, it is seen that the power den-
sity increases with more than one magnitude from the start to the end of the simulation. As the
presented data correspond to mid-elevation, the effect in power is somewhat delayed due to the
transport of the colder moderator. The initially large reactivity increase due the inlet temperature
ramp is dampened out after the transient boundary condition ends and the system asymptotically
approaches a new steady state.

The presented case is not primarily aimed at explaining the physics of the presented system,
but at demonstrating the coupling capability and at illustrating the influence of the CFD thermal-
hydraulics on the fine-mesh neutronics. Given the complexity of the coupled calculations, also for
the small test case presented above, further studies on aspects such as mesh-resolution, time-step
dependence and coupled convergence are required.
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Figure 4. Power density at the fuel centerline (mid-elevation) for five different boron concen-
trations, initiated from steady-state calculations, with the reactivity displayed for ten time-
steps for 700 ppm.
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for the 700 ppm case.
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3.4 Case 3: 7× 7 lattice

In the third case, we use a quarter of the 7 × 7 lattice of fuel pins depicted in Figure 3.
The simulations are run for a single boron concentration (500 ppm). The initial values are again
retrieved from a steady-state calculation and the simulation is run with a constant time-step of
∆t = 1 ms. We apply the same inlet boundary condition as presented for Case 2, i.e., a ramp of
the inlet temperature.

Figure 6 presents the temporal development of the fuel temperature, power density and mod-
erator temperature for probe positions A and B (mid-elevation and with horizontal position shown
in Figure 3). As displayed in the figure, the system is initially supercritical and accordingly there is
a rapid increase in the fuel power density. At the beginning of the inlet temperature drop, the fuel
temperature still slowly increases following the initial supercritical state. However, as the temper-
ature of the moderator decreases the power further increases and the rate of the fuel temperature
increase is larger. Complementary to the probed data, Figure 7 presents a three-dimensional view
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Figure 6. Time-dependent temperature profiles for fuel and moderator and power density
for fuel for positions a and b (Figure 3), respectively.

of the moderator and fuel temperature. Whereas the fuel temperature is strongly varying in the
axial plane, only a small horizontal variation is seen at the top of the moderator. The higher power
density of the higher enriched pins is evident both in the fuel and the moderator temperature.
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Figure 7. Moderator temperature to the left of the symmetry plane and fuel temperature to
the right of the symmetry plane, cut at mid-elevation at t = 3 s.
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In Figure 8, we present horizontal slices of the moderator temperature and the fuel power den-
sity (Figures 8a and 8c) and the relative difference in maximum and minimum temperature and
power density (Figures 8b and 8d). The relative difference represents a measure of the hetero-
geneity in the two fields at mid-elevation, and displayed for each second throughout the 10 s of
simulation. From the figure it is seen that there is initially a small heterogeneity in the moderator
temperature, which almost doubles in magnitude following the decrease of the inlet temperature.
On the contrary, the relative difference in magnitude of the power density is initially large and
only increases with a small magnitude. The large difference in the maximum and minimum power
density, seen throughout the simulation, is a result of the two different enrichments used in the
presented case (see Figure 3).

The computational effort and the time used by the different parts of the code for the 7×7 case
are presented in Table I. The calculations were performed on 16 CPUs ∗ and the total wall-clock
time was 59 hours. As seen from the table, the thermal-hydraulic part of the solver accounts for
89% of the CPU-time, where most of the time is spent on the solution of the pressure equation
in the moderator. For most of the time-steps, a single multiphysics iteration is required and for
the majority (≈ 70%) of these multiphysics iterations less than 3 thermal-hydraulic iterations are
required. Still, the first few iterations, where the reactivity and change in power density is large,
a much higher number of thermal-hydraulic outer iterations are required. This suggests that the
solver is less efficient with more severe transients. To further assess the computational performance
of the different parts of the solver, more comparative studies are required. However, for the current
setup, the thermal-hydraulics is shown to be the most expensive field. Still, the coupled fine-mesh
simulations are shown to be computationally feasible for short transients at assembly level, even
on as few as 16 CPUs.

Table I. Wall-Clock Time (WCT) for the 7× 7 parallelized on 16 CPUs.
Field WCT [s] Relative WCT

Neutronics 23488 s 0.11
Thermal-hydraulics 189946 s 0.89

Total 216599 s

4 CONCLUSIONS

In this paper, we have presented a framework for fine-mesh transient simulations for neu-
tronics and thermal-hydraulics. The implemented solver includes single-phase coolant transport,
conjugate heat transfer between the fuel pins and the coolant and a multigroup diffusion method to
calculate the neutron density distribution in the system. An iterative scheme for the multiphysics
couplings was outlined. The solver was applied to a small test system of a quarter of a fuel pin.
A set of different boron concentrations were tested and resulted in cases of different initial re-
activities which consequently lead to different power densities. The system was also tested for a
time-dependent inlet temperature boundary condition, which was successfully resolved in all fields
in space as well as time. Furthermore, we presented a system of a quarter of a 7× 7 lattice of fuel

∗Nehalem CPUs (Intel R© Xeon R© E5520, 2.27GHz), 8 processors per computational node
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(a) Moderator temperature at mid-elevation
(t = 3 s)
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(c) Fuel power density at mid-elevation (t =
3 s)
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Figure 8. Axial slices of moderator temperature and power density with corresponding time
development of max and min values at mid-elevation.
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pins, including two different enrichments in U-235. The larger system was run with the same inlet
temperature transient and the results were analyzed and presented in terms of the time development
of the temperature in the domain as well as of the horizontal moderator and power density hetero-
geneity, as captured by the fine-mesh methodology. Whereas the currently presented cases are
relatively homogeneous in terms of the thermal-hydraulic parameters, the spatial heterogeneities
are expectedly larger for cases with more heterogeneous physics, like resolved two-phase flow, or
heterogeneous geometries, e.g., from inclusion of resolved spacers. However, the presented results
are examples of the current capabilities of the code and the future potential to achieve detailed
spatial information for transient simulations within fuel bundles. The computational cost is as-
sessed and the thermal-hydraulic CFD solver is shown to be almost an order of magnitude more
expensive than the neutron diffusion solver for the presented 7 × 7 case. Future extensions of the
framework will be aimed at the evaluation of the multiphysics influence of increased turbulence
from spacers and the influence from the insertion of control rods. Further verification and vali-
dation of the framework are also necessary, as well as the integration of the influence of the core
global conditions on the simulated sub-system.
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In this paper we present a framework for the simulation of dispersed bubbly two-phase 
flows, with the specific aim of describing vapor–liquid systems with condensation. We 
formulate and implement a framework that consists of a population balance equation 
(PBE) for the bubble size distribution and an Eulerian–Eulerian two-fluid solver. The 
PBE is discretized using the Direct Quadrature Method of Moments (DQMOM) in which 
we include the condensation of the bubbles as an internal phase space convection. We 
investigate the robustness of the DQMOM formulation and the numerical issues arising 
from the rapid shrinkage of the vapor bubbles. In contrast to a PBE method based on 
the multiple-size-group (MUSIG) method, the DQMOM formulation allows us to compute 
a distribution with dynamic bubble sizes. Such a property is advantageous to capture 
the wide range of bubble sizes associated with the condensation process. Furthermore, 
we compare the computational performance of the DQMOM-based framework with the 
MUSIG method. The results demonstrate that DQMOM is able to retrieve the bubble size 
distribution with a good numerical precision in only a small fraction of the computational 
time required by MUSIG. For the two-fluid solver, we examine the implementation of 
the mass, momentum and enthalpy conservation equations in relation to the coupling 
to the PBE. In particular, we propose a formulation of the pressure and liquid continuity 
equations, that was shown to correctly preserve mass when computing the vapor fraction 
with DQMOM. In addition, the conservation of enthalpy was also proven. Therefore a 
consistent overall framework that couples the PBE and two-fluid solvers is achieved.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The physics of dispersed multiphase flows involves a wide variety of phenomena and exhibits a great complexity in terms 
of flow patterns, phase distributions and turbulent structures. For instance, in the case of gas–liquid systems, dispersed vapor 
bubbles interact with a continuous liquid phase, and can exchange momentum via forces due to drag, lift, turbulent motion, 
and other possible effects. Furthermore, if evaporation and condensation take place as during boiling water processes, the 
two phases can also exchange mass, with additional contributions to the mass, momentum and energy balance of the 
system. In these conditions, distribution, size, shape and velocity of the bubbles play a relevant role.
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Nomenclature

Latin letters

a Source term for w equation
b Source term for η equation
C Condensation rate
d43 Mean diameter
F Interfacial momentum force
f Average number density
h Enthalpy
hif Interfacial heat transfer
Hlg Heat of evaporation
¯̄I Unit tensor
J Momentum transfer due to phase change
k Turbulent kinetic energy
M Interfacial momentum transfer
m Bubble mass
N Number of abscissas/classes
Nu Nusselt number
P Pressure
Pr Prandtl number
q Conduction heat flux
qt Turbulent heat flux
r Spatial coordinate
Reb Reynolds particle number
S Source for PBE
T Temperature
t Time
U Phase weighted velocity
Up Phase velocity
Ur Relative velocity between phases
w Weight of abscissa/class
x Internal coordinates

Greek letters

α Phase volume fraction
βi j Aggregation kernel
ε Dissipation of turbulent kinetic energy
η Abscissa times weight
� Mass exchange source term
γ Thermal diffusivity
� Interfacial energy transfer
μ Viscosity
μt Turbulent viscosity
ν Kinematic viscosity
ρ Density
¯̄τ Viscous stress tensor
¯̄τ t Turbulent stress tensor
θ Breakage kernel
ξ Bubble size
ζ Fragment distribution function

Subscripts

agg Term due to aggregation
bre Term due to breakage
C Term due to condensation
g Gas phase
i Abscissa number
j Class number
k Moment
l Liquid phase
p Current phase
q Other phase
wall Wall quantity

Boiling water flows are important for a wide range of industrial applications, such as nuclear reactors and steam genera-
tors. In fact they can be used for an efficient extraction and transport of energy, since the heat transfer can reach relatively 
high values in the sub-cooled boiling and saturated nucleate boiling regimes.

Yet, precise and accurate predictions of such systems still represent a major challenge. Although a Lagrangian approach 
would resolve in detail the interaction between the single bubbles and the liquid phase, it is not computationally feasible. 
As an alternative, a spatial averaging procedure can be applied, and the vapor and liquid phases are accordingly treated 
like interpenetrating continua within an Eulerian macroscopic arrangement [1]. As a result of averaging, the microscopic 
dynamics of the bubbles is lost, and the mass, momentum and energy exchanges between the separate bubbles and the 
surrounding liquid are not explicitly modeled. Whereas the inter-phase transfers occur on a local, microscopic level, the 
macroscopic approach requires a set of closure relations to describe the averaged behavior of the bubbles. Such closures 
need to be formulated from the available information, and can thus only be given through averaged parameters.

The resulting equations in Eulerian form can be solved at a reasonable computational cost, but have drawbacks. For 
example, Eulerian models for subcooled boiling have been developed (e.g., see [2]), but their accuracy was shown to be 
limited (e.g., see [3]). To overcome this kind of shortcomings, remedies were introduced in terms of additional equations 
to retrieve the distributions of some crucial microscopic properties of the bubbles, such as the size, velocity and material 
composition. The distribution of these parameters can be specified in terms of a probability density function (PDF), whose 
evolution can be described from a Population Balance Equation (PBE). The parameters of the PDF represent the internal 
phase space of the PBE, i.e. one or more of the aforementioned microscopic properties, while the position of the bubbles 
is associated to the physical external phase space. The PBE establishes a differential relationship for the internal and the 
external phase space [4].

In a great majority of cases, the shape of the PDF cannot be determined in a closed analytic form, especially not a priori. 
Instead, a discretized closure model is sought. One of these approaches is the method of classes (CM), used in the MUSIG 
model [5,6]. Accordingly, a single-parameter (mono-variate) PDF describes the distribution of bubble sizes with a fixed set 
of classes, and it is combined with closure models for bubble interactions. MUSIG has been applied to subcooled boiling 
flow, proving an increased accuracy of the vapor phase distribution as compared to pure Eulerian–Eulerian approaches [7].
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A different way of discretizing the PDF is followed with the Method of Moments (MOM) [8], in which a closed set of 
moments of the PDF are calculated. Further development of MOM are the Quadrature Method of Moments (QMOM) [9] and 
the Direct Quadrature Method of Moments (DQMOM) [10]. In agreement with the latter two, the PDF is approximated by 
a set of quadrature points, whose weights and abscissas can be related to the moments of the PDF. A clear advantage with 
QMOM and DQMOM over CM is that, for the same accuracy, the computational burden is reduced, since a smaller set of 
moments is needed in comparison to the set of classes [11,12].

In the case of DQMOM the discrete moments are derived from transport equations describing the spatial and temporal 
evolution of the abscissas and weights of the quadrature. Such a method is well suited for Computational Fluid Dynamics 
(CFD) frameworks and is therefore an attractive formulation to determine bubble distribution parameters. DQMOM has 
previously been combined with two-fluid solvers and used for bubbly flow in different applications, including soot formation 
in combustion [13] and adiabatic bubbly flow [11]. For this purpose, DQMOM typically replaces the two-fluid continuity 
equation, so that the solution of the PBE is coupled to the momentum conservation equations.

One of the potential strengths of DQMOM is its applicability also for multivariate distributions [10,14]. However, in 
bubbly flow simulations, DQMOM has usually been applied to a mono-variate problem based on the bubble size distribution, 
and the velocity of the bubbles specified by a combined vapor momentum equation [15] or by a separate momentum 
equation for each abscissa [16]. For bi-variate problems the Conditional Quadrature Method of Moments (CQMOM) was 
also tested, for example, bi-variate PDFs were estimated with respect to bubble size and composition [17] and with respect 
to bubble size and velocity [18]. In contrast to DQMOM, CQMOM is not formulated in terms of transport equations, but 
relies on an inversion algorithm for the moments of the quadrature set. The CQMOM algorithm is less tractable for a direct 
incorporation into CFD software, though.

The aim of the current work is to investigate the capability of DQMOM for simulating bubbles in a subcooled liquid. This 
is particularly pertinent to the modeling of subcooled boiling. In the example of a heated tube, with an inlet forced flow of 
subcooled liquid that can undergo boiling, the vapor bubbles are first generated at the heated wall. The bubbles can then 
detach from the wall and move to the sub-cooled bulk. Finally, saturate nucleate boiling develops when the liquid becomes 
saturated. In the specific stage of bubbles that depart from the wall towards the bulk, different physical mechanisms come 
into play and must be considered, including aggregation, breakage, and reduction of bubbles due to condensation in the 
subcooled liquid.

As mentioned above, DQMOM was studied for some applications of bubbly flow, for which breakage, aggregation and 
evaporation of bubbles were treated. In this paper, we introduce an extended DQMOM-based framework that can deal with 
the condensation process. We derive a formulation of the condensation term as an internal phase space convection which 
directly corresponds to the shrinkage rate of the bubbles.

Despite the possible advantages of DQMOM, earlier research also pointed out that failure due to initial and boundary 
conditions and numerical difficulties such as abscissa crossing, might arise when solving the system of transport equations 
for the weights and abscissas [19]. We therefore investigate the robustness and the convergence of the proposed DQMOM 
algorithm. Special attention is given to the smallest size of the condensing bubbles for which the PDF may tend to collapse 
and lead to numerical problems. Also, we characterize discontinuities in the PDF that are due to the disappearance of 
bubbles in regions without any additional creation of vapor. Such conditions can be found where the subcooled bulk of flow 
contains a very low void, i.e. the vapor fraction is small.

Furthermore, the abscissas derived with DQMOM are compared to the classes applied in the MUSIG method. This aspect 
emphasizes a significant difference between the two methods: the abscissas from DQMOM can dynamically vary, while the 
classes in MUSIG are static. For the subcooled conditions that were considered in this work, a relatively wide range of bubble 
sizes can occur as the bubbles leave the wall and gradually condense in the subcooled bulk. Expectedly, it is impractical 
to recover such a span of bubble sizes from a distribution based on fixed classes. DQMOM has a major advantage for such 
conditions because the dynamic abscissas allow different size distributions to be resolved in different parts of the domain. 
In the paper we quantify this effect for different numbers of abscissas and classes.

Another specific aim in this paper is to compare the computational performance of the proposed DQMOM with the 
MUSIG method in the specific scenario under study. The evaluation is carried out in terms of computational time required 
to achieve the same precision for both methods. The outcome of this analysis suggests that, in terms of both computational 
cost and resolution of the bubble size distribution, DQMOM can be a more advantageous option for enhancing Eulerian 
models of bubbly flow in subcooled boiling conditions.

It should further be noted that the PBE equations were integrated with two-fluid two-phase conservation equations in 
Eulerian form. Whereas the PBE model describes the bubble size distribution, the mass, momentum and energy exchanges 
between the two phases still rely on an Eulerian approach. In the case of phase change, the conservation equations are 
explicitly coupled to the PBE via the mass exchange terms. In this work the contribution to this coupling comes from the 
shrinking bubbles (i.e., from the condensation). In particular, we propose a coupled formulation where the vapor continuity 
equation is replaced by the DQMOM equations. The latter are used to compute the vapor fraction and the phase change 
source terms which are important for the pressure-velocity coupling in the momentum equations. Furthermore, we specify 
an expression of the energy equations based on enthalpy, that is fully consistent with the momentum equations, and that 
was shown to be critical for the implementation.
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The paper is structured as follows. The DQMOM and the Eulerian frameworks are described in Section 2. The solution 
algorithms are illustrated in Section 3. A set of numerical experiments are defined in Section 4 and the corresponding results 
are presented and discussed in Section 5. Finally, a summary and a conclusion are given in Section 6.

2. Model formulation

In the following section, we formulate a framework for two-phase flow that consists of bubbles dispersed in a subcooled 
liquid. We define a PBE for the bubbles that include a term for condensation as internal coordinate (Section 2.1) and derive 
a solution scheme based on DQMOM model (Section 2.2). In Section 2.3 we outline the MUSIG model that is used for the 
purpose of comparison. Then we provide the two-fluid Eulerian model that is coupled to DQMOM and MUSIG (Section 2.4). 
Finally, in Section 2.5 we describe how the bubbles are modeled at the wall.

2.1. PBE for bubbles in a subcooled liquid flow

In its most general form the PBE for a distribution of the average number density, f (x, r, t), of bubbles can be written 
[4]:

∂ f (x, r, t)

∂t
+ ∇x ·

(
∂x(x, r, t)

∂t
f (x, r, t)

)
+ ∇r · (U(x, r, t) f (x, r, t)) = S(x, r, t), (1)

where x denotes a vector of internal coordinates, r denotes the external coordinates, U denotes the convection velocity in 
physical space and S denotes a source term. In the current paper the distribution depends on the bubble size (internal 
space), position (physical space) and time. A mono-variate PBE based on the bubble size ξ and with dependence on the 
common vapor velocity field U can then be written:

∂ f (ξ, r, t)

∂t
+ ∂

∂ξ

(
∂ξ(r, t)

∂t
f (ξ, r, t)

)
+ ∇r · (U(r, t) f (ξ, r, t)) = S(ξ, r, t). (2)

It should be noted that there are two contributions to the convection; an internal convection corresponding to the rate 
of change in bubble size (∂tξ(r, t)) and a physical space convection due to the velocity of the bubbles (U). This is primal 
for the formulation of the condensation, since the time-dependent variation of bubble size can be directly related to the 
condensation rate via the internal phase space convection:

∂ξ(r, t)

∂t
= C(ξ, r, t). (3)

Thus no additional contribution from the condensation to the source term is required. A similar approach is followed by Fox 
et al. [14], but for the treatment of droplet evaporation.

As regards the source term S in eq. (2), it consists of the contributions from aggregation and breakage of the bubbles. 
Therefore the closure of the term is given by an aggregation kernel and a breakage kernel, that depend on the size of the 
individual bubbles involved in the specific processes.

2.2. DQMOM model

DQMOM is based on a quadrature approximation of the bubble distribution function:

f (ξ ;x, t) ≈
N∑

i=1

wi(x, t)δ(ξ − ξi(x, t)), (4)

where N denotes the number of abscissas (ξi ) and the associated weights (wi ). According to the general procedure of 
DQMOM [10], the quadrature approximation is inserted in the PBE (eq. (2)), followed by a moment transform:

Fk(. . . ) =
∞∫
0

ξk . . .dξ. (5)

The procedure leads to a set of closed transport equations for the weights and abscissas:

∂wi

∂t
+ ∇ · (Ugwi) = ai, (6)

and

∂wiξi

∂t
+ ∇ · (Ugwiξi) = bi, (7)
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in which ai and bi are source terms for the transport of wi and wiξi , respectively; and Ug is the vapor velocity. For 
equation (7) it is convenient to use a new variable defined as the product of weight and abscissa as:

ηi = wiξi, (8)

The abscissas can then be obtained after solving eq. (7) as:

ξi = ηi

wi
. (9)

To close the system we compute 2N moments of the PBE, i.e. N for the weights and N for the abscissas. The source 
terms ai and bi for eqs. (6)–(7) are determined from the linear system of the N moment transforms of eq. (2), which takes 
the form:

N∑
i

[
ξk
i ai − kξk

i ai + kξk−1
i bi

]
= Fk

(
S(ξi) − ∇ξ ·

(
∂ξ(r, t)

∂t
f (ξ, r, t)

))
(10)

where k is the order of the moment. The left-hand side of eq. (10) is the result of the moment transform applied to the 
time-dependent and the physical space convection term as described in detail by [10]. Since the moment transform is 
linear, we may consider the transform of the internal convection, the source from aggregation and the source from breakage 
separately.

It should be noted that for high-order spatial schemes, the discretization of the convection terms in eqs. (6) and (7)
lead to unrealizable moments [20] and, thus, unphysical distributions. It can be shown that only first-order finite volume 
schemes are guaranteed to be realizable [21]. As a remedy for the numerical diffusion associated with the low order scheme 
the fully-conservative DQMOM (FC-DQMOM), which treats also the convection terms as source terms, is adopted. This can 
be demonstrated to elude some of the effects of numerical diffusion on the weights and abscissas [17]. In this paper, we 
follow the approach in [22] and apply a first order convection scheme in physical space. Although the convection term 
may still induce a non-negligible numerical diffusion, the scheme proposed for the condensation term is consistent with 
FC-DQMOM and has the advantage of limiting such an issue.

2.2.1. Moment transform of the condensation term
From eqs. (5) and (10), the condensation term is written as a source term SC:

SC,k(r, t) = −
∞∫
0

ξk ∂

∂ξ
(C(ξ, r, t) f (ξ, r, t))dξ (11)

As proposed by Fox et al. [14], the derivative in ξi that appears in this kind of integrals can be eliminated by performing an 
integration by parts. From eq. (11) we then obtain:

SC,k = δk0C(0) f (0) +
∞∫
0

kξk−1C(ξ) f (ξ)dξ, (12)

where δk0C(0) f (0) corresponds to the internal phase space flux of particles of zero size and the explicit dependencies on 
space and time have been omitted for brevity. The Kronecker delta, δk0, arises due to the regularity condition which implies 
that the number density must go to zero at infinite size [4]. Inserting the quadrature approximation given by eq. (4) yields:

SC,k = δk0C(0) f (0) +
∞∫
0

kξk−1C(ξ)

N∑
i

wiδ(ξ − ξi)dξ, (13)

After the calculation of the integral, we retrieve

SC,k = δk0C(0) f (0) +
N∑
i

kwiξ
k−1
i C(ξi). (14)

The second term of the right-hand side is closed by specifying a proper model for the condensation of the bubbles, while 
the first term is generally unknown. Fox et al. [14] propose a closure for the latter based on a set of ratio constraints 
between the weights of the quadrature and using one more moment.

The first term on the right-hand side is not zero for k = 0, and it represents the flux of condensing bubbles at zero 
size. In fact neither the number density f (0) nor the condensation rate C(0) can be assumed to be necessarily zero. The 
vapor bubbles dispersed in a subcooled liquid, shrink more and more because of the condensation, and eventually reach 
zero-size and disappear, thus giving a non-zero number density. As regards the condensation rate, it is typically estimated 
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from experimental correlations, and increases with smaller bubble sizes. In the current work, the contribution from such a 
term is not included. Instead, we propose that, when the simulated bubbles have reached a certain small size (or volume), 
they are automatically removed from the system, which corresponds to the assumption that an instantaneous and complete 
condensation occurs at that threshold. This procedure also has an advantage from another aspect. Since the rate of conden-
sation quickly accelerates for smaller and smaller bubbles, prohibitively small time-steps may be needed in order to capture 
the behavior of the bubbles approaching zero-size. A threshold for the very small bubbles, allows to also avoid this kind of 
issues. More details on this point are discussed in Section 3.3.

It should be noted that for the outlined example of independent abscissas and the treatment of continuously shrinking 
bubbles, DQMOM has a major advantage over MUSIG. The latter method can not exactly represent the scenario described 
above, because the condensation will take a discontinuous form due to the use of explicit size classes.

2.2.2. Aggregation and breakage
The aggregation and breakage kernels required to close the system of equations (eq. (10)) are based on the derivations 

from [23]. The final, transformed, form of the source terms due to aggregation reads as:

SB
agg,k = 1

2

N∑
i=1

N∑
j=1

(
ξ3
i + ξ3

j

)k/3
βi j wiw j (15)

and

SD
agg,k =

N∑
i=1

N∑
j=1

ξk
i βi j wiw j (16)

where B denotes the birth of bubbles, D the death of bubbles and βi j the aggregation kernel. In the same manner, the 
contributions from the breakage read as:

SB
bre,k =

N∑
i=1

ζ k
i θi wi (17)

and

SD
bre,k =

N∑
i=1

ξk
i θi wi, (18)

where θi and ζ k
i correspond to the breakage kernel and the fragment distribution function, respectively. The models for the 

aggregation and breakage kernels, and for the fragment distribution function are given in Section 4.1.2.

2.3. MUSIG model

In order to investigate the DQMOM model, we compare it to another model derived from the MUSIG method. The MUSIG 
method is also based on a discretization procedure, but it makes use of fixed classes of bubble sizes. The MUSIG model with 
condensation applied in this work, is obtained from the one published by Lucas et al. [24]. Accordingly, eq. (1) is written in 
terms of bubble mass, m, instead of bubble size (compare eq. (2)), being:

∂ f (m, r, t)

∂t
+ ∂

∂m

(
∂m(r, t)

∂t
f (m, r, t)

)
+ ∇r · (U(r, t) f (m, r, t)) = S(m, r, t). (19)

The conservation equation for each bubble class j of mass mj is achieved by integrating eq. (19) between the class lower 
and upper bounds denoted by mj−1/2 and mj+1/2 such that:

f j(r, t) =
mj+1/2∫

mj−1/2

f (m, r, t)dm. (20)

We stress that the boundaries for each class mj−1/2 and mj+1/2 are fixed and a priori determined, which is further discussed 
in Section 2.3.1. In order to resemble a standard multi-fluid model, the number density f j is written in terms of the 
corresponding bubble mass mj , void fraction αg, j and gas density ρg as follows:

f j = αg, jρg

m j
. (21)
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Combining eqs. (19)–(21), we thus get:

∂αg, jρg

∂t
+ ∇ · (αg, jρgUg) = Sc, j + Sbre, j + Sagg, j, (22)

where the source terms Sc, j , Sbre, j and Sagg, j include the contributions from condensation, breakage and aggregation, 
respectively.

It should be noted that Lucas et al. [24] apply multiple vapor momentum equations via a so-called inhomogeneous 
MUSIG model, whereas the DQMOM-based framework we developed consists of vapor continuity equations for the different 
bubble sizes together with a single momentum equation. The extension of both the DQMOM and MUSIG models to the 
inhomogeneous formulation is beyond the scope of the current article.

2.3.1. Condensation
The condensation term is discretized into fixed classes based on the procedure described above, i.e. by integrating the 

condensation term between the lower and upper bounds. Following such an integration, the source contribution due to 
condensation is given as the difference of bubbles introduced from the next class ( j + 1), and the bubbles shrinking and 
leaving for a smaller size ( j − 1) such that:

Sc, j = �g→l, jm j

m j −mj−1
− �g→l, j+1mj

m j+1 −mj
(23)

where �g→l, j is the mass exchange source term from gas to liquid due to condensation. The latter is computed using the 
condensation rate per size C(ξ j):

�g→l, j = −3
αg, jρgC(ξ j)

ξ j
, (24)

where ξ j is the size corresponding to mj for the given density. The full derivation procedure is described in detail by Lucas 
et al. [24].

MUSIG inherently contains a drawback in the resolution of the PDF due to the fixed classes, which will later be shown 
to limit the accuracy for small number of classes, i.e. a coarse discretization of the continuous bubble size space.

Alternative formulations of the method of classes allow the class boundaries to be moved (see Kumar and Ramkrishna 
[25]). The benefit of these types of formulations is that a continuous size change in the bubble is more accurately captured, 
since discrete jumps in the phase space is not introduced in the PBE. However, such a procedure introduces additional 
difficulties since we need to dynamically modify the bin structure in order to accommodate new bubbles, with potential 
issues for the treatment of very small bubbles (similar to the discussion in Section 3.3). In addition, the spatial convection 
of the bubbles would require the development of a complex algorithm so that different class boundaries in different parts of 
the domain, can be taken in account. This would be of particular importance for the modeling of wall boiling phenomena. 
All together, dynamic sizes would risk the stability of the fixed sizes of the currently applied MUSIG method.

2.3.2. Aggregation and breakage
The breakage and aggregation sources are discretized for the N classes according to the formulation by Yeoh and Tu [26]

where the birth and death contributions due to aggregation read:

SB
agg, j =

1

2

N∑
k

N∑
l

βklα jαkρ
2
g
(mk +ml)

mlmk
χ jkl (25)

and

SD
agg, j =mj

N∑
k

βi j
α jαkρ

2
g

mk
. (26)

The coalescence matrix χ jkl is defined as:

χ jkl =
{
1 if mk +ml =mj

0 else,
(27)

which is applicable for the special case of mj exactly equal to mk + ml . Such a condition is only fulfilled for cases where 
equal widths are used for the masses (i.e. mj = j�m +m0) as discussed by Kumar and Ramkrishna [27].

For general distributions of the masses (i.e. not necessarily uniformly discretized masses), χ jkl needs to be formulated in 
such a manner that mass (or volume) is conserved. A formulation that returns unity if the size mj is close to the sum of 
the aggregate mass mk +ml , inexorably introduces an error when, e.g., mk +ml lies between mj and mj+1. In the current 
work we apply a linear interpolation, weighting the contributions to the sizes j and j + 1 where mj <mk +ml <mj+1.
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The source terms due to breakage is given by:

SB
bre, j =

N∑
k

ζkθkρgαk (28)

and

SD
bre, j = θ jρgα j. (29)

Again the fragment distribution function of the birth term eq. (28) needs to be formulated similar to χ jkl in order to 
conserve mass.

The same kernel models are applied for both DQMOM and MUSIG, later described in Section 4.1.2.

2.4. Two-fluid model

The closure of the system of equations (6)–(7) for the DQMOM requires the vapor velocity (Ug ) and the thermophysical 
state of the flow. In view of this, a two-fluid model based on the mass, momentum and energy conservation equations is 
introduced. The mass conservation equation for the phase p reads as [28]:

∂αpρp

∂t
+ ∇ · (αpρpUp) = �p . (30)

αp is volumetric fraction for phase p, Up is the velocity, ρp is the density and �p is the net mass transfer to this phase, 
i.e:

�p = −�p→q + �q→p. (31)

In the above equation �p→q is the phase change from the phase p to phase q. When bubbles are dispersed within a 
subcooled liquid flow, there is no evaporation and only condensation, so that �l→g is zero. This condition is typical of the 
cases considered in the current work.

As a result of applying a PBE, the mass conservation equation (30) is not used for determining the phase fraction. 
However such an equation is still needed as constraint in solving the momentum and enthalpy equations.

The momentum conservation equation is given by:

∂αpρpUp

∂t
+ ∇ · (αpρpUpUp) = −∇ · (αp( ¯̄τ p + ¯̄τ t

p)
) − ∇(αp P ) + αpρpg+Mp + Jp (32)

where ¯̄τ p is the viscous stress tensor, ¯̄τ t
p the turbulent stress tensor, and P the pressure shared between the phase. Mp is 

the interfacial momentum transfer and Jp the momentum transfer due to phase change. The latter is a combination of the 
loss of the phase p and the gain of the second phase j, i.e.:

Jp = −�p→qUp + �q→pUp (33)

Finally, the enthalpy equation can be written as:

∂αpρphp

∂t
+ ∇ · (αpρphpUp) = −∇ · αp(q+ qt) + D(αk P )

Dt
−Up · ∇ · (αp ¯̄τ t

p) + αp ¯̄τ p : ∇Up + �p (34)

where hp is the enthalpy, qp is the conduction heat flux, qtp is the turbulent heat flux and �p is the interfacial energy 
transfer defined as

�p = −�p→qhp + � j→ihp (35)

The dissipation source terms (Up · ∇ · (αp ¯̄τ t
p) and αp ¯̄τ p : ∇Up) are here neglected, as it can be shown that the size of these 

terms is much smaller than the typical heat flux and phase enthalpy exchange for heated flows.
In addition, we solve a two-equation turbulence model for the turbulent kinetic energy (k) and the turbulent energy 

dissipation (ε) in the liquid. The turbulence of the liquid phase will influence the velocity profiles and also the mixing 
conditions for the bubbles. In the presented framework the choice of the turbulence model is not of primary focus, however 
its impact will be investigated in future studies.

2.4.1. Constituent relationships
A number of constituent relationships are necessary to close the conservation equations (30)–(34). We choose a set of 

closure laws that are commonly used in simulations of two-fluid two-phase flow.
First, the thermo-physical variables are read from lookup tables, including density (ρp ), viscosity (μp), and temperature 

(T p). By providing the current value of the enthalpy and the pressure, two tables are used for saturated conditions and 
sub-saturated conditions, providing the data for the vapor phase and the subcooled liquid phase, respectively.
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For the stress tensor, a Newtonian fluid is assumed and the following relationship is valid:

¯̄τ p = −μp

(
∇Up + (∇Up)

T − 2

3
¯̄I∇ ·Up

)
. (36)

For the liquid turbulent contribution ( ¯̄τ t
p), the Boussinesq approximation in the form given by Ferziger and Peric [29] can 

be used:

¯̄τ t
p = μt

p

(
∇Up + (∇Up)

T − 2

3
¯̄I∇ ·Up

)
(37)

The term μt for the liquid and vapor phases can be determined with the k − ε model as:

μt
l = Cμ

k2

ε
(38)

and

μt
g = Ctμt

l (39)

where Ct is a model constant.
For the conduction and turbulent heat flux, Fourier’s law of conduction in terms of enthalpy is used in combination with 

a constitutive model for the turbulent contribution such that

−∇ · αp
(
q+ qt

) = −∇ · αp
(
(γp + μp)hp

)
, (40)

where γp is the thermal diffusivity for phase p.
The mass interfacial terms �p are results of the DQMOM (or MUSIG) calculations and are further discussed in Section 3.6. 

The momentum interfacial transport terms are discussed in Section 4.1.3.

2.5. Treatment of the bubbles at the wall

In typical applications of subcooled boiling the vapor will appear due to phase change at the superheated walls of the 
system. The rate of vaporization is also influenced by the local conditions of the liquid phase adjacent to the wall. An 
overview of suitable models that can be employed to reproduce this phenomenon can be found in Yeoh and Tu [26].

In the current work, the process of vaporization of the liquid at the wall is disregarded. A priori bubble size distributions 
are instead assumed at the heated wall of the physical system under investigation. Thus the focus is entirely on the influence 
of the PBE on the prediction of the vapor distribution in the sub-cooled liquid flow.

Some studies from the open literature followed a so-called ’first cell layer’ strategy. Accordingly, a source of vapor fraction 
is added in the computational nodes closest to the wall [30]. However, such an approach might cause unphysical values for 
conditions with high vapor content [31]. In the case of subcooled boiling, the technique can be expected reasonable since 
the vapor fraction is low.

Alternatively to the previous technique, the vapor generated at the wall could be mimicked by specifying a wall flux 
of bubbles. For such an approach one additional aspect must be clarified. In a CFD framework based on the Finite Volume 
Method (FVM), the flux of bubbles depends on the vapor velocity interpolated to the faces of the computational cells. The 
velocity of the component normal to the wall is however zero by definition. Thus, a flux of bubbles needs to be specified 
in terms of a velocity not acquired from the momentum equation. Furthermore it should not contribute to the momentum 
balance of the system. After the integration over the control volumes that is required in FVM, the effect of such a flux of 
bubbles is equivalent to a first cell source term. Despite this, the approach has benefits for the DQMOM scheme as explained 
below.

2.5.1. Wall conditions for the DQMOM-based model
For DQMOM the first cell layer approach is not directly achievable. Since the distribution of bubbles computed according 

to the wall model might be different from the first cell layer PDF, a mismatch can then occur. This issue is particularly 
evident when bubbles change in size during their transport through the system. The PDF of bubbles is solved for by making 
use of DQMOM and can not be enforced in the cell layer close to the wall. Thus, the mentioned technique would constrain 
the boundary distribution to be projected on to the first cell PDF.

An alternative is to fix the distribution of sizes ξi in the first cell layer. This approach was however found numerically 
unstable. Since ξi is computed based on the transport equations (6) and (7), it cannot be easily controlled. In addition to this, 
the distribution of abscissas would need to be reset after each time step, since the weights also require to be re-calculated. 
Such a solution scheme is nevertheless not viable because of the associated numerical problems that can arise.

To allow for an arbitrary bubble distribution at the wall, we specify all the quantities relevant to DQMOM (i.e., ξi , wi
and ηi) as boundary conditions, in the form of fluxes at the wall. The DQMOM transport equations is then written as:
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∂wi

∂t
+ ∇ · ((Ug +Uwall)wi

) = ai (41)

and

∂ηi

∂t
+ ∇ · ((Ug +Uwall)ηi

) = bi, (42)

where the wall flux only gives a contribution at the heated wall. The proposed formulation has the benefit of defining the 
desired boundary contribution and to let it interact with the PDF from the remaining system domain via eqs. (41) and (42). 
Thus, no posterior tweaking of ξi or wi is required.

2.5.2. Wall conditions in the MUSIG-based model
In contrast to the dynamic abscissas in DQMOM, the static classes in MUSIG allow to introduce the vapor from a wall 

bubble size distribution in a more straightforward manner. In this case, the required wall distribution is projected on the 
static MUSIG classes, thus it results in a single wall flux for each class. As for DQMOM, the appropriate boundary value of 
the void fraction for each size should be chosen such that the flux at the boundary times the void fraction gives a source 
term equivalent to the desired vapor source at the wall.

We also compare the wall flux approach with a first cell layer one, where an additional volumetric source term Sb of 
vapor that can take in account the possible contribution from the boiling, is added as follows:

∂αg, jρg, j

∂t
+ ∇ · (αg, jρgUg) = Sc, j + Sbre, j + Sagg, j + Sb, (43)

with Sb that is non-zero only for the first cell layer close to the wall.

3. Solution algorithms

In this section we describe and analyze the solution algorithms applied for DQMOM (Section 3.1) and MUSIG (Sec-
tion 3.2). We also discuss the issues specifically related to rapidly condensing bubbles and the potential remedies to such 
issues (Section 3.3). Furthermore, we comment on some of the specificities associated with the phase change due to conden-
sation in the discretization of the momentum conservation equation (Section 3.4) and the enthalpy conservation equation 
(Section 3.5). Finally, we outline the coupling algorithm for DQMOM/MUSIG and the two-fluid solver (Section 3.6).

3.1. DQMOM solution algorithm

We first explain the iterative algorithm applied to the DQMOM equations, as presented in Algorithm 1 (left). The main 
building blocks of the algorithm computes the source terms for eqs. (6) and (7), solves the same equations and finally 
determines the void fraction and the mass transfer source term from the computed weights (wi ) and abscissas (ξi ).

The first part of the algorithm (lines 2–20) consists of a cell-wise computation of the contributions from the aggregation, 
breakage and condensation terms. In the same scope, the cell-wise square matrix system (eq. (10)) is inverted to compute 
the source terms for the transport equations of wi and ηi , where ηi = wiξi . It should also be noted that in line 15, a check 
is performed on the sanity of the source terms ai and bi for regions of low void. This condition is discussed further in 
Section 3.3.

Following the cell-wise computations of ai and bi , the transport equations are closed and can then be solved to update 
wi and ξi . To ensure that the solution to the coupled system of equations for wi and ηi has converged, the maximum 
initial residual is computed and compared to a tolerance ε (line 1). Due to the coupling of the abscissas and weights in the 
calculations of the aggregation and breakage kernels and in the condensation source term, such an iterative procedure must 
be used.

From a computational point of view, the cell-wise calculation of the source terms ai and bi is the most expensive part 
of the algorithm. For a typical case (as presented in Section 5.3) with N = 2, lines 2–20 take approximately 75% of the CPU 
time, and, for N = 4, more than 90%. Still, it is inevitable to re-calculate the source terms after each solution of the transport 
equations (lines 21–24) since all models are affected by the updated abscissas and weights.

An alternative algorithm would be to re-calculate the cell-wise source terms inside the loop on lines 21–24. This choice 
gives a slightly more implicit dependence on the other i, because ai and bi are updated after each solution of the trans-
port equations. On the other hand, the extra computational effort would be expected to be worth only if the system of 
equations (6) and (7) is strongly coupled. As will be shown in Section 5.3.3), this is not the case when the time step is 
governed by the Courant limit. Instead, we use the approach in Algorithm 1 with the fewest possible number of updates of 
the cell-wise coefficients.

At the convergence of the DQMOM transport equations, we calculate the void fractions associated with each abscissa 
(line 28) and finally evaluate the source term for the phase change (�g→l). To preserve mass conservation, the LHS of 
eq. (30) is explicitly calculated and used for �g→l . This has the benefit of ensuring that the total source term for the vapor 
fraction αg is consistent with the PBE method.



K. Jareteg et al. / Journal of Computational Physics 345 (2017) 373–403 383

1 while res> ε do
//Compute source terms for transport equations

2 for c ∈ mesh cells do
3 for k = 1 to 2N do
4 Sa,k ← aggregation source from eqs. (15) and (16)
5 Sb,k ← breakage source from eqs. (17) and (18)
6 SC,k ← condensation form eq. (14)
7 Stot,k = Sa,k + Sb,k + SC,k

8 end
9 A: Square matrix size 2N × 2N

10 A ← Compute as LHS of eq. (10)
11 x ← Solution to Ax = Stot
12 for i = 1 to N do
13 ac,i = xc,i //Source term eq. (6)
14 bc,i = xc,i+N//Source term eq. (7)

//Ensure positive source terms for low 
αc

15 if αi,c < εα then
16 ac,i =min(ac,i , 0)
17 bc,i =min(bc,i , 0)
18 end
19 end
20 end

//Solve transport equations for wi and ηi

21 for i = 1 to N do
22 wi ← from solution of eq. (6)
23 ηi ← from solution of eq. (7)
24 end
25 res ← maximum equation residual for wi and ηi ∀i
26 end

//Calculate void fraction and phase change
27 for i = 1 to N do
28 αi ← compute from current ξi and wi

29 end
30 �g,l ← calculate from mass conservation eq. (30)

1 �g→l, j ← update mass transfer term ∀ j
2 while res> ε do

//Iterate over classes
3 for j ∈ N do

//Compute source terms
4 SC, j ← condensation source term form (23)
5 Sa, j ← aggregation source from eqs. (15) and 

(16)
6 Sb, j ← breakage source from eqs. (28) and (29)

//Solve transport equation for αg, j

7 αg, j ← from solution of eq. (22)
8

//Update maximum residual
9 if average(αg, j) > αthres then

10 res ← update maximum residual
11 end

//Optional under-relaxation
12 relax(αg, j )

//Ensure a positive αg, j

13 αg, j =max(αg, j , αMIN)

14 end
//Compute total gas fraction

15 α ← sum of αg, j ∀ j

16 end
//Calculate phase change

17 �g,l ← calculate from mass conservation eq. (30)

Algorithm 1. DQMOM (left) and MUSIG (right) solution algorithms.

3.2. MUSIG solution algorithm

For MUSIG we deploy a similar iterative approach as for DQMOM, presented in Algorithm 1 (right). Again, the algorithm 
is such that the convergence of the coupled equations for the different classes is ensured within each time-step. Within 
each sub-iteration, i.e. starting with line 2, an iteration is performed over the N classes. For each class j and iteration, all 
the source terms are recomputed (lines 4–6). A more explicit, and potentially more stable, scheme would be to compute the 
source terms for all class j prior to the for loop (i.e. before line 3). However, by computing the source term according to the 
current void fractions, we take advantage of a faster propagation of the updated fields for each class. The chosen scheme 
requires a strict convergence criterion in order to ensure that the problem is fully solved before continuing to the next time 
step.

Following the update of the source terms, we compute αg, j according to the conservation equation. The maximum 
residual from all classes is continuously updated within the loop and is used as a criterion for the sub-iteration convergence. 
It should however be noted that the residual for a class j is accounted for only if there is a presence of bubbles. Such a 
threshold criterion is beneficial: in fact, if no bubble and source terms for class j are involved, the related conservation 
equation (22) will be trivial and the initial matrix of the residuals for that class will not contribute with any valuable 
information.

An under-relaxation of the current αg, j is optionally performed during the first one or two iterations. Such an under-
relaxation might accelerate the convergence of the coupled system of transport equations. The final sub-iterations during 
each time step is not performed with under-relaxation, thus ensuring full convergence within each time step. Finally, after 
convergence of all the classes, the mass conservation equation is used to compute the source term for the liquid phase.

In terms of computational performance, the implementation of the source terms is the most crucial part. In particular, 
the computation of the aggregation source term from eq. (25), is expensive to compute as a double sum is required. Similar 
to the cost for DQMOM as described in Section 3.1, the cost of the double sum increases as N increases. For a direct 
implementation of eq. (25) as a double sum where each of the two terms are evaluated, the aggregation requires almost 
98% of the computational time in the case of MUSIG-50. To optimize the algorithm, the number of operations for the 
aggregation term was minimized by moving the constant terms outside the sum and by first computing χ jkl . Therefore, 
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this version of the scheme led to a significant reduction of the computational burden needed for the evaluation of the 
aggregation term (which is now less than 80% of the total computational time for MUSIG-50).

The implementations of the MUSIG and DQMOM solvers are done in the same computational framework using the 
same type of data structures and implementation schemes. Furthermore, the conservation equations are solved based on 
the same discretization routines and sparse matrix solvers. We optimized both codes with respect to CPU-usage for the 
different functions. Nevertheless, a direct comparison between codes is often difficult due to the major influence of very 
specific details of the methods, as indicated for the case of the aggregation source term above, as well as architecture 
specific details which might benefit one of the two methods.

3.3. Treatment of small bubble sizes in DQMOM

As discussed in Section 2.2.1 the condensation process progresses with the volume reduction of the bubbles, which finally 
fully condensate to liquid. Since DQMOM handles the size change of the bubbles in a continuous manner, the shrinkage of 
the bubbles can cause numerical problems, approaching small values. The mathematical relationship between the bubble 
size and the condensation rate is such that negative sizes could even be reached.

In particular, negative wi and ηi could be obtained for critical cells, thus unphysical conditions could lead to the failure 
of either the DQMOM solver or the two-fluid solver. In theory, this problem could be avoided, if the time step is selected 
according to the largest condensation rate and the smallest bubble size. In practice, this option leads to prohibitively small 
time steps that make the calculations unfeasible.

Instead of directly limiting the time step we discuss two possible modifications of the method, which are to:

• Limit the shrinkage of the smallest bubbles, by modifying the condensation rate. Numerical experiments for this kind 
of remedy were found to be unstable and sensitive to the threshold size of bubbles applied, and still prone to negative 
local negative values of wi or ηi .

• Filter the source terms ai and bi after the solution of the cell-wise linear system eq. (10). By guaranteeing positive 
values of ai and bi in all the computational domain, and given a bounded discretization scheme for the advection term, 
then wi and ξi are always positive.

For low void fractions and small bubble sizes in a sub-cooled flow, the liquid phase is not significantly affected by the 
vapor phase, so it is possible to decouple the population balance and the vapor velocity. Based on this observation, it is 
reasonable to discard the contributions of the very low void fractions. Furthermore, numerical assessments showed that the 
second option is by far the most numerically robust approach. The filtering is then implemented in Algorithm 1, lines 15–18.

It should be noted that the same kind of numerical issues will not appear for MUSIG. Due to the static sizes, extremely 
small bubble sizes are not directly resolved. On the other hand, this can not be accounted as an advantage of the MUSIG 
algorithm since the numerical issues are only avoided due to the limited resolution of the small bubbles.

3.4. Mass and momentum equations

For the two-fluid formulation our main concerns are to achieve: numerical stability in the bulk of the flow domain, 
where αg → 0 as discussed in Section 3.3; and a mass-conservative solver. For the first purpose, the momentum equation 
discretization is based on a phase-intensive formulation. The derivation follows the procedure proposed by [32], and the 
important steps are repeated here for completeness. In addition, we also include the formulation of the contribution from 
the phase change (i.e. �p) and the enthalpy equation.

The phase-intensive momentum equation is derived by subtracting Up times eq. (30) from eq. (32) and results in:

αpρp
∂Up

∂t
+ αpρpUp∇ ·Up = −∇ · (αp( ¯̄τ p + ¯̄τ t

p)
) − ∇(αp P ) + αpρpg+Mp + �q→p(Up −Up) (44)

When the latter is divided with αpρp , the left-hand side is independent of the phase fraction, and it is thus posed in a 
more stable form. For the right-hand side it is seen that, for regions where αp → 0, a singularity occurs. Potential numer-
ical problems can be avoided if each of the momentum and phase exchange terms are formulated as bounded values, as 
discussed, e.g., by Rusche [33].

In the next step, a combined, mass-conservative pressure equation is formulated. For this purpose we write a combined 
mass equation derived from the sum of eq. (30) for both phases such that

∇ ·U = �g

ρg
+ �l

ρl
−Ugαg

∇ρg

ρg
−Ulαl

∇ρl

ρl
− αg

ρg

∂ρg

∂t
− αl

ρl

∂ρl

∂t
, (45)

where

U = αgUg + αlUl. (46)
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The pressure equation is then retrieved from the momentum equation (44) and inserted in the combined mass equa-
tion (45). By including the mass exchange terms and the compressibility due to density variation from heating, the pressure 
equation directly fulfills the mass conservation equation.

Under adiabatic conditions and for incompressible flow, the right-hand side of the mass conservation equation (45) is 
zero. However, this is not true for heated flow with phase change. The right-hand side of eq. (45) consists of the phase 
change (terms 1–2) and the variation of density for the heated flow (terms 3–6). In order to achieve a conservative solver 
for the conditions with change of phase, the correction terms are of major importance.

The momentum and pressure equations are discretized according to a standard collocated grid CFD approach (see, e.g., 
[29]). This means that the advective terms, such as the second term in eq. (44), are based on an interpolated face flux

φp = {Up}, (47)

where {. . . } denotes an interpolation from the cell centers to face centers. An accurate reconstruction of the face fluxes is a 
crucial aspect both for the accuracy and the mass conservation of the solver.

3.5. Enthalpy equation

In the same manner as for the momentum equation, the enthalpy equation is written in a phase-intensive formulation. 
For this purpose eq. (30) times the phase enthalpy is subtracted from eq. (34), for each phase, so that we obtain:

αpρp
∂hp

∂t
+ αpρpUp · ∇hp = −∇ · (αpγp∇hp

) − D(αp P )

Dt
+ �p − hp�p (48)

From a discretization point of view, this formulation has the benefit that face fluxes needed for the second term on the 
left-hand side, are the same as the ones computed from the momentum equation.

In contrast, the first formulation of the enthalpy conservation equation (eq. 34) requires the interpolated facial flux of 
the product of αpρpUp , i.e. {αpρpUp}. However, we cannot generally assume that:

{αpρpUp} = {ρp}{ρp}{Up} (49)

and since {Up} is already used for the formulation of the momentum, pressure, wi and ηi equations, it is also required 
to use the phase-intensive formulation of the enthalpy equation. In Section 5.4.3 the advantage of eq. (48) over the direct 
discretization of eq. (34) is clarified and proved in more details.

3.6. Combining the DQMOM model with the two-fluid model

The combined framework of the DQMOM (or MUSIG) and the two-fluid model couples via the vapor and liquid phase 
fractions αg and αl (= 1 −αg), the vapor velocity Ug and the variables used in the condensation model. As described above, 
DQMOM (or MUSIG) is used to calculate the vapor transport in the system, implicitly corresponding to the transport of αg
in the case of eq. (30). The velocity is used in the transport equations for the weights and the weights times the abscissas 
in DQMOM, and for the void fraction for each class in MUSIG.

The overall algorithm for the coupled solver is presented in Algorithm 2. The time step is optionally computed based 
on the Courant number of the largest of either the velocity field or the relative velocity. As discussed in Section 3.3, an 
additional limitation on the time step could be based on the rate of condensation. However, we do not include such a 
condition in the algorithm because of the filtering operation described in Section 3.3, that is used for preventing too short 
time steps related to small bubbles. Furthermore, in order to isolate the effects of different aspects of the algorithm, only a 
fixed time step is used in the results presented below.

Once the void fraction and size distribution have been calculated, we update the size-dependent interfacial forces. In the 
following steps (lines 6–12), a velocity predictor is computed and inserted into the combined continuity equation (45) to 
form the combined pressure equation. The pressure equation is optionally solved np times to account for non-orthogonality 
updates in the Laplacian operator [29]. The other iteration, started in line 6, assures that the physical pressure and velocity 
profiles are retrieved before re-computing the thermophysical data and the enthalpy equation for the liquid. This is espe-
cially important when using a pressure-dependent table for the thermo-physical properties: a non-converged pressure may 
cause a non-physical set of values, and endangers the convergence of the entire algorithm.

Finally, the enthalpy equation for the liquid is solved and the turbulence equations are evaluated to compute new tur-
bulent quantities. In the current study, the vapor is assumed to be at saturated conditions, so the vapor enthalpy is not 
solved.

4. Case descriptions

To verify the functionality of the framework, we consider a set of test cases in a rectangular domain, with a vertical 
subcooled liquid flow in which vapor bubbles are transported.

In the first case, we apply constant and linear condensation rates (Section 4.1.1) and 3 aggregation kernels and 2 break-
age kernels (Section 4.1.2), in a single-cell test case solving only the DQMOM/MUSIG models. Under such conditions, we 
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1 �t ← Fixed time step or Courant number limited

//Update of void fraction (αi) and mass transfer (�g)
2 αi , �g→l ← DQMOM/MUSIG solver
//Compute interfacial force contributions based on αi and ξi

3 for i = 1 to N do
4 Fd, Fl, Fvm, Ft ← Contributions from bubble size i
5 end

//Solve the pressure and velocity equation with nc corrects
6 for i = 1 to nc do
7 Upre

g , Upre
l ← Velocity predictors based on eq. (44)

//Use np pressure correctors
8 for m = 1 to np do
9 p ← Upre

g , Upre
l inserted in eq. (45)

10 end
11 Ug , Ul ← Correction based on p
12 end
13 hl ← Calculate liquid enthalpy equation (48)
14 Update thermo-physical state based on hl and p
15 k, ε ← Turbulence model

Algorithm 2. Two-fluid solution algorithm and coupling to DQMOM.

only study the kinetics of the PBE methods, including neither the two-fluid coupling nor the spatial dependence of the 
abscissas/class transport. The simplified single-cell system is thus used to verify the correctness of the implementation of 
the DQMOM/MUSIG algorithms.

For the second case, we define a horizontally periodic domain and a fictitious condensation rate that is independent 
of the flow properties. Under such conditions, we are able to decouple the population balance method (DQMOM/MUSIG) 
from the two-fluid solver while still including the spatial dependence. Accordingly, we can compare the performance of the 
DQMOM solver with respect to the MUSIG formulation, without the influence of the two-fluid solver, but with the influence 
of a convective fluid velocity.

In the third case, the system is confined by vertical walls that induce velocity gradients in the liquid phase. We further 
apply a condensation rate-based on an empirical relation from the literature, which introduces a coupling between the flow 
conditions and the rate of condensation of the bubbles. Therefore, we are able to assess the implementation of the mass, 
momentum and enthalpy equations within the global algorithm, as well as the influence of the two-fluid solver on the 
bubble size distribution.

Finally, in the fourth case we impose a vapor distribution at the vertical walls in order to mimic a wall boiling condition, 
as described in Section 2.5. The purpose of it is to investigate further the enthalpy model.

Complementary to the framework, in Section 4.1 we discuss the closure relations used for condensation, the interfacial 
forces and the bubble aggregation and breakage kernels. The details of the geometries and the boundary conditions of the 
four cases are described in Sections 4.3–4.6.

4.1. Closure relationships

To close the coupled framework of the population balance solvers and the two-fluid solver, constitutive relations are 
needed. These include momentum interfacial terms as well as condensation models. Furthermore, consistent models for the 
aggregation and breakage are required for DQMOM and MUSIG. The aim with the selection of models is to evaluate the 
framework as a whole and to compare the computational efficiency and ability to resolve the size distribution of bubbles 
of DQMOM against MUSIG. In view of this, the optimal choice of models and parameters along with the capability of 
reproducing experimental data, are not the primary concerns.

4.1.1. Condensation
The condensation model relates the bubble shrinkage rate C(ξ) to the flow properties and the thermophysical state. We 

first formulate a model based on a constant or linearly varying condensation rate such that

C(ξ) = R1ξ + C1 (50)

where R1 is the rate of change of the shrinkage rate and C1 is a constant. A controlled condensation uncoupled from the 
thermophysical local properties and the flow conditions gives the opportunity to evaluate the performance of DQMOM in 
comparison to MUSIG, disregarding the influence of the two-fluid solver.
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In Cases 2 and 3, we let the condensation rate depend on the local flow and the thermo-physical properties. From an 
energy balance between bubbles whose volume decreases in time, and the surrounding subcooled liquid, it is possible to 
estimate the condensation rate as:

C(ξ) = −2hif
ρg

(T g − Tl)

Hlg
, (51)

where hif is the interfacial heat transfer coefficient. This coefficient hif can be related to the definition of Nusselt number 
(Nu):

hif = NuKl

ξ
. (52)

Several empirical correlations are available in literature for determining Nu under condensation (e.g., see [34]). In the current 
work, the Ranz–Marshall correlation [35] is selected:

Nu = 2+ 0.6Re0.50b Pr0.33, (53)

where the Reynolds number is given as:

Reb = max

(
Urξ

νl
,1.0

)
. (54)

It can be noted that the condensation rate is inversely proportional to the square root of the bubble size diameter. As a 
result of this, condensing bubbles will experience an increasingly faster shrinkage, which might cause the type of numerical 
issues discussed in Section 3.3.

Although the available relations for the condensation rate are generally valid only within certain ranges (e.g., see [34]), 
we apply the model regardless of the bubble sizes and the flow conditions.

4.1.2. Aggregation and breakage
In the current work, a set of generic kernels are applied [36]. For the aggregation terms we apply a constant kernel

βi j = β0, (55)

a sum kernel

βi j = β0
ξ3
i + ξ3

j

L3
, (56)

and a hydrodynamic kernel

βi j = β0
(ξi + ξ j)

3

L3
, (57)

where L is a normalization constant on the order of the initial mean particle size. For breakage we apply a constant kernel

θi = θ0, (58)

and a power law

θi = θ0

(
ξi

L

)y

(59)

where y is an exponent set to 1
2 for this investigation. For the latter two kernels, a symmetric breakage fragmentation 

function is applied (as derived for DQMOM in Marchisio et al. [23]).
In this context, other strategies can be used. For instance, kernels with different constants and physics can be imple-

mented to accurately capture various bubble phenomena, e.g. by following the approach proposed by Luo and Svendsen [37]. 
However, difficulties can be encountered in a proper choice of the model parameters for capturing experimental data. As an 
alternative, kernels can be derived from fitting methods [38]. For the purpose of the current study, the selection of generic 
kernels can be considered satisfactory on covering the general dependence on particle size [36].
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4.1.3. Momentum interfacial terms
The interfacial forces are the links between the bubble size distribution and the two-fluid framework. Given the in-

formation of the distribution, the total force that acts on each bubble size and the corresponding vapor fraction, can be 
decomposed in contributions of different nature. Four interfacial terms are considered in this paper, namely the drag force, 
the lift force, the virtual mass force and the turbulent dispersion force. The specific choices are not separately studied for the 
specific application, but meant to be a representative set of models for the purpose of evaluating the proposed framework.

First, the drag force is based on the Schiller–Naumann correlation [39], and calculated as

Fd = 3Cdρlαg‖Ug −Ul‖
4ξ

(Ug −Ul), (60)

where the drag coefficient Cd is computed as

Cd = 24

Reb

(
1+ 0.15Re0.687b

)
, (61)

with the bubble Reynolds number given by eq. (54). It should be noted that the Reynolds number is proportional to the 
bubble size and thus the drag coefficient is inversely proportional to the bubble size. Second, the lift force is calculated as

Fl = −Clρlαg(Ug −Ul) × ∇ ×Ul. (62)

The lift coefficient (Cl) is in general a function of flow parameters and the particle size [40]. In our case we apply a constant 
lift force coefficient of Cl = −0.3 which is reasonable for the range of bubble sizes of interest. Third, the virtual mass force 
is calculated as

Fvm = −Cvmαgρl

(
DUg

Dt
− DUl

Dt

)
, (63)

with the virtual mass coefficient Cvm = 0.5. Fourth, the turbulent dispersion force is calculated by the Bertodano model [41]

Ft = −ρlkl∇αg . (64)

The applied turbulence model is of major importance for the simulations. A wide range of alternatives can be found in 
literature. However, as mentioned in Section 2.4, a k − ε model is used, and the study of the impact of the different 
turbulence models is beyond the scope of the work.

4.2. Initial and boundary size distributions

For the initial and boundary bubble size distributions, two alternatives are used. For Case 1 and 2, a mono-sized distri-
bution is applied as a verification case for the condensation model implementation. For all other cases the PDF is computed 
based on a normal distribution, characterized by the mean size (μ) and the standard deviation (σ ). Given the latter two 
characteristics, the choice of quadrature points for DQMOM still contains a degree of freedom. Therefore, for the initial and 
boundary distributions, we use the Gauss–Hermite quadrature to compute the initial bubble sizes of the normal distribution.

For MUSIG a maximum bubble size is assumed. This size must be large enough to allow the bubbles growing due to 
aggregation, to be represented. In a general case this can be ensured by post-processing the size distribution and to verify 
that the number of bubbles in the largest bubble class is small enough. Given the upper boundary and the number of classes 
(N), a uniform distribution of the bubble diameter is applied. Such a uniform (or close to uniform) distribution is typically 
seen in the literature (see, e.g., [42,38]). This partitioning does not give a uniform distribution in the bubble volumes and it 
also includes a discretization error in the represented distribution.

We compute the mean diameter

d43 =

N∑
i=1

ξ4
i wi

N∑
i=1

ξ3
i wi

, (65)

as a single characteristic of the bubble size distribution. For the cases applying a normal size as initial and/or boundary 
conditions, the initial d43 is the same for all the cases independent of the number of abscissas or classes.

4.3. Case 1: single cell case

In the first case we apply the DQMOM and MUSIG solvers to a single cell system, without coupling to the two-fluid 
solver and without any influence of convection in physical space. The kinetics of the methods are compared for different 
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Table 1
Kernels compared for the single-cell test case. For all cases a nor-
mal initial bubble distribution is applied with μ = 7 mm and 
σ = 2 mm. For the aggregation cases the MUSIG sizes are dis-
cretized in the range 0–30 mm and for the breakage cases in the 
range 0–14 mm. For all kernels L = 10 mm.

Model Parameters

Constant aggregation β0 = 10−5 s−1

Sum aggregation β0 = 10−5 s−1

Hydrodynamic aggregation β0 = 10−5 s−1

Constant breakage θ0 = 10 s−1

Power law breakage θ0 = 10 s−1

Table 2
Condensation models applied for the single-cell test case with an initial mono size bubble distributions with μ =
7 mm and for the normal initial bubble distribution μ = 7 mm and σ = 2 mm. The MUSIG sizes are discretized 
in the range 0–14 mm. For the exponential kernel L = 10 mm.

Initial distribution Model Parameters

Mono Constant cond. C1 = −4.0 mm/s, R1 = 0.0 s−1

Linear cond. C1 = −11.0 mm/s, R1 = 1.0 s−1

Fig. 1. Geometry and boundary conditions for the rectangular, horizontally periodic system applied in Case 2.

kernels as summarized in Table 1 and for different condensation models as presented in Table 2. Therefore, we isolate the 
effect of aggregation, breakage and condensation, so that the performance of the two methods can be evaluated.

For the condensation cases with a mono size distribution, an analytical particle size can be computed and thus directly 
used to verify the implementation. In addition, we investigate the conservation properties of the kernels by analyzing the 
change in the vapor fraction.

4.4. Case 2: comparison of DQMOM and MUSIG with convection

The purpose of this case is to investigate how the number of bubble sizes introduced in MUSIG corresponds to the 
number of abscissas in DQMOM under the influence of spatial convection.

In addition, the system is simulated both with and without aggregation and breakage, so that the interplay of the 
condensation term with the other source terms in the PBE can be investigated. In the current case we apply the constant 
kernels for both aggregation and breakage. To compare the different methodologies for the prediction of the bubble size 
distribution, the coupling to the two-fluid framework is limited by a horizontally periodic system, with a constant and a 
linearly varying condensation rate.

The simulated cases are presented in Table 3, from the simplest one with a mono-size distribution, without aggregation 
and breakage, to the more complex ones. We compare the solvers for the rectangular domain and the boundary conditions 
as presented in Fig. 1. For all the cases, liquid and vapor water are considered and all thermophysical data are temperature 
as well as pressure dependent [43]. As a result of the low void fractions considered in these test cases and of the relative 
small size of the simulated system, the influence of the thermophysical variables is limited.
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Table 3
Case descriptions including inlet bubble size distributions and the applied source terms for Case 2.
Case Inlet distribution Condensation Aggregation Breakage

1a Mono-size, 7.0 mm Constant, −2.0 mm/s None None
1b Normal, μ = 10 mm σ = 2 mm Constant, −2.0 mm/s None None
1c Normal, μ = 10 mm σ = 2 mm Linear, R1 = 0.2 s−1,

C1 = −3.0 mm/s
None None

1d Normal, μ = 10 mm σ = 2 mm None β0 = 5× 10−5 s−1 None
1e Normal, μ = 10 mm σ = 2 mm None None θ0 = 1× 10−2 s−1

1f Normal, μ = 10 mm σ = 2 mm Linear, R1 = 0.2 s−1,
C1 = −3.0 mm/s

β0 = 5× 10−5 s−1 θ0 = 1× 10−2 s−1

4.5. Case 3: coupling to two-fluid model

In the third case, the coupling to the two-fluid solver is introduced through a condensation model which is based on 
the flow properties as given in eq. (51). Furthermore, the system is confined by walls with no-slip conditions for the liquid 
phase and slip conditions for the vapor phase. Again we compare the efficiency of the PBE formulations in terms of the 
number of classes and abscissas.

The system is thus the same as in Fig. 1 except for applying vertical walls. The inlet boundary profiles for the phase 
velocities, the abscissas, and the weights are all assumed parabolic with the maximum values corresponding to the data in 
Fig. 1. For the inlet, we again specify a normal distribution of bubbles with μ = 7 mm and σ = 2 mm. In this case, constant 
aggregation and breakage are always applied (with β0 = 10−4 and θ0 = 10−4).

Complementary to the comparison of the bubble size distributions, we also show the influence of sub-iterations in 
Algorithm 1, which is an important evaluation of the convergence of the methods. Finally, we study the pure two-fluid 
aspects namely the mass conservation depending on the flux formulation for the pressure equation. The modified face flux 
used for the pressure equation in eq. (45) is compared to a solver without the terms due to phase change, i.e.:

∇ ·U = −Ugαg
∇ρg

ρg
−Ulαl

∇ρl

ρl
− αg

∂ρg

∂t
− αl

∂ρl

∂t
. (66)

This allows to highlight the need for modifications of the standard two-fluid algorithm with respect to the mass exchange 
terms.

4.6. Case 4: generation of bubbles at the wall

In the final case, we use the same geometry and conditions as in the previous case except for the void which is inserted 
at the wall, in order to reproduce the vapor generation that could occur under wall boiling conditions. Such a boundary 
condition allows us to demonstrate the capability to resolve the transport and the dynamics of bubbles from the wall to the 
bulk of the flow.

At the wall, we again assume a normal distribution of bubbles with μ = 7 mm and σ = 2 mm. Due to the inflow at the 
inlet, we also need to specify a bubble size distribution and the associated void at the inlet. For this purpose we use the 
same parameters as the wall condition, but with a significantly lower total void fraction (10−5). The same conditions for 
aggregation and breakage (with β0 = 10−4 and θ0 = 10−4) are applied in all the simulations.

As regards the enthalpy equation, we evaluate the importance of the flux formulation by comparing the original and 
the phase-intensive versions (see Section 3.5). Furthermore, we demonstrate potential numerical issues that can arise in 
DQMOM for colliding distributions, and lead to spatial discontinuities in the abscissas.

5. Numerical results and discussion

5.1. Case 1

The results for condensation in a single-cell are presented in Table 4. As regards the mono-size distribution, an analytical 
solution for the final mean diameter d43 is computed by substituting the condensation rate as defined by eq. (50) into 
eq. (3), and integrating the resulting expression. Thus we obtain:

ξ(t) = 1

R

(
(Rξ0 + C1)e

Rt − C1

)
. (67)

In the case of mono-dispersed bubbles of initial mean size d43 = 7 mm and a simulation time of 0.5 s, ξ is calculated 
to be equal to 5 mm and 4.41 mm for the constant and linear condensation rates specified in Table 2, respectively. The 
DQMOM model predicts the analytical solution for all the number of abscissas considered. This is expected as the use of 
condensation only decouples the different abscissas; so a continuous decrease in size should capture the exact solution.
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Table 4
Comparison of the mean bubble size (d43) and the void fraction (α) after 0.5 s simulation in a system correspond-
ing to a single cell with an initial mono size distribution and with condensation models according to Table 2.

Model Solver N d43 [m] α [–]

Constant DQMOM 2 5.00× 10−3 1.82× 10−2

3 5.00× 10−3 1.82× 10−2

4 5.00× 10−3 1.90× 10−2

MUSIG 10 5.29× 10−3 1.74× 10−2

30 5.11× 10−3 1.79× 10−2

50 5.07× 10−3 1.80× 10−2

100 5.03× 10−3 1.81× 10−2

150 5.02× 10−3 1.81× 10−2

Linear DQMOM 2 4.41× 10−3 1.25× 10−2

3 4.41× 10−3 1.25× 10−2

4 4.41× 10−3 1.25× 10−2

MUSIG 10 5.28× 10−3 1.19× 10−2

30 4.82× 10−3 1.22× 10−2

50 4.67× 10−3 1.23× 10−2

100 4.54× 10−3 1.23× 10−2

150 4.49× 10−3 1.24× 10−2

Table 5
Comparison of two breakage kernels in terms of the mean bubble size (d43), the void fraction (α) and the cor-
responding relative change in void fraction (�α) after 0.5 s simulation in a system corresponding to a single 
computational cell.
Model Solver N d43 [m] α [–] �α [–]

Constant DQMOM 2 2.12 × 10−3 4.93× 10−2 −1.47× 10−2

3 2.48 × 10−3 4.93× 10−2 −1.29× 10−2

4 2.48 × 10−3 4.93× 10−2 −1.21× 10−2

5 2.47 × 10−3 4.92× 10−2 −1.18× 10−2

6 2.46 × 10−3 4.89× 10−2 −1.12× 10−2

MUSIG 10 3.52 × 10−3 1.38× 10−2 −7.24× 10−1

30 2.75 × 10−3 4.16× 10−2 −1.68× 10−1

50 2.58 × 10−3 4.73× 10−2 −5.32× 10−2

100 2.51 × 10−3 4.96× 10−2 −7.93× 10−3

150 2.50 × 10−3 4.99× 10−2 −2.46× 10−3

Exponential DQMOM 2 4.36 × 10−3 4.99× 10−2 −2.31× 10−3

3 4.36 × 10−3 4.99× 10−2 −2.03× 10−3

4 4.35 × 10−3 4.99× 10−2 −2.00× 10−3

5 4.34 × 10−3 4.99× 10−2 −2.24× 10−3

6 4.34 × 10−3 4.98× 10−2 −2.73× 10−3

MUSIG 10 4.31 × 10−3 3.95× 10−2 −2.09× 10−1

30 4.32 × 10−3 4.99× 10−2 −8.54× 10−4

50 4.33 × 10−3 5.00× 10−2 −5.80× 10−5

100 4.33 × 10−3 5.00× 10−2 −2.00× 10−6

150 4.33 × 10−3 5.00× 10−2 4.00× 10−6

For MUSIG the results converge towards the correct solution and the discrepancies in the mean diameter for MUSIG-50 
with constant condensation are less than 2%. The discrepancies in the final void fraction (last column in Table 4) are smaller 
than the ones in the mean diameter. Based on the convergence towards the analytical solution, the results for the mono 
size distribution verify that condensation is correctly implemented.

For the constant and power law breakage kernels, the comparison between MUSIG and DQMOM is presented in Table 5. 
The results show a good agreement in terms of the mean diameter between MUSIG and DQMOM. For the constant breakage 
model, DQMOM with 3 abscissas already provides values that are similar to the ones with 6 abscissas, indicating the 
strength of the dynamic abscissas. For MUSIG, 100 classes give a result close to the one using 150 classes. The difference 
between the number of abscissas/classes is smaller for the exponential kernel.

The comparisons between the different aggregation kernels are shown in Table 6. Again, there is a good agreement 
between MUSIG and DQMOM, with the same general trend of rapid convergence in the number of abscissas for DQMOM 
and a slower convergence for MUSIG.

The last two columns of Tables 5 and 6 show the void fraction and its relative change. These quantities are a direct 
measure of the conservativeness of the methods. For a non-conservative formulation of the aggregation and breakage ker-
nels a significant change in α would be seen. From both tables, the aggregation and breakage kernels give a very small 
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Table 6
Comparison of three aggregation kernels in terms of the mean bubble size (d43), the void fraction (α) and the 
corresponding relative change in void fraction (�α) after 0.5 s simulation in a system corresponding to a single 
computational cell. For the relative change in void fraction (�α) the value for MUSIG was smaller than 10−6

which corresponds to the precision of the data stored.
Model Solver N d43 [m] α [–] �α [–]

Constant DQMOM 2 9.00× 10−3 5.00× 10−2 −1.56× 10−4

3 9.06× 10−3 5.00× 10−2 −1.80× 10−4

4 9.08× 10−3 5.00× 10−2 −1.98× 10−4

5 9.08× 10−3 5.00× 10−2 −2.20× 10−4

6 9.08× 10−3 5.00× 10−2 −2.42× 10−4

MUSIG 10 8.94× 10−3 5.00× 10−2 –
30 9.08× 10−3 5.00× 10−2 –
50 9.09× 10−3 5.00× 10−2 –
100 9.09× 10−3 5.00× 10−2 –
150 9.10× 10−3 5.00× 10−2 –

Hydrodynamic DQMOM 2 1.73× 10−2 4.98× 10−2 −3.13× 10−3

3 1.80× 10−2 4.98× 10−2 −3.52× 10−3

4 1.80× 10−2 4.98× 10−2 −3.96× 10−3

5 1.79× 10−2 4.98× 10−2 −4.42× 10−3

6 1.79× 10−2 4.97× 10−2 −4.84× 10−3

MUSIG 10 1.64× 10−2 5.00× 10−2 –
30 1.74× 10−2 5.00× 10−2 –
50 1.76× 10−2 5.00× 10−2 –
100 1.76× 10−2 5.00× 10−2 –
150 1.76× 10−2 5.00× 10−2 –

Sum DQMOM 2 9.06× 10−3 5.00× 10−2 −2.52× 10−4

3 9.18× 10−3 5.00× 10−2 −3.40× 10−4

4 9.19× 10−3 5.00× 10−2 −4.30× 10−4

5 9.20× 10−3 5.00× 10−2 −5.40× 10−4

6 9.20× 10−3 5.00× 10−2 −6.92× 10−4

MUSIG 10 9.04× 10−3 5.00× 10−2 –
30 9.20× 10−3 5.00× 10−2 –
50 9.22× 10−3 5.00× 10−2 –
100 9.23× 10−3 5.00× 10−2 –
150 9.23× 10−3 5.00× 10−2 –

relative change. In particular, the construction of the MUSIG algorithm as described in Section 2.3.2 leads to a conservative 
formulation despite the discrete nature of the method.

In general, Case 1 shows that the aggregation and breakage kernels yield comparable results for MUSIG and DQMOM and 
that the condensation models are correctly implemented as compared to the analytical value of the size change. As will be 
later seen, the discrepancy between MUSIG and DQMOM is for many cases larger.

5.2. Case 2

The comparison between the DQMOM and MUSIC approaches, when spatial convection is included, is summarized in 
Table 7 and in Fig. 2. The table includes the computational time, the change of the mean diameter, while the Figure shows 
the axial dependence of the mean diameter. In addition, the PDFs for the different number of abscissas and classes are 
presented in Fig. 3.

For the mono-size distribution and constant condensation rate in Case 2a, Table 7 and Fig. 2a report that DQMOM with 
three and four abscissas give the same �d43. Such a result is again anticipated because of the absence of interaction between 
the different sizes (i.e. no aggregation and breakage) and the exclusion of size-dependence in the applied condensation 
model. Nevertheless, this reveals an advantage of the dynamic abscissas in DQMOM as the constant condensation rate can 
be reproduced by the continuous decrease in the bubble sizes. In contrast, the MUSIG approach converges towards the �d43
for DQMOM, but the use of 150 classes still gives a 3% discrepancy in the size change.

The inability of MUSIG to reproduce the continuous size change is also shown in Fig. 3a, where the distributions are 
presented in terms of the void (i.e. αg ) associated with each abscissa or class.

In the present case, it is expected that all the bubbles are identical at a certain axial position because they are only 
affected by condensation at a constant rate. Whereas the distributions from DQMOM are closely grouped around a single 
value, the MUSIG results provide a larger variety of bubble sizes due to a diffusivity in the internal phase space convection, 
caused by the static and discrete classes. In detail, any small concentration in bubbles will induce a non-zero condensation 
source term within every time step; thus a slightly diffused distribution is obtained as bubbles are condensed towards 
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Table 7
Relative computational time (WCT [au]) and absolute change in the mean diameter (�d43) between 
inlet and outlet along the center line for Cases 2a–2f. The computational time is similar for all cases 
whereas the change in d43 between cases a–f is a result of the applied coefficients as listed in 
Table 3.

(a)

Solver N WCT [–] �d43 [m]

DQMOM 2 1.0 −3.71e−04
3 1.1 −3.70e−04
4 1.3 −3.70e−04

MUSIG 10 1.0 −1.74e−04
30 1.6 −3.00e−04
50 2.2 −3.29e−04
100 4.4 −3.53e−04
150 7.8 −3.59e−04

(b)

Solver N WCT [–] �d43 [m]

DQMOM 2 1.0 −3.05e−04
3 1.2 −2.95e−04
4 1.4 −2.90e−04
5 1.8 −2.88e−04

MUSIG 10 1.1 −1.49e−04
30 1.6 −2.38e−04
50 2.2 −2.56e−04
100 4.4 −2.71e−04
150 7.8 −2.75e−04

(c)

Solver N WCT [–] �d43 [m]

DQMOM 2 1.0 −1.33e−04
3 1.1 −1.17e−04
4 1.4 −1.09e−04
5 1.7 −1.05e−04

MUSIG 10 1.1 −1.77e−05
30 1.6 −6.90e−05
50 2.2 −8.03e−05
100 4.3 −8.78e−05
150 7.6 −9.09e−05

(d)

Solver N WCT [–] �d43 [m]

DQMOM 2 1.0 8.50e−04
3 1.2 8.68e−04
4 1.4 8.73e−04
5 1.7 8.77e−04

MUSIG 10 1.1 9.57e−04
30 1.6 9.78e−04
50 2.3 9.80e−04
100 4.6 9.80e−04
150 8.0 9.81e−04

(e)

Solver N WCT [–] �d43 [m]

DQMOM 2 1.0 −3.50e−06
3 1.2 −3.36e−06
4 1.4 −3.43e−06
5 1.8 −3.73e−06

MUSIG 10 1.1 −3.30e−06
30 1.7 −3.35e−06
50 2.3 −3.43e−06
100 4.5 −3.41e−06
150 7.9 −3.35e−06

(f)

Solver N WCT [–] �d43 [m]

DQMOM 2 1.0 7.40e−04
3 1.2 7.72e−04
4 1.4 7.82e−04
5 1.7 7.87e−04

MUSIG 10 1.1 9.36e−04
30 1.6 9.18e−04
50 5.2 9.12e−04
100 13.6 9.06e−04
150 28.1 9.04e−04

smaller sizes. However, for a larger number of classes the effect is less pronounced, where the using of 100 classes results 
in the most narrow distribution. In order to avoid the collapse of the DQMOM algorithm, a minor perturbation of the sizes 
was introduced, as visible through the small spread in the size distributions.

In Case 2b, the constant condensation model is applied for normally distributed bubble sizes. In contrast to Case 2a, 
there is now an expected difference between the DQMOM simulations as a higher number of abscissas better resolve the 
distribution in sizes. However, as seen from Figs. 2b and 3b, the result of four abscissas is already well-captured with three 
abscissas. For MUSIG the same trend as in Case 2a is again seen, with an underestimation of the shrinkage �d43 for the 
cases with few classes as seen in Table 7.

For Case 2c, we introduce a condensation rate that varies linearly with bubble size. A similar trend as for Case 2a and 
2b is again seen. DQMOM-3 closely captures the size distribution of the bubbles as produced for DQMOM-4, which can 
be interpreted as the method is close to convergence. From Table 7 the relative computational time for MUSIG with 150 
classes is 5 times larger than that for DQMOM-4. This clearly shows the efficiency of DQMOM in comparison to MUSIG, for 
a similar precision.

For Case 2c, Table 7 displays that MUSIG-100 is close to the results for MUSIG-150. It is however seen that DQMOM and 
MUSIG seems to converge to different values for the change in the mean diameter. The discrepancies between the MUSIG 
and the DQMOM simulations are due to: i) the inability of MUSIG to represent the continuous character of condensation; 
and ii) the discretization error related to the static approach for describing the bubble sizes. This effect is even more evident 
for Case 3, where the condensation changes more rapidly (see discussion in Section 5.3.1).

The separate effect of aggregation (Figs. 2d and 3d) indicates that MUSIG can capture the phenomenon in a relatively 
better way. As regards the simulation of Case 2e with only breakage (Fig. 2e and 3e), DQMOM again gives comparable 
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Fig. 2. Axial dependence of mean diameter (d43) for Cases 2a–2f sampled at the center line of the system at t = 5 s.

outcomes with 2 abscissas and with 4 abscissas. Similarly, MUSIG gives convergence with few classes. Nevertheless, the 
effect of breakage is relatively small because of the current choice of the breakage kernel and the associated constant.

In the last Case 2f, we include aggregation, breakage and condensation at the same time. The results (Figs. 2f and 3f) are 
similar to Case 2d, since the contribution from the aggregation kernel is dominant. In fact, the change of mean diameter for 
Case 2c (linear condensation rate) is about one order smaller than the one for Case 2d (aggregation), as reported in Table 7.

Overall, the analysis of Case 2 demonstrates that the DQMOM and MUSIG methodologies for the condensation problem 
give close results. Furthermore, the continuous approach of DQMOM allows to capture the dynamics of condensation with 
few abscissas, while MUSIG can require a relatively large number of static classes for accurate simulations, with a higher 
computational cost. Also, consistent results for the breakage and aggregation kernels are retrieved from both models.



K. Jareteg et al. / Journal of Computational Physics 345 (2017) 373–403 395

Fig. 3. Bubble size distributions in terms of the vapor fractions displayed for Cases 2a–2f at t = 5 s and axial position 0.1 m at the center line of the system. 
Cases 2a–2c correspond to condensation only and the PDF are shifted towards smaller bubbles. For Case 2d, based on aggregation only, a shift towards 
larger bubbles is seen.

5.3. Case 3

In the presented Case 2 the influence from the two-fluid solver is minimized and the coupled effects are thus less 
pronounced. Following the pure verification of the handling of the condensation in DQMOM, we now demonstrate and 
evaluate the influence of the coupling to the remaining of the two-fluid framework. In section 5.3.1 we again illustrate the 
influence of the number of abscissas/classes but now for the confined, shear-dominated flow with an empirical model for 
the condensation rate. In Section 5.3.2 we demonstrate the importance of the flux derivation for the conservation of mass 
in the two-fluid framework. Finally, in Section 5.3.3 we evaluate the performance of the framework in terms of choice of 
time step and iterative schemes (as discussed in Section 3.1 and 3.2).
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Table 8
Comparison of change of the mean diameter (� − d43) and the void fraction (�αg ) from the inlet to z = 0.1 m
along the center line of the system. WCT corresponds to the relative computational time for each case as normal-
ized against DQMOM–2.

Solver N WCT [–] �αs [–] �d43 [m]

alphaEqn 1 0.6 −3.55× 10−2 0.0

DQMOM 2 1.0 −3.03× 10−2 −3.85× 10−4

3 1.5 −3.01× 10−2 1.09× 10−4

4 2.4 −3.01× 10−2 1.88× 10−4

5 3.6 −3.00× 10−2 1.35× 10−4

6 5.7 −3.00× 10−2 1.84× 10−4

MUSIG 10 0.9 −3.41× 10−2 1.42× 10−3

20 1.3 −3.44× 10−2 1.04× 10−3

30 1.7 −3.45× 10−2 8.79× 10−4

40 2.2 −3.45× 10−2 7.93× 10−4

50 2.8 −3.46× 10−2 7.39× 10−4

100 7.0 −3.47× 10−2 6.26× 10−4

5.3.1. DQMOM and MUSIG coupled to the two-fluid solver
We present in Table 8 the relative computational time, the change in the mean diameter, and the void fraction, over the 

first 0.1 m along the symmetry line. Accordingly, the change of d43 as calculated in MUSIG is initially larger than DQMOM. 
When the entire length is analyzed, the average bubble size and void fraction however decrease much faster for DQMOM 
(see Fig. 4). The faster decrease in size is due to the fact that the condensation model is inversely proportional to the 
bubble size: the smaller the bubbles, the quicker the condensation. This is also shown by the acceleration of the shrinkage 
in Fig. 4b.

Furthermore, the bubble size distributions for MUSIG with 10, 50 and 100 classes and DQMOM with 2 and 4 abscissas 
are displayed in Fig. 5. The different dynamics of the two methods is well illustrated considering the axial development of 
the bubble size distribution. Close to the inlet (z = 0.025 m, Fig. 5a) the distributions are similar for DQMOM and MUSIG 
and resemble the initial normal distribution in sizes. However, the maximum sizes of the DQMOM cases are significantly 
smaller than the ones estimated with MUSIG. Due to the size-dependent condensation this has a direct impact on the total 
condensation and, correspondingly, the size change of the bubbles. Along the next axial levels, z = 0.05 m to z = 0.200 m
(Figs. 5b to 5d), the differences of the bubbles associated to the maximum void become larger and larger. Such discrepancies 
are also reflected on the calculated void fraction, as can be seen in Table 8.

In Fig. 4b, it is also notable how the change in mean diameter is dampened between z = 0.3 m and z = 0.4 m. This is 
caused by the modeling artifact introduced to deal with small bubbles and discussed in Section 3.3. In fact the source terms 
a and b in the DQMOM framework are filtered for cells with vapor fraction below a threshold limit. The void fraction at 
z = 0.3 m (Fig. 4a) is already so small that the influence of the vapor phase on the continuous liquid phase is negligible.

For illustrative purposes, we also include the calculation of a single void fraction equation over the axial axis. In principal, 
this simple model corresponds to MUSIG in the limit of a single bubble class. The change in the axial void fraction is similar 
to the MUSIG results with few classes (see the green line against the red lines in Fig. 4a). The average bubble size is trivially 
constant throughout the domain (see green line in Fig. 4b). The precision and accuracy of the single vapor fraction equation 
must be considered with respect to the change of the bubble size distribution. For small changes in size the single static 
size will potentially perform sufficiently well. On the other hand, for large changes in the distribution, a larger discrepancy 
is anticipated as the size used in the condensation model (eq. (51)) introduces an error.

5.3.2. Flux formulation with phase change
To evaluate the importance of the pressure equation and mass flux formulation discussed in Section 3.4, we analyze 

the conservation of mass for both DQMOM and MUSIG. The mass conservation is computed as the difference between the 
boundary flux at the inlet and outlet and the current mass in the system. The results are presented in Fig. 6 and clearly 
emphasize the importance of the formulation of the flux. While a conservative solver is directly achieved by performing a 
consistent derivation of the pressure equation, a wrong formulation leads to a significant loss of mass in the system. Then 
it is necessary to specifically target the coupled framework as a whole. Besides, the gradient of the loss of mass in the 
system is the same for DQMOM and MUSIG, which points out that the issue on the mass conservation is associated with 
the coupling to the two-fluid algorithm, and not with the PBE formulations.

5.3.3. Influence of sub-iterations and time steps
In Table 9, the simulation of each case is performed with and without a maximum of 20 sub-iterations. For illustrative 

purposes, the solvers are forced to use only a single sub-iteration for the latter case. The comparison shows that the 
computed values for the change of void fraction and the average bubble size often differ, although the magnitude of the 
difference is small. In particular, the iterative scheme plays a more relevant role for the longer time-steps: in fact the 
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Fig. 4. Vapor fraction (αg ) and average bubble size (d43) along the axial centerline compared between MUSIG and DQMOM and for a void fraction equation 
(alphaEqn) with a single static class. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

difference between the iterated and non-iterated results with time-step 5.0 × 10−3 s are larger than the ones for time-step 
5.0 × 10−4 s or 1.0 × 10−3 s.

Then, the DQMOM calculations suggests that a longer time-step with iterations allows for a similar precision, with 
a lower computational cost, with respect to a shorter time-step with only one iteration. For instance, DQMOM-2 with 
time-step 5.0 × 10−3 s and sub-iteration, gives a �d43 comparable to the one estimated with time-step 5 × 10−4 s and the 
computational time is significantly reduced. The results also stress that the sub-iterations can be beneficial for the shortest 
time-step since the mean number of iterations is found to be around 3.

The two cases for MUSIG-10 and MUSIG-30, with time-step 5 ×10−3 s, reach the maximum number of sub-iterations and 
also a high average number of sub-iterations. This is likely due to the relatively large maximum Courant number, but also 
reflects the complexity as the couplings between the different sizes are not resolved within the maximum 20 sub-iterations.

Finally, it should be noted that the short simulation time (t = 0.05 s) ensures that the simulation is still evolving in 
time. This should be compared to the results in Table 8 where the system has reached a pseudo steady-state. For the latter 
case, the differences between performing sub-iterations and just sweeping once through all class/sizes are less pronounced. 
However, as indicated by Table 9, we need the sub-iterations to accurately simulate the transient evolution.

5.4. Case 4

5.4.1. Effect of the wall convective velocity
As presented in Section 2.5, a bubble flux formulation is used to simulate the effect of bubbles leaving the heated wall. 

Accordingly, a convective velocity is required and is combined with a wall bubble size distribution in order to give the 
desired void fraction and bubble size distribution for the current time step. To evaluate this scheme we simulate three dif-
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Fig. 5. Bubble size distributions for Case 3 presented for four axial positions at centerline.

Fig. 6. Comparison of flux formulations evaluated in terms of the mass conservation in the system, where the mass discrepancy is computed as the 
difference between mass flux at the inlet and outlet and the volume integrated mass. The two-dimensional system has a fictitious 1 cm extension in the 
third direction and the results are therefore presented with the unit kg/cm.

ferent wall convective velocities, as presented in Fig. 7 for DQMOM and MUSIG. For each of the velocities the corresponding 
bubble distributions are computed, so that the same void fraction is introduced for all the three cases. The results in the 
figure verify the independence of the convective velocity as such: indeed, the mean diameter and the vapor fraction along 
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Table 9
Relative change in void fraction (�αg ) and mean diameter (�d43) computed for z = 0.03 m at the centerline of the system for t = 0.05 s. The Max corre-
spond to the maximum number of sub-iterations applied in any time step of the simulation and Mean correspond to the average number of sub-iterations.
Max Ur Co is the maximum Courant number computed based on the relative velocity between the phases. The wall clock time (WCT) is normalized against 
DQMOM–2.

Solver N �t [s] Max Max Ur Co WCT [–] �αs [–] �d43 [–] Max Mean

DQMOM 2 5.0e−04 1 0.09 8.1 −0.878 −0.050 1 1.0
20 0.09 9.9 −0.879 −0.051 3 3.0

1.0e−03 1 0.17 4.3 −0.875 −0.049 1 1.0
20 0.17 5.3 −0.879 −0.050 3 3.0

5.0e−03 1 0.85 1.0 −0.857 −0.040 1 1.0
20 0.85 1.4 −0.872 −0.044 5 4.5

4 5.0e−04 1 0.08 15.3 −0.881 −0.034 1 1.0
20 0.08 27.6 −0.883 −0.034 3 3.0

1.0e−03 1 0.17 7.8 −0.879 −0.033 1 1.0
20 0.17 16.5 −0.882 −0.033 4 3.3

5.0e−03 1 0.84 1.7 −0.859 −0.026 1 1.0
20 0.84 6.7 −0.875 −0.024 10 6.7

MUSIG 10 5.0e−04 1 0.08 8.4 −0.959 −0.009 1 1.0
20 0.08 9.7 −0.960 −0.009 4 3.2

1.0e−03 1 0.17 4.3 −0.956 −0.005 1 1.0
20 0.17 5.3 −0.956 −0.004 6 4.0

5.0e−03 1 0.85 1.0 −0.923 0.028 1 1.0
20 0.84 2.3 −0.929 0.032 20 18.5

30 5.0e−04 1 0.08 12.6 −0.960 −0.032 1 1.0
20 0.08 18.7 −0.961 −0.032 4 3.1

1.0e−03 1 0.17 6.8 −0.956 −0.027 1 1.0
20 0.17 11.1 −0.957 −0.026 5 4.0

5.0e−03 1 0.84 1.6 −0.919 0.015 1 1.0
20 0.84 6.7 −0.930 0.013 20 16.0

the horizontal direction at the mid-elevation, are relatively insensitive to it. So one can conclude that a higher wall bubble 
velocity does not contribute significantly to the momentum balance in the system.

Furthermore, we include the result of a conventional first cell source term for MUSIG, i.e. addition of the void in the first 
cell via a source term. The results confirm that the effect of the wall flux formulation is equivalent to the first cell source 
term.

For the cell source term, discussed in Section 2.5, mesh-independence is not typically achieved for a wall source boiling 
condition. In Fig. 8, we perform a mesh-independence analysis in terms of the vapor fraction distribution and the mean 
diameter. The change in the mean diameter is limited. For MUSIG, d43 seems to converge for a finer mesh (Fig. 8b), whereas 
for DQMOM there is a small residual discrepancy between the finest mesh resolutions (Fig. 8a).

As regards the horizontal void distribution, the different mesh resolutions have a more significant impact. The same 
trends can be seen for both DQMOM (Fig. 8c) and MUSIG (Fig. 8d). In order to fully discern this type of behavior, a compar-
ison with experimental data or direct numerical simulations would be required.

The wall flux model is also susceptible to the mesh: a different formulation would be necessary to achieve mesh inde-
pendence for the case of void injected at the wall.

5.4.2. Collisions between bubble size distributions
The complexity and issues associated with the wall condition are further shown in Fig. 9, where the void fraction (on the 

left) and the mean diameter (on the right) are given with respect to the full simulation domain. The higher concentrations 
of bubbles are primarily found close to the wall, and, along the horizontal direction, the maximum value is located slightly 
off the wall. The bubble sizes are slightly larger at the inlet and at the wall, as a direct result of the chosen inlet and wall 
distributions of bubble sizes. Despite the large bubble at the inlet, the void fraction was however kept low in this part of 
the system. When the bubbles move away from the wall to the sub-cooled liquid flow, they can condense, break, aggregate: 
the net effect is a shrinkage of the sizes (see the plot on the right side of Fig. 9, from the dark red area close to the wall to 
the blue area).

The analysis of the mean diameter points out the issues with colliding size distributions. In fact the bubbles from the 
wall and from the inlet will interfere and mix with each others, over a relatively large range of sizes. This can cause 
numerical issues in the solution of the DQMOM transport equations for the weights and abscissas. Due to the threshold that 
was introduced in the algorithm and that removes the bubbles with very small sizes and keep bubbles with non-negligible 
sizes (see Section 3.3 and Fig. 4a), discontinuities are limited and the computational scheme is more stable and robust.
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Fig. 7. Comparison of different wall bubble convection velocities.

Fig. 8. Mesh dependence study for the condition of bubbles entering at the wall compared for MUSIG and DQMOM (2D case). The legend indicates the 
horizontal × axial mesh resolution. A boundary condition of αg = 0.1 with a fictitious wall velocity of 0.1 m/s is assumed for all cases.
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Fig. 9. Example of void and size distribution represented by d43 and αg for the full domain. The system is scaled in axial direction for presentation purposes. 
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 10. Enthalpy formulation comparison for DQMOM (left) and MUSIG (right), where form a corresponds to the discretization consistent with the momen-
tum equation and form b corresponds to the flux calculation relying on the equality given by eq. (49).

5.4.3. Enthalpy flux formulation
We also verify the formulation of the enthalpy fluxes that are needed for the convection terms in eq. (48). To do so, we 

compare the discretization based on eq. (48) (labeled form a), and the discretization of the enthalpy equation that relies on 
eq. (49) (labeled as form b). Fig. 10 shows the horizontal liquid temperature of the system, which directly corresponds to the 
enthalpy. An enthalpy flux that is not consistent with the momentum flux, as in the case of form b, gives unphysical profiles 
of the temperature. Using the consistent form a, the correct behavior is predicted: the temperature can increase because of 
the vapor condensation and it never goes below the inlet temperature.

6. Conclusions

A framework for simulations of bubbles in a sub-cooled liquid flow is formulated and implemented. It consists of a 
DQMOM model for describing the bubble size distribution under condensation, breakage and aggregation, and an Eulerian–
Eulerian two-fluid flow model. The framework is characterized in terms of the key aspects of DQMOM and of the coupling 
to the two-fluid solver. For this purpose, a set of numerical test cases are analyzed. To verify and highlight the features of 
the DQMOM model, a comparison is also carried out against a model based on a different method for the evolution of the 
bubble size distribution (MUSIG).

The dynamic abscissas associated with DQMOM are demonstrated to be advantageous for the continuous shrinkage asso-
ciated with the bubbly flow in subcooled conditions. The results suggest that, similar to other non-heated flow applications 
of DQMOM, only a few abscissas are required to reproduce the bubble size distribution, in contrast to the typically 30 or 
more classes needed in MUSIG. Furthermore, the dynamic calculation of the abscissas is shown to allow bubble distributions 
of very different range of sizes to be resolved in different parts of the domain.

We stress the importance of an iterative scheme for resolving the non-linear dependencies between the different ab-
scissas for DQMOM (or the different classes for MUSIG). Typically, a few iterations, within each time step, are necessary 
to reach convergence of all the equations. Besides, it is possible to employ larger time-steps, with a consequent reduction 
of computational costs. We find that a scheme with only one iteration per time-step, induced an error, although relatively 
small in terms of the change in void fraction. However, it is expected that the benefit of using sub-iterations can be even 
more important for cases with more challenging transient conditions.
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Furthermore, the DQMOM and MUSIG approaches are contrasted in terms of computational times. The DQMOM solver is 
shown to be between 3 and 10 times faster for a comparable precision of the calculated bubble size distributions. Finally, we 
demonstrated that the overall solver relies on a consistent formulation, so that mass and enthalpy are correctly preserved.

In addition to these types of numerical investigations, validation studies are needed so that a better understanding of 
the capabilities and limitations of these methods can be achieved from the analysis of experimental data.

Acknowledgements

The Swedish Center for Nuclear Technology (SKC) is acknowledged for financially supporting this PhD project. This work 
is carried out within the DREAM (Deterministic Reactor Modeling) task force at Chalmers University of Technology. The 
computations were performed on resources at Chalmers Center for Computational Science and Engineering (C3SE) provided 
by the Swedish National Infrastructure for Computing (SNIC).

References

[1] A. Prosperetti, G. Tryggvason, Computational Methods for Multiphase Flow, Cambridge University Press, Cambridge, United Kingdom and New York, 
NY, USA, 2007.

[2] D. Shaver, S. Antal, M. Podowski, Modeling and analysis of interfacial heat transfer phenomena in subcooled boiling along PWR coolant channels, in: 
NURETH-15, Pisa, Italy, May 12–16, 2013.

[3] E. Krepper, B. Koncar, Y. Egorov, CFD modelling of subcooled boiling – concept, validation and application to fuel assembly design, Nucl. Eng. Des. 237 
(2007) 716–731.

[4] D. Ramkrishna, Population Balances: Theory and Applications to Particulate Systems in Engineering, Academic Press, 2000.
[5] S. Lo, Application of the MUSIG Model to Bubbly Flows, AEAT-1096, AEA Technol., 1996.
[6] S. Lo, Some recent developments and applications of CFD to multiphase flows in stirred reactors, in: Proc. AMIF-ESF Workshop on Computing Methods 

for Two-Phase Flow, Aussois, France, January 12–14, 2000.
[7] G. Yeoh, J. Tu, Two-fluid and population balance models for subcooled boiling flow, Appl. Math. Model. 30 (2006) 1370–1391.
[8] H. Hulburt, S. Katz, Some problems in particle technology, Chem. Eng. Sci. 19 (1964) 555–574.
[9] R. McGraw, Description of aerosol dynamics by the quadrature method of moments, Aerosol Sci. Technol. 27 (1997) 255–265.

[10] D. Marchisio, R. Fox, Solution of population balance equations using the direct quadrature method of moments, Aerosol Sci. 36 (2005) 43–73.
[11] B. Selma, R. Bannari, P. Proulx, Simulation of bubbly flows: comparison between direct quadrature method of moments (DQMOM) and method of 

classes (CM), Chem. Eng. Sci. 65 (2010) 1925–1941.
[12] D. Marchisio, A. Barresi, G. Baldi, R. Fox, Comparison between the classes method and the quadrature method of moments for multiphase systems, in: 

8th Conference “Multiphase Flow in Industrial Plants”, Alba, Italy, 2002.
[13] A. Zucca, D. Marchisio, A. Barresi, R. Fox, Implementation of the population balance equation in CFD codes for modelling soot formation in turbulent 

flames, Chem. Eng. Sci. 61 (2006) 87–95.
[14] R. Fox, F. Laurent, M. Massot, Numerical simulation of spray coalescence in an Eulerian framework: direct quadrature method of moments and multi-

fluid method, J. Comput. Phys. 227 (2008) 3058–3088.
[15] G. Yeoh, C. Sherman, J. Tu, On the prediction of the phase distribution of bubbly flow in a horizontal pipe, Chem. Eng. Res. Des. 90 (2012) 40–51.
[16] L. Silva, R. Damian, P. Lage, Implementation and analysis of numerical solution of the population balance equation in CFD packages, Comput. Chem. 

Eng. 32 (2008) 2933–2945.
[17] A. Buffo, M. Vanni, D. Marchisio, R. Fox, Multivariate quadrature-based moments methods for turbulent polydisperse gas–liquid systems, Int. J. Multiph. 

Flow 50 (2013) 41–57.
[18] C. Yuan, R. Fox, Conditional quadrature method of moments for kinetic equations, J. Comput. Phys. 230 (2011) 8216–8246.
[19] D. Marchisio, R. Fox, Computational Models for Polydisperse Particulate and Multiphase Systems, Cambridge University Press, 2013.
[20] V. Vikas, Z. Wang, A. Passalacqua, R. Fox, Realizable high-order finite-volume schemes for quadrature-based moment methods, J. Comput. Phys. 230 

(2011) 5328–5352.
[21] O. Desjardins, R. Fox, P. Villedieu, A quadrature-based moment method for dilute fluid–particle flows, J. Comput. Phys. 227 (2008) 2514–2539.
[22] A. Buffo, M. Vanni, D. Marchisio, Multidimensional population balance model for the simulation of turbulent gas–liquid systems in stirred tank reactors, 

Chem. Eng. Sci. 70 (2012) 31–44.
[23] D. Marchisio, R. Vigil, R. Fox, Quadrature method of moments for aggregation-breakage processes, J. Colloid Interface Sci. 258 (2003) 322–334.
[24] D. Lucas, T. Frank, C. Lifante, P. Zwart, A. Burns, Extension of the inhomogeneous MUSIG model for bubble condensation, Nucl. Eng. Des. 241 (2011).
[25] S. Kumar, D. Ramkrishna, On the solution of population balance equations by discretization – III. Nucleation, growth and aggregation of particles, 

Chem. Eng. Sci. 52 (1997) 4659–4679.
[26] G. Yeoh, J. Tu, Computational Techniques for Multiphase Flows, Elsevier Ltd., 2010.
[27] S. Kumar, D. Ramkrishna, On the solution of population balance equations by discretization – I. A fixed pivot technique, Chem. Eng. Sci. 51 (1996) 

1311–1332.
[28] M. Ishii, T. Hibiki, Thermo-Fluid Dynamic Theory of Two-Phase Flow, second edition, Springer, 2011.
[29] J. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer, 2002.
[30] N. Kurul, M. Podowski, Multidimensional effects in forced convection subcooled boiling, in: Proceedings of the 9th International Heat Transfer Confer-

ence, Jerusalem, Israel, 1990.
[31] R. Rzehak, E. Krepper, CFD for subcooled flow boiling: parametric variations, Sci. Technol. Nucl. Install. 2013 (2013) 687494, http://dx.doi.org/

10.1155/2013/687494.
[32] H. Weller, Derivation, Modeling and Solution of the Conditionally Averaged Two-Phase Flow Equations, Technical report, OpenCFD, 2005.
[33] H. Rusche, Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions, Ph.D. thesis, Imperial College of Science, Technology 

& Medicine, 2002.
[34] S.A. Issa, P. Weisensee, R. Macián-Juan, Experimental investigation of steam bubble condensation in vertical large diameter geometry under atmospheric 

pressure and different flow conditions, Int. J. Heat Mass Transf. 70 (2014) 918–929.
[35] W.E. Ranz, W.R. Marshall Jr, Evaporation from drops. Parts I & II, Chem. Eng. Prog. 48 (1952) 141–146, 173-180.
[36] M. Vanni, Approximate population balance equations for aggregation–breakage processes, J. Colloid Interface Sci. 221 (2000) 143–160.
[37] H. Luo, H. Svendsen, Theoretical model for drop and bubble breakup in turbulent dispersions, AIChE J. 42 (1996) 1225–1233.
[38] E. Krepper, D. Lucas, T. Frank, H.-M. Prasser, P.J. Zwart, The inhomogeneous {MUSIG} model for the simulation of polydispersed flows, Nucl. Eng. Des. 

238 (2008) 1690–1702.



K. Jareteg et al. / Journal of Computational Physics 345 (2017) 373–403 403

[39] L. Schiller, A. Naumann, A drag coefficient correlation, Z. Ver. Dtsch. Ing. 77 (1935) 318–320.
[40] T. Hibiki, M. Ishii, Lift force in bubbly flow systems, Chem. Eng. Sci. 62 (2007) 6457–6474.
[41] M. Lopez de Bertodano, Turbulent Bubbly Flow in a Triangular Duct, Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, New York, 1991.
[42] F. Bertola, J. Grundseth, L. Hagesaether, C.A. Dorao, H. Luo, K.W. Hjarbo, H.F. Svendsen, M. Vanni, G. Baldi, H.A. Jakobsen, Numerical analysis and 

experimental validation of bubble size distributions in two-phase bubble column reactors, Multiph. Sci. Technol. 17 (2005) 123–145.
[43] NIST, Thermophysical Properties of Fluid Systems, National Institute of Standards Technology, 2011.





Paper VII

“On the dynamics of instabilities in two-fluid models for
bubbly flows”

K. Jareteg, H. Ström, S. Sasic, C. Demaziére
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� Instabilities in bubbly gas-liquid flows are investigated.
� A shared-pressure two-fluid model is applied to low bubble loadings.
� Inclusion of virtual mass force leads to change in the nature of the system.
� Physical phase heterogeneities follow the numerically-triggered instabilities.
� Implications for using two-fluid models for predicting bubbly flows are discussed.
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a b s t r a c t

In this paper we look at instabilities in bubbly gas-liquid flows and investigate the emergence and char-
acteristics of phase heterogeneities. We apply a shared-pressure two-fluid model to low bubble loadings
and demonstrate the existence of persistent gas fraction instabilities of a characteristic size larger than
the applied computational grid. In particular, we investigate the influence of a virtual mass effect on
the stability of the two-fluid model and we demonstrate a change in the emergence and the dynamics
of the phase heterogeneities. The change is accounted to a difference in the degree of hyperbolicity
due to the inclusion of the virtual mass force. Furthermore, the results indicate that an initial instability,
concluded as numerical in its character, evolves into a state with a physical character of the hetero-
geneities. We discuss implications of the existence and dynamics of the heterogeneities and the impor-
tance of the numerical behavior for interpretation of the results. In particular, we argue that underlying
characteristics of the model cannot and should not be concealed with additional sub-models (such as
momentum exchange terms) but must be acknowledged in the analysis of results from the two-fluid
model for bubbly flows.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Bubbly gas-liquid flows are important for many industrial pro-
cesses due to their advantageous characteristics of heat and mass
transfer. However, the complexity of the flow and the extensive
range of flow regimes in combination with large industrial devices
make computational modeling of such systems a major challenge.
For full scale simulations, the computational burden makes it
unfeasible to use Direct Numerical Simulation (DNS)-like methods
where the interface between the two-phases is directly tracked or
reconstructed. Examples of the latter include the volume of fluid
method (VOF) (Noh and Woodward, 1976; Hirt and Nichols,
1981), the level set method (LS) (Osher and Sethian, 1988;

Sussman et al., 1994) or front tracking (Unverdi and Tryggvason,
1992). As a consequence of the system sizes, typically much larger
than the length scales relevant for a single bubble or gas entity, it is
necessary to rely on a simplified representation, such as the two-
fluid model (Lahey and Drew, 1989; Ishii, 1990; Prosperetti and
Tryggvason, 2007).

In the two-fluid method, both phases are described in an Eule-
rian frame of reference. The fluids, in the present case gas and liq-
uid, are treated as interpenetrating continua that coexist in every
computational volume. The proportions of the respective phases
are described as a volume fraction and the flow properties are
assumed homogeneous for each phase in each discrete cell. Due
to such a local homogenization of the flow, information about
the interface between the phases is discarded. For a bubbly flow,
this means that the local characteristics such as the size of bubbles
is not predicted and that the dynamic behavior of the two phases is
also only recovered in an average sense.

http://dx.doi.org/10.1016/j.ces.2017.03.063
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Additionally, the governing equations of the two-fluid model
are typically derived under the assumption of a slow variation in
space of the phasic properties, for example the volume fractions
of the phases (Lahey and Drew, 1989). Such a requirement is an
attempt to reach the separation of scales, where the void fraction
fluctuations should not rapidly change on the scale of the compu-
tational mesh. The assumption of a slow variation is a major draw-
back when it comes to the applicability of the two-fluid model. An
assumption of small gradients, often neglected in practice, limits
the validity of the model to bubbly flows of low bubble loadings.
For flow regimes with higher gas fractions, such as slug or churn
flow, the computational cells would have to be enlarged to the
extent that no relevant fully dimensional resolution could be
achieved. For some applications, a coarse mesh and one dimen-
sional (1D) conservation equations are of relevance to compute
macroscopic system properties (Prosperetti and Tryggvason,
2007). In this paper we shall consider low ranges of the void frac-
tion (i.e. the gas fraction) in an attempt to fulfill the discussed
criteria.

Although the phases are represented in a spatially averaged
sense, the dynamic behavior of the phase fractions and velocities
is potentially important both for mass and heat transfer applica-
tions. It is thus of interest to accurately capture possible variations
and also the phenomena that contribute to the appearance of non-
uniform distributions of the void fraction. We will refer to such a
non-uniform state in the void distributions as heterogenities, i.e.
heterogeneous in terms of the spatially averaged phase fraction
fields. In contrast to fully resolved interfaces in VOF or LS, the
two-fluid formulation can only capture meso-scale fluctuations,
here used to denote heterogenities larger than the computational
cell but smaller than the system size. The meso-scales are through-
out the paper significantly larger than the actual bubble size, and
thus in accordance with the requirement of slow variations over
the averaging volume.

From experiments, it is well established that initially homoge-
neous bubbly flows can become heterogeneous at high enough
bubble loadings (Mudde et al., 2008). The physical mechanisms
responsible for this transition are however not yet fully under-
stood. There have been several attempts to identify those mecha-
nisms based on mathematical or numerical analyses of two-fluid
models, resulting in a range of possible, and sometimes even con-
flicting, suggestions for routes leading to an unstable behavior in
the sense of fluctuating values of the phase fractions or velocities
(Sankaranarayanan and Sundaresan, 2002; Lucas et al., 2005,
2006; Monahan and Fox, 2007b; Yang et al., 2007; Chen et al.,
2009; Yang et al., 2010). We will refer to the term instability for
the cause and transition of the homogeneous to the heterogeneous
void fraction distribution.

Complementary to the theoretical studies of flow regime transi-
tions, many authors have attempted to capture the experimentally
demonstrated change from uniform to heterogeneous flow based
on simulations. Notably, Monahan et al. (2005) simulated the
experiments by Harteveld (2005) with a variety of momentum
exchange terms and proposed the need for a large number of terms
to be accounted for to accurately capture the transition. As noted in
another paper from the same group (Monahan and Fox, 2007a), the
simulations can lack stability (in the sense of reaching a physical
and convergent solution) in the limit of small bubbles, which is
particularly interesting as the two-fluid model is derived under
the assumption of sufficiently small bubbles and slow variations
relative to the averaging scales. As made evident from the refer-
enced simulations, not all properties of the two-fluid model are
well understood. This is especially pertinent for the dynamic
behavior of heterogeneities in fully-dimensional (3D) flow simula-
tions, where an excessive use of additional model terms is likely to
significantly contribute with a diffusivity, in effect an excessive vis-

cosity, and thus overshadow potential fluctuations of phase
fractions.

In relation to the discussed numerical issues, it is known that
the degree of hyperbolicity affects the numerical stability of a
two-fluid model (Drew et al., 1979; Lahey et al., 1980; Dinh
et al., 2003) and it is therefore of interest for the current investiga-
tion of the dynamics of the two-fluid model. In formulations based
on 1D conservation equations, issues with instabilities have been
seen for models with no viscosity (Lhuillier et al., 2010). As a rem-
edy, a mathematical or numerical regularization may be applied to
achieve hyperbolicity (Dinh et al., 2003). A numerical regulariza-
tion is, in its simplest form, induced from a coarse spatial dis-
cretization which results in much numerical diffusion as
discussed by Pokharna et al. (1997). The need for viscosity (physi-
cal or numerical) is confirmed by linear stability analysis based on
simplified models, where it can be shown that such terms enhance
the stability of the short wave lengths (Arai, 1980).

Another way to deal with the model instabilities is to include
specific momentum exchange terms directly aimed to stabilize
the solution in the numerical sense. An example of this is to
include the virtual mass force in the formulation of the governing
equations. The virtual mass force corresponds to the force exerted
on a moving object immersed in a fluid when it accelerates rela-
tive to its surrounding, and hence must also accelerate some of
the surrounding fluid. Although the effect of that force may be
of little significance to the final results, the virtual mass force
can have a profound effect on the numerical behavior of the prob-
lem (Lahey et al., 1980; Toumi and Kumbaro, 1996). Theoretical
studies on 1D models for various formulations of the virtual mass
force confirm that hyperbolicity is obtained, but typically only for
a sufficiently low void fraction (Prosperetti and Satrape, 1990).
Such a finding is again of interest and importance for the two-
fluid model applied to low bubble loadings and small bubbles as
it potentially affects the dynamics of the heterogeneities. As
relates to the dynamics of bubbly flow, studies have shown that
the virtual mass force is crucial for accurate predictions of tran-
sient phenomena such as a bubble plume oscillation (Mudde
and Simonin, 1999; León-Becerril et al., 2002). As such, an inclu-
sion of the virtual mass force has multiple advantages, both
improving numerical characteristics and the predictability of tran-
sient behavior.

In effect, the two-fluid model is typically accompanied with a
turbulence model. The turbulence model enhances stability of
the two-fluid model due to existence of a significant turbulent vis-
cosity. However, to rely on this approach is not straightforward if
the two-fluid model is applied to a successively refined mesh, as
- in contrast to single-phase turbulence - meso-scale instabilities
in disperse two-phase flows typically originate from the very small
scales, which are increasingly well resolved as the cells become
smaller (Agrawal et al., 2001; Ström et al., 2015). Furthermore, tur-
bulence models, such as Reynolds-averaged Navier-Stokes (RANS)
models, are often applied to the continuous phase, not necessarily
taking the effect of the dispersed flow into account. There is still no
consensus on how to adapt well-established single-phase two-
equation turbulence models to properly account for complex
two-phase phenomena, such as bubble-induced turbulence
(Rzehak and Krepper, 2013). In relation to the virtual mass force,
Lhuillier et al. (2013) argue that it needs to be combined with a
model for the turbulent velocity fluctuations in order to guarantee
hyperbolicity. In a similar manner, Stewart (1979) demonstrate
that the two-fluid equations are well-behaved given a large enough
momentum exchange between the phases and a coarse enough
mesh. However, it should be emphasized that such a finding does
not guarantee that the underlying equations are stable, but rather
that the model is well-behaved on a coarse mesh without address-
ing the underlying ill-posedness.
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In addition to forces for the momentum exchange and the tur-
bulence model, some authors propose a two-fluid formulation with
separate pressures for each phase (Ransom and Hicks, 1984; Lee
et al., 1998; Chung et al., 2000). This is in contrast to the widely
used formulation of a single, shared, pressure, also applied in this
paper. Although the interpretation of the dispersed phase pressure
is not fully clear, different two-pressure formulations are shown to
add additional diffusivity, thus stabilizing the two-fluid model
(Dinh et al., 2003). The numerical smearing is further confirmed
by Munkejord (2010) who shows that, for a dual pressure approach
with a short relaxation time between the phases, the system of
equations shows similar ill-posedness as the single-pressure two-
fluid model. In the current scope we are primarily concerned with
the effect of the momentum exchange, and as the numerical prop-
erties were discussed to be similar to the single-pressure model,
the two-pressure approach is not considered. Further, we note that
a specific bubble phase pressure (Spelt and Sangani, 1997) is occa-
sionally applied. Similar to the above reasoning on additional
momentum exchange mechanisms, we will show that an excessive
number of forces is not likely desirable for the studies of the under-
lying numerical properties of the two-fluid model.

We aim in the current paper to qualitatively unite the experi-
mentally proved bubble instabilities with the extensive 1D analy-
ses and formulations of the two-fluid methodology in the
presented 3D simulations. Such an aim involves the analysis of
the combination of issues related to the lack of hyperbolicity, the
experimentally observed instabilities as well discerning the impli-
cations of conventional use of the two-fluid model involving a
large number of sub-models.

We investigate the capability of the two-fluid model based on a
shared-pressure formulation to resolve the dynamics in a volume-
averaged bubbly flow. We address the question of whether the
observed instabilities are physical or purely numerical by contrast-
ing the numerical results obtained with two similar two-fluid
models for the canonical problem of an initially homogeneous
periodic bubbly flow. The main difference between the two models
is their degree of hyperbolicity, as one accounts for the effects of
the virtual mass force whereas the other does not. This work thus
extends the analysis of Lahey et al. (1980) on the virtual mass force
effects on the numerical stability of two-phase flows, to the
unsteady problem of a transition from a homogeneous to a hetero-
geneous flow.

In detail, we apply the two-fluid model on a fully periodic 3D
system with initially uniform fields for both the phase fractions
and velocities. As such, the system includes no initial spatial vari-
ations and no gradients from walls. We characterize the growth
and existence of instabilities in the void fraction field by extracting
time series of relevant fields as well as computing a global index
for the heterogeneity in the system as the solution is advanced in
time.

The analysis is challenging in the sense that the studied models
are shown to exhibit numerical instabilities, typically both
unwanted and inadvertent from a physical point of view. At the
same time, these models are used to investigate the stability of
bubbly flow systems. Our aim is to demonstrate whether the insta-
bilities and fluctuations seen in the simulations are physical. We
attempt to discern the different stages of the instabilities by study-
ing the spatial distribution and the length scales of the fluctuations
in combination with a temporal analysis of the global heterogene-
ity in the system.

The paper is structured as follows. We introduce the governing
equations and the implementation of the two-fluid model in Sec-
tion 2. The 3D system and the initial and boundary conditions
are defined in Section 3. In Section 4, we present numerical results
that illustrate the cases with the virtual mass force included or
excluded. Finally, in Section 5 we give a conclusion regarding the

feasibility to recover physical heterogeneities within the presented
type of the two-fluid model.

2. Two-fluid model

In this section, we present a two-fluid model for the simulation
of bubbly flows. We give the governing equations and also briefly
describe the implementation with a specific focus on the virtual
mass force. We will show that, in spite of the attempted simplicity,
the solver exhibits complex instabilities in the phase fraction dis-
tributions (Section 4).

2.1. Conservation equations

The derivation of the conservation equations follows a standard
procedure, where the local instantaneous Navier-Stokes equations
are typically time and/or space averaged (Lahey and Drew, 1989;
Ishii and Hibiki, 2010; Prosperetti and Tryggvason, 2007). Although
some authors used ensemble averaged equations (e.g. Zhang and
Prosperetti, 1997), the majority of implementations reported in
the literature relies on a volume averaging approach, especially
for the closure of the interfacial momentum transfer (as discussed
by Jakobsen (2008)).

The formulation applied in this work closely follows the proce-
dure outlined by Weller (2005), where the conservation equations
are ensemble averaged, but with the mentioned volumetric aver-
age for the momentum exchange terms. The continuity equation
is given by

@aiqi

@t
þr � ðaiqiUiÞ ¼ 0; ð1Þ

where qi is the density, ai the phase fraction and Ui is the velocity.
In all equations i indicates the phase. In the applied framework, the
continuity equation is reformulated to

@agqg

@t
þr � ðagqgUcÞ þ r � ðagð1� agÞqgðUg � UlÞÞ ¼ 0 ð2Þ

where Uc , the mean velocity, is given by

Uc ¼ agUg þ alUl: ð3Þ

The formulation of the continuity equation in terms of the mean
velocity results in an additional term which is meant to help the
coupling of the phases and result in bounding for the extremes
ag ¼ 0 or ag ¼ 1 (Weller, 2005; Rusche, 2002). In the latter work
it is also noted that the additional non-linearity introduced in Eq.
(2) in comparison to a straightforward implementation, like Eq.
(1), might lead to difficulties in convergence. A direct remedy for
such issues is however to apply sufficiently low Courant numbers.

In a similar way to the continuity equation, the momentum
conservation equation on a standard form, such that

@aiqiUi

@t
þr � ðaiqiUiUiÞ ¼ �r � aið��si þ ��sti Þ

� �
� airðPÞ þ aiqigþMi;

ð4Þ

is re-written in a phase-intensive manner

aiqi
@Ui

@t
þ aiqiUir � Ui ¼ �r � aið��si þ ��sti Þ

� �
� airðPÞ þ aiqigþMi

ð5Þ

where ��si denotes the viscous stress tensor, ��sti the turbulent stress
tensor, P the shared pressure and the interfacial momentum trans-
fer is given by Mi. The viscous stress tensor is given by:

��si ¼ �li rUi þrUT
i �

2
3
��Ir � Ui

� �
ð6Þ
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where the fluids are assumed to be Newtonian. Eq. (5) is derived by
combining the continuity equation of the respective phase to Eq.
(4). The direct advantage of Eq. (5) over Eq. (4) is that it is possible
to solve also for the extremes, i.e. ag ¼ 0 or ag ¼ 1.

For the turbulent contribution to the stress tensor, we note that
the bubbly flow will see different sources to the velocity fluctua-
tions, namely large-scale vortical structures, bubble-induced tur-
bulence and shear-induced turbulence (Ojima et al., 2014a,b;
Tomiyama and Shimada, 2001). For the case of low gas fractions,
Ojima et al. (2014a) showed that, for dilute bubbly flows, the
large-scale vortical structures are the main contributor to the tur-
bulent kinetic energy. Furthermore, Monahan et al. (2005) argue
that a multiphase turbulent model is of doubtful validity for a very
dilute flow, as applied in this paper. As an example, Becker et al.
(1994) showed that a typical k� � RANS-based model overpredicts
the turbulent viscosity, which has also been shown to smear the
fine-scale structures of interest for the emergence of instabilities
(Jareteg et al., 2015). Based on the previous remarks in combina-
tion with a very fine resolution of the mesh and with the aim to
distinguish the effect of the virtual mass effect, we perform all sim-
ulations without a turbulence model, i.e ��sti ¼ 0.

In further detail, the approach followed here is thus to apply an
implicit LES type of methodology, where the turbulent kinetic
energy is not explicitly modeled. Instead a fine grid is applied in
an attempt to resolve the large-scale vortical structures as dis-
cussed above, and the numerical dissipation is used in lieu of the
physical dissipation (Boris et al., 1992). It should be noted that
the final form of the conservation equations are identical for the
case of time-averaging (for a RANS-based method) or from a
volume-average (for a LES-like interpretation). The difference
between the two mentioned averages lies with the interpretation
of the terms related to fluctuations.

As regards the modeling of the effect of the bubble-induced tur-
bulence, different alternatives have been proposed in the literature
including a turbulent dispersion force (Bertodano, 1998), a drift
velocity model (Bel Fdhila and Simonin, 1992) or a turbulent con-
tribution to the added mass (Ali et al., 2011). Also for the latter, the
effect is essentially introducing an additional gas dispersion. Argu-
ably, there are cases where such a contribution is essential. How-
ever, for the purpose of the current study such effects are not
studied as our purpose is not primarily to accurately predict the
flow but investigate the characteristics of the two-fluid model.

It should be noted that, in the case of incompressible phases and
adiabatic conditions, we can extract the densities qi out of the spa-
tial and temporal derivatives. However such an assumption is not
directly necessary following the procedure above which can be
used also for the case of phase change and compressible condi-
tions. However, in the current paper, we limit ourselves to iso-
thermal simulations. As a result, no energy equations are solved
and the phasic densities and other thermophysical properties are
assumed constant. Ransom and Hicks (1984) showed that the
energy equations do not affect the numerical characteristics of
the two-phase equations.

2.2. Interfacial momentum transfer

The interfacial momentum transfer (Mi) is decomposed into
individual contributions, based on a Lagrangian approach with
bubbles (see e.g. Crowe et al. (1998)). For the Eulerian-Eulerian
approach, based on a volumetric calculation of a body force, the
assumption of disperse flow, i.e. discrete bubbles, relies on that a
sufficiently low gaseous fraction is simulated. With higher fraction
and larger structures of gas, the closures for single bubbles are no
longer valid. Based on this, we focus on a low gaseous fraction
regime, with a maximum of 10% volumetric gas.

The current work is concerned with the effect of the virtual
mass force on the stability of the solver and emergence of hetero-
geneities in the gas fraction field. With this scope in mind, we focus
on the drag and virtual mass forces only. The drag force is formu-
lated as

Mg;drag ¼ �3CdqlagalkUg � Ulk
4db

ðUg � UlÞ; ð7Þ

where db is the bubble size and Cd is the drag coefficient which is
calculated based on the particle Reynolds number, Reb, according
to the Schiller-Naumann correlation (Schiller and Naumann, 1935):

Cd ¼
24
Reb

1þ 0:15Re0:687b

� �
: ð8Þ

The virtual mass force is modeled as:

Mg;vm ¼ �Cvmagalql
DUg

Dt
� DUl

Dt

� �
; ð9Þ

where the coefficient Cvm is in general modeled with a gas fraction,
ag , dependence (Pauchon and Banerjee, 1986; Zuber, 1964;
Mokeyev, 1977; Van Wijngaarden and Jeffrey, 1976) and a size
dependence (Sankaranarayanan et al., 2002). As concerns the gas
fraction dependence, the models generally agree on Cvm ¼ 0:5 in
the limit of low fractions. Accordingly, in the current paper we
apply a fixed value of Cvm ¼ 0:5. It should be noted that a simplified
1D stability analysis of the two-fluid model with a virtual mass
force included indicate that the stability properties has a certain
dependence on Cvm, where a fixed value with no fraction depen-
dence is shown to have the largest stability region (Prosperetti
and Satrape, 1990).

Prior to the description of the system and presenting the results,
we emphasize the implications of size dependence in the virtual
mass and drag correlations. In the derivation of the closure of the
momentum interface exchange between the phases in the two-
fluid model, we lose the information about the bubble size distri-
bution. As a remedy for this, the open literature contains a large
range of population balance methods (PBMs), where the direct
quadrature method of moments (DQMOM, see e.g. Marchisio and
Fox (2005, 2010, 2013)) and the multiple size group method
(MUSIG, Lo (1996)) are notable examples. Whereas such methods
attempt to handle the effect of bubble aggregation and breakage,
the general implementation of the interfacial forces is the same,
i.e. based on a volumetrically averaged source term. For the current
work, we discard the additional complexity of a bubble size distri-
bution, but emphasize that the mathematical characteristics of the
equations are presumably not significantly altered from the addi-
tional information of the bubble sizes, although this is a field for
future research.

2.3. Numerics and implementation

The conservation equations are implemented, discretized and
solved within the CFD software OpenFOAM (Weller et al., 1998).
The implementation of the two-fluid solver is an adaptation of
the PISO algorithm (Issa, 1986), with a momentum predictor step,
and with a combined continuity equation for both phases that is
used for the shared pressure equation. Further details of the solver
for similar applications are found elsewhere (Jareteg et al., 2015).

3. System description

3.1. Geometry and initial conditions

All simulations are performed on a fully periodic domain of
dimensions 0:1 m� 0:4 m� 0:1 m, where the x� z plane is
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horizontal and the y-axis is aligned with the gravitational acceler-
ation. The calculations are performed on two different mesh reso-
lutions, 32� 64� 32 and 48� 96� 48 denoted Coarse and Fine,
respectively. It should be noted that the domain should be large
enough not to produce spatially self-correlating results. In the cur-
rent case, the domain size was confirmed large enough by studying
the cross-correlation of the void fraction field.

The thermophysical parameters together with the initial condi-
tions are presented in Table 1. Additionally, for the pressure a jump
condition is applied between the axial top and bottom boundaries.
The purpose of such a condition is to outbalance the effect of grav-
ity, avoiding a downward acceleration of the flow, and thus allow-
ing an axially consistent periodic flow. The magnitude of the jump
is computed to exactly balance the weight of the gas and liquid
phases. As a result, the magnitude of the jump term is different
for different bubble loadings. For the velocity, initially flat and
equal values are used for both phases. The assumption of no initial
drift velocity between the phases has been compared with simula-
tions with an initial difference in phase velocity and the general
trend as regards the void fraction were found to be the same.
The bubbles are assumed mono-dispersed and, as discussed in Sec-
tion 2.2, the effects of aggregation or breakage are not considered.

In the last Section (4.3) of the results, three different average
gas fractions are compared. We emphasize that for all simulations
a completely flat gas distribution is used as the initial condition.
Accordingly, we let the instabilities be triggered by the numerics
(i.e. limited floating precision or small perturbations induced from
not solving the matrix systems to infinitely low residuals).

3.2. Numerical schemes and time step choice

For the presented results, second order schemes are used in
space, whereas an explicit scheme is used for time discretization.
We strive to limit the influence of the time discretization and apply
a very small time step (Dt ¼ 50 ls), which results in low Courant
number (on the order of 10�3 or lower).

For the spatial accuracy, an increase of the resolution is less
straightforward. As the spatial averaging volume approaches the
size of the simulated bubbles, the underlying theoretical assump-
tions of a slowly varying field is no longer valid (Nigmatulin,
1979; Lahey and Drew, 1989).

On the other hand, Prosperetti (2003) argues that, although the
validity of the smallest resolved scales are doubtful, the concept
and mechanism of a grid refinement is profound. As such, the
refinement will lead to less dissipation from the spatial discretiza-
tion, and thus it is of interest in the evaluation of the applicability
of the two-fluid model to simulate void fraction fluctuations. Such
an urge to minimize dissipation is confirmed by Oey et al. (2003),
who showed that a too excessive numerical dissipation will render
the system steady, smearing the transient behavior of the two-fluid
model. As discussed above, the extreme of a coarse mesh can
potentially render the system hyperbolic. However, since this is

achieved entirely through numerical diffusivity, there is no gain
in the quest of the dynamic behavior of the two-fluid model.

In addition, we note that some authors, e.g. discussed by Ma
et al. (2015), argue that the requirement of separation of scales
must be enforced only during the derivation of the conservation
equations. With such a reasoning the resulting set of PDEs can be
solved on an arbitrarily fine mesh. However, in the same context,
Jakobsen (2008) suggests that the interpretation of the solution
is strictly limited to the smallest scales considered in the formula-
tion of the closure laws. In the same manner, we argue that the use
of a very fine mesh is doubtful for a system of equations that is
closed with an interfacial closure model aimed for significantly lar-
ger averaging volumes. For the derivation of the two-fluid equa-
tions to be valid, we are strictly limited to resolutions where we
can rely on separation of scales. For application on computational
grids where such a separation is not achieved, the conservation
equations would in principle contain additional terms due to
non-local effects (see e.g. Espinosa-Paredes (2012)).

For the two mesh resolutions applied in this paper, the bubble
diameter per cell size in axial direction corresponds to 0.05 (coarse
mesh) and 0.1 (fine mesh). In terms of the underlying assumptions
of separation of scale, this is a reasonable choice as a sufficiently
smooth variation of flow fields is expected. The chosen mesh reso-
lution is also in line with the reasoning of Stewart (1979), who
argues that the resolution should be coarser than the bubble size
characteristic for the momentum exchange.

3.3. Data extraction and post-processing

To analyze the emergence and persistence of spontaneous
heterogeneities we extract time resolved values of the gaseous vol-
ume fraction field, the velocity for both phases and the interfacial
momentum forces. Geometrically resolved data for a smaller num-
ber of time steps are stored for visual representation of the system.

Additionally, we compute a time-resolved uniformity index,
defined as

UðtÞ ¼ ag;max � ag;min

ag;ave
; ð10Þ

where ag;max and ag;min are the instantaneous maximum and mini-
mum gas fractions for all cells and ag;ave is the constant domain
average void fraction. Such a parameter gives a global measure of
the phase fraction heterogeneity, and is used to assist in discussion
on the emergence and character of the instabilities.

4. Numerical results

In this section we present results from the simulations of a fully
periodic system. We note that all simulated cases, to a varying
degree, exhibit instabilities such that the initially flat distributions
of all properties evolve to a heterogeneous state. We demonstrate
that multiple stages are seen in the simulations, and we discuss the
validity of the presented results from a physical point of view.

It should be emphasized that the presented data all correspond
to a single realization for the given combination of different bubble
loadings and included forces. Due to the random character of the
instabilities, a different set of settings or a different floating point
perturbation will lead to a different realization of the system.
The cases presented should thus be considered as representative
and of qualitative relevance.

4.1. Void fraction and velocity time series

Fig. 1 presents time series of the void fraction, the time-resolved
uniformity index and the phase velocities, with and without the

Table 1
Thermophysical parameters and initial conditions for both phases.

Liquid density, constant ql 1000 kg=m3

Gas density, constant qg 1 kg=m3

Liquid viscosity, constant ll 10�3 Pa s
Gas viscosity, constant lg 10�3 Pa s
Bubble size, constant db 0:68mm

Void fraction, uniform initial condition ag 0:05
Liquid velocity, uniform initial condition ð0; 0;0Þm=s
Gas velocity, uniform initial condition ð0; 0;0Þm=s

Gauge pressure, uniform initial condition 0 Pa
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Fig. 1. Temporal development of the void fraction field (top), the uniformity index (middle) and the magnitude of the velocity field for both phases (bottom). Both cases
exhibit an initial transient in the void fraction and the uniformity index, although significantly faster for the case without the virtual mass force. The simulations are
performed on the coarse mesh with the initial condition a ¼ 0:05.

Fig. 2. The gas fraction field displayed for 6 time steps (as indicated at the top of the figure) with the case of no virtual mass (top two rows) and virtual mass included (bottom
two rows), displayed in the x� y plan (rectangular figures) and the x� z plane (square figures). All figures are presented for the same color legend which corresponds to the
extremes for the upper row (no virtual mass) at t ¼ 120 s.
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virtual mass force. It should be noted that whereas the time-
resolved uniformity index is computed globally, the void fraction
and velocity profiles are extracted locally from the centre of the
fully periodic domain. Furthermore the data is presented with dif-
ferent axes for the different cases in order to clearly visualize the
qualitative dynamic behavior of the presented quantities. As a first
analysis, we note that the case without the virtual mass force exhi-
bits significantly larger magnitudes of both the void fraction peaks
and the time-resolved uniformity index. In addition the velocity for
the case without virtual mass (bottom right in Fig. 1) displays a
slight acceleration in the velocity of both phases, whereas the drift
velocity is quantitatively similar for both cases.

For the case without the virtual mass force we see repeated
bursts in the void fraction as well as the time-resolved uniformity
index. The results suggest that the system sees a growing instabil-
ity which decays over approximately 25 s and then grows again.
The results make evident that the system is inherently unstable
and indicates a confirmation of the previous theoretical discussion,
namely that the two-fluid solver with a drag model only lacks
hyperbolicity. Furthermore, the oscillating behavior of U proposes
that the observed instability has a numerical character, at least in
the vicinity of the outbreaks.

The results with the virtual mass force show different charac-
teristics in terms of both a and U. Whereas an initial growth in U
is seen, which is qualitatively similar to the case without the vir-
tual mass force, no regrowth is observed after the maximally
unstable state. Instead a different stage is entered after approxi-
mately 100 simulated seconds, where the fields exhibit a more
smooth variation. The second stage is from a qualitative point of
view considered as more physical in its appearance due to its
smooth variation the extracted data, which is further strengthened
by Fig. 2 as discussed below.

As regards the described drift in the velocity, primarily for the
case without the virtual mass (Fig. 1a, bottom), we note that the
largest disturbances in the extracted velocity data occur concur-
rently with the ruptures in the void fraction and the time-
resolved uniformity index. The change in the baseline velocity is
thus interpreted as a result of the unstable state, where the veloc-
ity increases. Since the system is driven by an axially fixed pressure
jump, there is no explicit mechanism to drive the system back to
the initial zero liquid velocity. On the other hand, for the case
including the virtual mass (Fig. 1b, bottom), an on average constant
velocity is seen.

Fig. 3. Cartesian components of the virtual mass force (top) and the drag force (bottom).
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Complementary to Fig. 1, a visualization of the void fraction
field is presented in Fig. 2. For the cases without virtual mass, cor-
responding to the two upper rows in Fig. 2, we see that for example
at t ¼ 200 s a striped, non-physical, state coincides with a sudden
eruption in U. Again, this points to an instability of a numerical
type, i.e. lack of hyperbolicity, rather than a physical fluctuation.
It should be noted that the width of the stripes correspond to a sin-
gle cell width. The same conclusion is drawn from the horizontal
slice, square figures in the second row, where again a striped pat-
tern of a single computational cell is seen.

In contrast, the results for the case with the virtual mass force,
the bottom two rows in Fig. 2, an initial striped pattern (up to
t ¼ 80 s) is followed by a physically looking instability, larger than
the cell size but smaller than the vertical and horizontal size of the
domain. Figs. 1 and 2 combined confirm a process in two stages; an
initial instability of a numerical character is followed by a meso-
scale instability that persists. We also emphasize the significant
difference in the dynamics between the cases, where the case with
virtual mass exhibits a smoother evolution of all fields.

4.2. Momentum interface transfer

In Fig. 3, we present a comparison between the magnitude of
the virtual mass and drag forces. The analysis reveals that the axial
component (y-direction) of the virtual mass (Fig. 3a, middle) is
small in comparison to the drag (Fig. 3b, middle). For the other
components the forces are on the same order of magnitude. When
compared to the time-resolved uniformity index for the same case
(Fig. 1b, middle), it is seen that the virtual mass force increases in
magnitude primarily after t ¼ 100 s. This coincides with the
change in void characteristics (Fig. 1b, top) and further emphasizes
the presence of a second stage in the simulations.

It is notable that, even though the size of the virtual mass force
is small in the early stage of the simulation, it is still profound for
the growth of the instability as the dynamics is significantly chan-
ged, compare Figs. 1a (middle) and 1b (middle).

4.3. Void comparison

Next we study the difference between different initial, uniform,
void fraction levels. The results are presented in Fig. 4. For the cases
with the virtual mass force the dynamics of the growth of the
instability are changed. The three realizations indicate a slower
growth of the heterogeneity for a lower gas fraction. A similar
trend is seen for the case without the virtual mass although it is
less clear. For the case without the virtual mass force the repeated

bursts in the uniformity index are seen for an initial uniform void
fraction of 5% and 10% but not for 1%. For the latter case a single
peak over approximately 30 simulated seconds is instead seen,
whereafter U continually decreases. The latter findings indicate
that the model is less prone to the instabilities for lower void
fractions.

For a more decisive and quantitative analysis of the relative
dynamics of the different bubble loadings, a larger set of realiza-
tions would be required. Due to a considerable computational bur-
den of such an analysis, we qualitatively conclude that a variation
with the void fraction is seen and that for the case with the virtual
mass force, the stage of the proposed physical instability is reached
for all the presented void fractions.

4.4. Grid refinement study

We perform a mesh refinement study using the two different
mesh resolutions defined in Section 3.1. In both cases, the results
are very similar in terms of the magnitude of the void fraction fluc-
tuation and the time-resolved uniformity index. A minor change in
the dynamics of the growth of the heterogeneity is seen for the
case with the virtual mass (Fig. 5b). However, to quantitatively
evaluate the differences between the cases a larger number of real-
izations of the transient would be necessary.

The results suggest that the refinement has not induced any sig-
nificant change in the nature of the instabilities. Arguably this
means that potentially smaller scale variations in the case of the
finer grid do not induce any significant contribution to the meso-
scale fluctuations. Although such an argument is only indicatively
supported, it is interesting in terms of our quest for a two-fluid
model to study the growth rate of heterogeneities.

4.5. On the nature of instabilities

As a final discussion we consider the nature of the presented
instabilities and the resulting heterogeneities in the flow; are the
emerging meso-scale structures a correct representation of physi-
cal fluctuations or a mere result of numerical artifacts? From the
results of the second stage of the cases with the virtual mass force,
we see a qualitative behavior which has a physical character with
continuous phase fractions and velocities and with the persisting
heterogeneities. On the other hand, we note that all such results
are triggered by the artificial state, with a clearly unphysical char-
acter. We are thus not able to conclude that the actual physics is
recovered as the initial conditions for the more physically appear-
ing state are not realistic.

Fig. 4. Temporal development of the time-resolved uniformity index for three different initial, uniform, bubble loadings.
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From an equation point of view, the flat initial distributions of
all fields cannot generate any fluctuations as all spatial gradients
are zero. However, as discussed, a small round-off error or small
residual in the fields is enough to trigger the instability. Interest-
ingly, there is no clear mechanism to drive the system back to a
homogeneous state (in principal due to the lack of mass diffusion
in the phase fraction equations, Eq. (2)). Still, the finite and discrete
representation of the spatial operators will in practice tend to
smear the solution. However, as is clear from the re-appearing
numerical instabilities for the case with drag only (Fig. 1a, top)
the emergence of more physical meso-scale heterogeneities is in
itself not a cure for the underlying ill-posedness. The relaxation
towards a more flat distribution in space (i.e. U decreasing) only
reaches a certain point, whereafter the system bounces back to a
more heterogeneous distribution via the numerically artificial
state.

It is also notable that for our reduced model description, based
on the drag and virtual mass forces only and without an excessive
viscosity from long time-steps or a RANS model, the instabilities
are clearly visible. In contrast, a model with enough viscosity con-
tribution from forces or turbulence models would potentially hide
the instabilities. In line with this, an additional number of forces to
fit experiments can never be taken directly as an example of a cor-
rect capture of the physics, but rather as a mean to hide the under-
lying instability or to suppress it just long enough that a
resemblance to the behavior observed in experiments may be
obtained. We argue that the two-fluid model issues can be sup-
pressed and tuned, but never fully cured by additional momentum
exchanges. This argument is supported by the fact that momentum
exchange terms derived strictly based on mathematical arguments
(i.e. to ensure hyperbolicity at all conditions) without additional
suppression of the inherent instabilities through overly diffusive
effects are known create problems with physically inconsistent
model predictions (Vazquez-Gonzalez et al., 2016).

Finally, we argue that the above presented reasoning of the
validity of the presented data leads to two possible scenarios.
The first scenario is that we deem all the results unphysical due
to the numerical trigger of the presented heterogeneous state. Such
a standpoint would imply that the two-fluid model structure is
inherently dangerous and cannot be trusted. This conclusion would

have far-reaching consequences for all current and future research
concerned with averaged descriptions of bubbly gas-liquid flows,
as it would imply that modelers should always have to prove the
well-posedness of their two-fluid model before any results are ana-
lyzed. Alternatively, we might argue that the second the stage of
the above presented data has a valid physical character, irrespec-
tive of the way in which it was triggered. Such a standpoint would
however inevitably lead to challenges in the understanding of the
results for studies of the stability of bubbly flows with this type of
model. It would be necessary to find a solid theoretical basis for
judging when the influence of the unphysical trigger has decayed
enough. We propose that, in line with the first scenario, due to
the unphysical trigger the quantitative values cannot be directly
trusted, although we interpret the fluctuations in the second stage
as physical in their character. In this view, a shared-pressure two-
fluid model can be used to investigate the qualitative dynamics of
instabilities in bubbly flows, although it still an open question
whether this type of model will ever allow for a fully quantitative
investigation.

5. Conclusions

We have studied the emergence and existence heterogeneities
due to instabilities in bubbly gas-liquid flows simulated with a
two-fluid model. We have shown that the inclusion of the virtual
mass force significantly changes the growth rate of the void
heterogeneities, even though the magnitude of that force relative
to the drag force is initially small which proposes a change in the
characteristics of the equations. After an initial growth of hetero-
geneities, associated with the numerical instability of the model,
a transition is revealed to a different gas fraction behavior of a
more physical character. For the cases including the virtual mass
force, the smoother evolution and a physically appearing character
is associated with a change in the hyperbolicity of the problem.

We have shown that the variation of the initial gas fraction
results in a change in the dynamics of the growth of the hetero-
geneities and that the mesh resolution study indicates that the
revealed meso-scale are in character not dependent on the compu-
tational grid. The latter suggests that it is possible to reach a cer-
tain mesh independence for the formulated equations, although

Fig. 5. Temporal development of the void fraction field (top) and the uniformity index (bottom) for two different mesh resolutions with the initial condition a ¼ 0:05.
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the underlying two-phase flow does not at all exhibit a separation
of scales.

We interpret the demonstrated fluctuations, in particular after
the transitions from the initially unstable gas fraction behavior,
as physical in their character and thus of fundamental importance
for an accurate description of the two-phase flow. However, the
fluctuations are triggered by a numerically artificial state and we
propose that the quantitative values can thus not be directly
trusted. We have emphasized that the effect of a turbulence model
entirely based on a viscosity contribution is prone to, unphysically,
dampen the presented fluctuations. We conclude that the sug-
gested change in hyperbolicity has an important impact on the
physics of the two-phase flow based on the 3D two-fluid model.
Furthermore we propose that a model with a large number of
momentum exchange forces cannot be a proof of correct physics,
but merely an example of a model which hides the underlying
instability of the equations.
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In this paper, a new method that can be used for checking the proper implementation 
of time- or frequency-dependent neutron transport models and for verifying their ability 
to recover some basic reactor physics properties is proposed. This method makes use 
of the application of a stationary perturbation to the system at a given frequency and 
extraction of the point-kinetic component of the system response. Even for strongly 
heterogeneous systems for which an analytical solution does not exist, the point-kinetic 
component follows, as a function of frequency, a simple analytical form. The comparison 
between the extracted point-kinetic component and its expected analytical form provides 
an opportunity to verify and validate neutron transport solvers. The proposed method 
is tested on two diffusion-based codes, one working in the time domain and the other 
working in the frequency domain. As long as the applied perturbation has a non-zero 
reactivity effect, it is demonstrated that the method can be successfully applied to verify 
and validate time- or frequency-dependent neutron transport solvers. Although the method 
is demonstrated in the present paper in a diffusion theory framework, higher order neutron 
transport methods could be verified based on the same principles.
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1. Introduction

The modelling of nuclear power plants relies on complex codes and models capable of resolving the interdependence 
between several fields of physics. This is particularly true when modelling nuclear reactor cores where a tight coupling be-
tween the transport of neutrons, fluid dynamics, and heat transfer exists [1]. The codes used by the nuclear industry, before 
getting licensed by the safety authorities, must go through a lengthy process of verification and validation. Using common 
terminology in computer simulations, the verification process aims at verifying the proper implementation of a given math-
ematical model whereas the validation process targets at demonstrating the correctness of the chosen mathematical model 
to represent the actual physics [2–4].

The verification of computer models is most often performed by comparing the results of the simulations to analytical 
or semi-analytical solutions [5–7]. Being able to obtain analytical or semi-analytical solutions usually imposes to drastically 
reduce the actual complexity of the system. This could require considering homogeneous systems or piece-wise homoge-
neous systems. The validation, on the other hand, could be carried out by assessing the accuracy of the simulations versus 
either experimental data or results of other already qualified computer models [8–10].

* Corresponding author.
E-mail address: demaz@chalmers.se (C. Demazière).
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0021-9991/© 2017 Elsevier Inc. All rights reserved.
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The behaviour of neutrons inside a nuclear core is governed by the neutron transport equation, which reads, using 
standard notations, as [11]:

1

v(E)

∂

∂t
ψ(r, Ω̄, E, t) + Ω̄ · ∇̄ψ(r, Ω̄, E, t) + ΣT (r, E, t)ψ(r, Ω̄, E, t)

=
∞∫
0

∫
(4π)

Σs
(
r, Ω̄ ′ → Ω̄, E ′ → E, t

)
ψ

(
r, Ω̄ ′, E ′, t

)
dΩ ′dE ′

+ (1− β)χ p(E)

4π

∞∫
0

υ
(
E ′)Σ f

(
r, E ′, t

)
φ
(
r, E ′, t

)
dE ′ + χd(E)λC(r, t) (1)

and

∂C

∂t
(r, t) = β

∞∫
0

υ
(
E ′)Σ f

(
r, E ′, t

)
φ
(
r, E ′, t

)
dE ′ − λC(r, t) (2)

where for the sake of simplicity, one group of precursors C(r, t) of delayed neutrons was assumed. Because of their integro-
differential nature, the fact that the neutron angular and scalar fluxes depend on many variables, and that the systems 
usually modelled are large and strongly heterogeneous, the equations above cannot be used for solving large scale engineer-
ing problems, as the ones encountered when considering commercial nuclear reactors. Simplifications are thus introduced 
in the following manner1 [1,11]:

• Eq. (1) is integrated on all solid angles.
• Isotropic scattering in the laboratory system is assumed and a transport correction of the scattering macroscopic cross-

sections is introduced to recover some level of anisotropy in the scattering.
• Proportionality between the neutron current density vector and the gradient of the scalar neutron flux is considered 

(Fick’s law).

The resulting equations, also known as the diffusion equations, can then be written as:

1

v(E)

∂φ

∂t
(r, E, t) = ∇ · [D(r, E, t)∇φ(r, E, t)

] − ΣT (r, E, t)φ(r, E, t) +
∞∫
0

Σs0
(
r, E ′ → E, t

)
φ
(
r, E ′, t

)
dE ′

+ χ p(E)(1 − β)

∞∫
0

υ
(
E ′)Σ f

(
r, E ′, t

)
φ
(
r, E ′, t

) + χd(E)λC(r, t) (3)

and

∂C

∂t
(r, t) = β

∞∫
0

υ
(
E ′)Σ f

(
r, E ′, t

)
φ
(
r, E ′, t

) − λC(r, t) (4)

Finally, the dependence on energy appearing in the above equations is handled by integrating the different quantities with 
respect to the energy on small energy bins, referred to as energy groups. This results in the following equations:

1

vg

∂φg

∂t
(r, t) = ∇ · [Dg(r, t)∇φg(r, t)

] − ΣT ,g(r, t)φg(r, t) +
∑
g′

Σs0,g′→g(r, t)φg′(r, t)

+ χ
p
g (1− β)

∑
g′

υg′Σ f ,g′(r, t)φg′(r, t) + χd
gλC(r, t) (5)

and

∂C

∂t
(r, t) = β

∑
g′

υg′Σ f ,g′(r, t)φg′(r, t) − λC(r, t) (6)

1 The diffusion approximation can be more rigorously introduced by first deriving the P1 approximation of the neutron transport equation, from which 
diffusion theory is obtained. The interested reader is referred to e.g. Refs. [1,11].
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where the indexes g and g′ refer to the energy groups. Most codes used by the industry for modelling time-dependent 
neutron transport rely on the diffusion approximation, i.e. Eqs. (3) and (4), rather than on the exact formulation in pure 
transport given by Eqs. (1) and (2). The transformation of the above equations from a continuous energy representation to a 
discrete energy representation must be carried out while preserving the actual reaction rates. For the sake of completeness, 
it should also be noted that the above equations are seldom solved for the actual geometry of the system. Rather, a process 
of local volume averaging is introduced to reduce the complexity of the problem. As for the averaging with respect to 
energy, the volume averaging must preserve the reaction rates. Obtained energy- and volume-averaged data in the above 
equations represents a tedious and complex task, which should be carried out in such a way that the reaction rates are 
preserved during the averaging. This requires the application of different sequential modelling steps, first at the fuel cell 
level and then at the fuel assembly level. Such steps aim at obtaining a good enough guess of the solution with a high 
resolution in space, angle, and energy but on a small part of the computational domain. This solution is thereafter used 
to average the data on a coarser grid with respect to space, angle, and energy. Because the lower resolution of the data 
appearing in the balance equations, the entire computational domain can be considered. This new set of data is then used 
to resolve the actual interdependence between spatial regions that was not considered at the previous modelling steps. The 
description of the details of such engineering methodologies is beyond the scope of this paper. We refer instead to Ref. [1]
for the interested reader.

In addition to the process of averaging, the data appearing in Eqs. (5) and (6) strongly depend on the local instantaneous 
conditions in the core (such as fuel temperature, control rod positions, soluble poison concentration and coolant density, 
among others) as well as on their local histories (burnup inclusive). Such conditions cannot be determined when only a 
small part of the computational domain is modelled while generating the space-, angle-, and energy-averaged data. Such 
data are thus estimated for a large range of possible values of the instantaneous and history variables determined in advance. 
When the full core solution is being determined, the value of such variables is determined on-the-fly either as user-defined 
boundary conditions or internally calculated by the code using adequate modules (thermal-hydraulic module for estimating 
the fuel temperature and coolant density, boron transport module for estimating the concentration of the soluble poison, 
etc.).

The simulations of commercial nuclear reactors from a neutron transport viewpoint thus represent a far from trivial 
task, both from a modelling perspective and from an analyst (i.e. code user) perspective. There is thus a strong incentive in 
developing techniques that allow to verify that a core simulator behaves as expected.

In the present paper, we propose an innovative method to both verify and validate time- or frequency-dependent neutron 
transport solvers based on some basic reactor physics properties the solution to given problems should retain. It relies on 
the estimation of the response of a reactor core to stationary fluctuations. Such a response is made of two parts: the 
point-kinetic component and the deviation from point-kinetics (also referred to as the fluctuations of the shape function). 
As is well known in reactor dynamics, the point-kinetic component has a simple analytical expression as a function of 
the frequency of the perturbations imposed to the system [11]. Such a simple analytical expression always exists even for 
strongly heterogeneous systems. As will be explained in the remaining of this paper, there is nevertheless a pathological 
case where under given conditions the point-kinetic component might be identically equal to zero due to an applied zero 
reactivity perturbation and the methodology presented in this paper thus cannot be followed. Extracting from the results of 
computer simulations the point-kinetic component and comparing it to its analytical expression thus allows checking both 
the proper implementation of the neutron transport models and verifying that the physics is adequately modelled. In this 
respect, the proposed method falls in the category of both code verification and validation.

To the knowledge of the present authors, extracting the point-kinetic component of a reactor system response possibly 
significantly deviating from point-kinetics and comparing the frequency-dependence of the extracted response to its ana-
lytical expression was not earlier proposed as a method for code verification and validation. Even if heterogeneous systems 
behave in a point-kinetic manner in only a few very specific cases, the extraction of the point-kinetic component is always 
possible (apart from the pathological case mentioned above).

The paper is structured as follows. First, the derivation of the point-kinetic component in a diffusion theory framework 
will be recalled and the analytical expression of such a component derived. Thereafter, to better illustrate the powerfulness 
of the proposed method, the most challenging cases will be identified. This will be done by considering a homogeneous 
system, for which the exact solution to the problem can be estimated in a semi-analytical manner and compared to its 
point-kinetic component. Cases where the system response significantly deviates from point-kinetics will be used as the 
basis of computer simulations performed for strongly heterogeneous systems. Two in-house codes, one relying on a time-
domain approach and the other on the frequency-domain, will be put on the test bench and will demonstrate the advantages 
of the proposed method.

2. Point-kinetic approximation

2.1. Derivation of the point-kinetic approximation

Although the point-kinetic approximation can be derived directly from the neutron transport equation, we present its 
derivation hereafter in diffusion theory and for 2 neutron energy groups, which represent the typical modelling framework 
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used by most time- or frequency-dependent core simulators [12–14]. In such a framework, the governing balance equations 
read as [11]:

1

v1

∂φ1

∂t
(r, t) = ∇ · [D1(r)∇φ1(r, t)

] + υΣ f ,2(r, t)(1 − β)φ2(r, t)

+ λC(r, t) + [
υΣ f ,1(r, t)(1 − β) − Σa,1(r, t) − Σrem(r, t)

]
φ1(r, t) (7)

1

v2

∂φ2

∂t
(r, t) = ∇ · [D2(r)∇φ2(r, t)

] − Σa,2(r, t)φ2(r, t) + Σrem(r, t)φ1(r, t) (8)

and

∂C

∂t
(r, t) = β

[
υΣ f ,1(r, t)φ1(r, t) + υΣ f ,2(r, t)φ2(r, t)

] − λC(r, t) (9)

Eqs. (7) and (8) represent the time-dependent neutron balance equations in the fast and thermal energy groups, respectively, 
whereas Eq. (9) expresses the time-dependent balance for the precursors of delayed neutrons. For the sake of simplicity, 
we also assume that the diffusion coefficients appearing in Eqs. (6) and (7) are time-independent. It was demonstrated in 
Ref. [15] that neglecting the time-dependence of the diffusion coefficients greatly simplifies the procedure for estimating 
the time-dependent flux whereas it only introduces a marginal error.

Eqs. (7)–(9) can be more compactly written as:[ 1
v1

∂φ1
∂t (r, t)

1
v2

∂φ2
∂t (r, t)

]
= [∇ ·D(r)∇ −M(r, t) + F(r, t)

] ×
[

φ1(r, t)
φ2(r, t)

]
+

[
λC(r, t)

0

]
(10)

and

∂C

∂t
(r, t) = β

[
υΣ f ,1(r, t) υΣ f ,2(r, t)

] ×
[

φ1(r, t)
φ2(r, t)

]
− λC(r, t) (11)

with

D(r) =
[
D1(r) 0
0 D2(r)

]
(12)

M(r, t) =
[

Σa,1(r, t) + Σrem(r, t) 0
−Σrem(r, t) Σa,2(r, t)

]
(13)

F(r, t) =
[

υΣ f ,1(r, t) υΣ f ,2(r, t)
0 0

]
(14)

Eqs. (7)–(9) represent the system of equations that reactor core simulators solve, from which the spatial and temporal 
distribution of the neutron flux and precursors of delayed neutrons can be estimated.

In order to obtain the point-kinetic approximation, all time-dependent terms in the previous equations, generically de-
noted as X(r, t), are expressed as sums between their mean values X0(r) and their fluctuations δX(r, t) around the mean 
values (also referred to as “noise”):

X(r, t) = X0(r) + δX(r, t) (15)

where one supposes that δX(r, t) � X0(r). Further, assuming a factorization of the space-dependent neutron flux into an 
amplitude factor P (t) and a shape function ψk(r, t), k = 1, 2, one can write [11]:[

φ1(r, t)
φ2(r, t)

]
= P (t) ×

[
ψ1(r, t)
ψ2(r, t)

]
(16)

with the following normalization condition:

∂

∂t

∫ [
1

v1
φ+
1,0(r)ψ1(r, t) + 1

v2
φ+
2,0(r)ψ2(r, t)

]
dr = 0 (17)

In the previous equation, φ+
k,0(r), k = 1, 2 is the adjoint eigenfunction, given by the solution of the following equation [11]:

[∇ ·D(r)∇ −MT
0 (r)

] ×
[

φ+
1,0(r)

φ+
2,0(r)

]
= − 1

kef f
FT0 (r) ×

[
φ+
1,0(r)

φ+
2,0(r)

]
(18)

where the superscript T denotes the transpose operator.
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The generic expression given by Eq. (15), when applied to the neutron flux, leads to:[
φ1(r, t)
φ2(r, t)

]
=

[
φ1,0(r)
φ2,0(r)

]
+

[
δφ1(r, t)
δφ2(r, t)

]
(19)

Because of Eq. (16), one can also write that:⎧⎨
⎩

P (t) = P0 + δP (t)[
ψ1(r, t)
ψ2(r, t)

]
= 1

P0

[
φ1,0(r)
φ2,0(r)

]
+

[
δψ1(r, t)
δψ2(r, t)

]
(20)

where φk,0(r), k = 1, 2 corresponds to the static flux, given by the solution of the following equation:
[∇ ·D(r)∇ −M0(r)

] ×
[

φ1,0(r)
φ2,0(r)

]
= − 1

kef f
F0(r) ×

[
φ1,0(r)
φ2,0(r)

]
(21)

The mean value of the shape function in Eq. (20) is determined by the initial condition:[
φ1(r,0)
φ2(r,0)

]
=

[
φ1,0(r)
φ2,0(r)

]
= P0 ×

[
ψ1(r,0)
ψ2(r,0)

]
(22)

If the deviation from the mean of the perturbed quantity is small compared to the mean, i.e. δX(r, t) � X0(r), second-order 
terms can be neglected in the balance equations. The fluctuations in the neutron flux are thus given by:[

δφ1(r, t)
δφ2(r, t)

]
=

[
δφ

pk
1 (r, t)

δφ
pk
2 (r, t)

]
+ P0 ×

[
δψ1(r, t)
δψ2(r, t)

]
(23)

where the point-kinetic term is given by:[
δφ

pk
1 (r, t)

δφ
pk
2 (r, t)

]
= δP (t)

P0
×

[
φ1,0(r)
φ2,0(r)

]
(24)

Obtaining the point-kinetic equations is then carried out in the following manner. First, the dynamic equations (7) and 
(8) are multiplied by the adjoint eigenfunctions φ+

1,0(r) and φ+
2,0(r), respectively. The static adjoint equations given by 

Eq. (18) are multiplied by the time-dependent neutron flux in its factorized form given by Eq. (16). The two resulting sets 
of equations are then subtracted from each other. Finally, integrating over the whole reactor volume leads to, after making 
use of the normalization condition given by Eq. (17):⎧⎪⎪⎨

⎪⎪⎩
dP

dt
(t) = ρ(t) − β

Λ(t)
P (t) + λc(t)

dc

dt
(t) = β

P (t)

Λ(t)
− λc(t)

(25)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Λ(t) = 1

F (t)

∫ [
1

v1
φ+
1,0(r)ψ1(r, t) + 1

v2
φ+
2,0(r)ψ2(r, t)

]
dr

c(t) =
∫

φ+
1,0(r)C(r, t)dr

Λ(t)F (t)

F (t) =
∫ [

υΣ f ,1(r, t)φ
+
1,0(r)ψ1(r, t) + υΣ f ,2(r, t)φ

+
1,0(r)ψ2(r, t)

]
dr

(26)

and ρ(t) is the reactivity, that can be evaluated using first-order perturbation theory as [11]:

ρ(t) = 1

F (t)

∫ {[
δυΣ f ,1(r, t) − δΣa,1(r, t) − δΣrem(r, t)

]
φ+
1,0(r)ψ1(r, t)

+ δυΣ f ,2(r, t)φ
+
1,0(r)ψ2(r, t) + δΣrem(r, t)φ+

2,0(r)ψ1(r, t) − δΣa,2(r, t)φ
+
2,0(r)ψ2(r, t)

}
dr (27)

Eq. (25) simplifies in the static case into:⎧⎨
⎩

ρ0 = 0

λc0 = β
P0

Λ0

(28)

If one further assumes that δΛ(t) � Λ0, subtracting Eq. (28) from Eq. (25) and performing a temporal Fourier-transform 
leads to:

δP (ω)

P0
= G0(ω)δρ(ω) (29)
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Fig. 1. Amplitude (left figure) and phase (right figure) of the point-kinetic component of the zero-power reactor transfer function.

where

G0(ω) = 1

iω(Λ0 + β
iω+λ

)
(30)

where i is represents the basic imaginary unit. It was verified in the numerical examples presented in Section 3 that the 
fluctuations in the mean generation time δΛ(t) are more than two orders of magnitude smaller than their mean value Λ0. In 
the framework of linear theory, the only approximation used in the derivation of point-kinetics is expressed by δΛ(t) � Λ0, 
which is thus a valid approximation.

Eq. (30) represents the point-kinetic zero-power reactor transfer function of the critical system. In the literature, this 
expression is often referred to as the zero-power or open-loop reactor transfer function, since the effect of thermal-hydraulic 
feedback is disregarded [11]. In this paper and for the sake of clarity, this transfer function is more explicitly labelled as the 
point-kinetic zero-power reactor transfer function. The reason for this additional precision lies with the fact that expression 
(30) indeed relies on a point-kinetic behaviour of the system, as Eqs. (23) and (24) demonstrate. The spatial dependence 
of the amplitude of the point-kinetic component is given by the static flux and no phase shift exists between two distant 
spatial points, as can be seen from Eq. (24). On the contrary, nothing can be said about the spatial dependence of the 
remaining component P0δψk(r, t), k = 1, 2 in Eq. (23) and the corresponding phase shift between two distant spatial points.

As will be shown in Section 2.3, a zero-power system might behave in a non-point kinetic manner. The amplitude and 
phase of the point-kinetic zero-power transfer function is represented in Fig. 1. In this figure, the so-called “plateau region”, 
obtained for frequencies in the range [λ; β/Λ0], is also plotted. In this region, the amplitude is nearly constant and equal to 
1/β , whereas the phase delay is close to zero.

It is remarkable that the point-kinetic zero-power transfer function has a simple analytical expression with respect to the 
frequency dependence. The extraction of the point-kinetic component from the fluctuations of the neutron flux at different 
frequencies thus provides a direct means of verifying and validating a core simulator and more generally any time- or 
frequency-dependent neutron transport solver.

2.2. Estimation of the point-kinetic component of the neutron fluctuations calculated from neutron transport solvers

If the fluctuations in neutron flux, i.e. δφk(r, t), k = 1, 2, are known, the corresponding point-kinetic component can also 
be estimated in the following manner. Combining Eq. (23) with Eq. (24), multiplying in a scalar manner with the vector 
[φ+

1,0(r)/v1 φ+
2,0(r)/v2] and integrating on the entire reactor volume results in:∫ [

1

v1
φ+
1,0(r)δφ1(r, t) + 1

v2
φ+
2,0(r)δφ2(r, t)

]
dr = δP (t)

P0

∫ [
1

v1
φ+
1,0(r)φ1,0(r) + 1

v2
φ+
2,0(r)φ2,0(r)

]
dr

+ P0

∫ [
1

v1
φ+
1,0(r)δψ1(r, t) + 1

v2
φ+
2,0(r)δψ2(r, t)

]
dr (31)

One notices from Eq. (20) that Eq. (17) also leads to:

∂

∂t

∫ [
1

v1
φ+
1,0(r)δψ1(r, t) + 1

v2
φ+
2,0(r)δψ2(r, t)

]
dr = 0 (32)

or alternatively∫ [
1

v1
φ+
1,0(r)δψ1(r, t) + 1

v2
φ+
2,0(r)δψ2(r, t)

]
dr = constant (33)
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Because of the initial condition given by Eq. (22) and resulting in δψk(r, 0) = 0, k = 1, 2, the constant on the right hand-side 
of Eq. (33) is identically equal to zero, i.e.:∫ [

1

v1
φ+
1,0(r)δψ1(r, t) + 1

v2
φ+
2,0(r)δψ2(r, t)

]
dr = 0 (34)

Using this condition in Eq. (31) finally gives:

δP (t)

P0
=

∫ [ 1
v1

φ+
1,0(r)δφ1(r, t) + 1

v2
φ+
2,0(r)δφ2(r, t)]dr∫ [ 1

v1
φ+
1,0(r)φ1,0(r) + 1

v2
φ+
2,0(r)φ2,0(r)]dr

(35)

or in the frequency domain:

δP (ω)

P0
=

∫ [ 1
v1

φ+
1,0(r)δφ1(r,ω) + 1

v2
φ+
2,0(r)δφ2(r,ω)]dr∫ [ 1

v1
φ+
1,0(r)φ1,0(r) + 1

v2
φ+
2,0(r)φ2,0(r)]dr

(36)

Dividing the above formula by δρ(ω) should allow retrieving the point-kinetic zero-power reactor transfer function of 
the reactor, according to Eq. (29). Ideally, the evaluation of the resulting expression should be identical to the one based on 
Eq. (30) directly. Contrary to Eq. (30), the use of Eq. (36) does not rely on the assumption of a point-kinetic behaviour of the 
reactor. Rather, the neutron fluctuations δφk(r, ω), k = 1, 2 might significantly deviate from a point-kinetic behaviour. In fact, 
these fluctuations are in the most general case induced by any type of perturbations, either localized or spatially-distributed. 
The determination of the full space-dependence of such fluctuations could be considered as estimating the response of 
the reactor to given types of perturbations or its zero-power transfer function. Still, the space-dependence of the neutron 
fluctuations might significantly deviate from the one of the static flux (or in short from point-kinetics), thus justifying the 
earlier distinction between the zero-power reactor transfer function and its point-kinetic component.

To make the comparison between the point-kinetic component of the response of the system and its expected theoretical 
expression, the following additional quantities are required:

• For the theoretical expression, the static fluxes φk,0(r), k = 1, 2 and the adjoint eigenfunctions φ+
k,0(r), k = 1, 2 [required 

for estimating the neutron generation time Λ0 in Eq. (30)].
• For the evaluation of the numerical expression [i.e. using Eqs. (36) and (27), the latter being taken in the frequency 

domain], the static fluxes φk,0(r), k = 1, 2, the adjoint eigenfunctions φ+
k,0(r), k = 1, 2, and the neutron fluctuations 

δφk(r, ω), k = 1, 2.

In the former case, no result of time- or frequency-dependent simulations corresponding to the applied perturbation is 
necessary.

2.3. Expected deviation of the reactor response from point-kinetics

To test the present methodology and identify challenging situations, a one-dimensional homogeneous system represen-
tative of a bare reactor with 3 m as extrapolated size was considered in two-group diffusion theory, and the perturbation 
applied to the system was assumed to be a Dirac point-like perturbation in the fast energy group located 30 cm away from 
the core centre. In this situation, all necessary quantities, i.e. the static fluxes, the adjoint eigenfunctions, and the induced 
neutron noise, can be estimated fully analytically, or semi-analytically. The full solution can be found elsewhere, e.g. in [16]. 
The point-kinetic solution can also be estimated using either of the two procedures highlighted above and compared to the 
full solution. Such comparisons are represented in Figs. 2–4. In these figures, the amplitude of the complex-valued space-
dependence of the total neutron noise δφk(r, ω), k = 1, 2, of its point-kinetic component (which is proportional to φk,0(r), 
k = 1, 2) and of the difference between the two is given. It can be noticed from these figures that for low frequencies (fre-
quencies smaller than the lower bound λ of the plateau region of the point-kinetic zero-power reactor transfer function), 
the response of the system follows a point-kinetic behaviour. This is explained by the fact that for decreasing frequencies, 
the transfer function G0(ω) diverges, as can be seen from Eq. (30) and Fig. 1, and the point-kinetic response becomes 
overwhelming. Such a large point-kinetic component results from the ability of the system to follow the applied driving 
perturbation without any time delay between spatially-distant points. For a non-zero reactivity perturbation, the neutron 
flux will thus be predominantly governed by its point-kinetic component, as Eqs. (23) and (24) demonstrate. On the other 
hand, the cases of high frequency perturbations (frequencies larger than the upper bound β/Λ0 of the plateau region of 
the point-kinetic zero-power reactor transfer function) are of special interest for the proposed methodology, since at those 
frequencies, the reactor response significantly deviates from point-kinetics.

It is also known from the literature that the deviation from point-kinetics is largest for localized perturbations, as com-
pared to spatially-distributed perturbations [16]. Therefore, applying the proposed methodology to high-frequency localized 
perturbations represents the most challenging case, for which being able to recover the point-kinetic component might be 
difficult. Therefore, the methodology was precisely tested in such situations for spatially non-homogeneous systems, thus re-
quiring the use of time-dependent or frequency-dependent numerical solvers. The details of such investigations are reported 
in the following section.
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Fig. 2. Comparisons between the amplitude of the neutron noise and its point-kinetic component in the case of a point-like perturbation located at −30 cm 
from the core centre and at a frequency of 1 mHz (comparisons in the fast and thermal groups on the left and right figures, respectively).

Fig. 3. Comparisons between the amplitude of the neutron noise and its point-kinetic component in the case of a point-like perturbation located at −30 cm 
from the core centre and at a frequency of 1 Hz (comparisons in the fast and thermal groups on the left and right figures, respectively).

Fig. 4. Comparisons between the amplitude of the neutron noise and its point-kinetic component in the case of a point-like perturbation located at −30 cm 
from the core centre and at a frequency of 1 kHz (comparisons in the fast and thermal groups on the left and right figures, respectively).

3. Using point-kinetics for code verification and validation

In this section, the feasibility of the proposed method highlighted above is tested. As identified earlier in Section 2.3, 
the cases of high-frequency localized perturbations are particularly challenging, since the reactor significantly deviates from 
point-kinetics. Three cases are thus presented hereafter: the case of a so-called localized absorber of variable strength, in 
the time domain and frequency domain, respectively, and the case of a travelling perturbation in the frequency domain.

In all cases, typical heterogeneous systems representative of commercial pressurized water reactors are chosen for per-
forming the calculations. Two sets of in-house codes are used for this demonstration: a time-domain code for fuel assembly 
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Fig. 5. Representation of the system modelled for the case of a localized absorber of variable strength in the time domain. The blue colour corresponds to 
the fuel region, the red colour to the moderator region, and the grey colour to the region on which the perturbation was applied. The depicted system is 
compressed in the axial direction for illustration purposes. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)

modelling [17,18] and a frequency-domain code for core simulations [19]. For each of the two codes, the static fluxes, the 
adjoint eigenfunctions, and the induced neutron noise are all estimated. The full space-dependence of the neutron noise can 
thus be estimated, and from it the point-kinetic component of the zero-power reactor transfer function evaluated. Such an 
evaluation is then directly compared to the theoretical expression of the transfer function.

The frequency domain approach allows directly performing the simulations at given frequencies. The modelling results 
in complex quantities, from which the magnitude and phase can be determined. In the time domain approach, on the other 
hand, the perturbation needs to be defined as a sine function having the desired frequency. Depending on the frequency 
of the perturbation, the system response might first experience transient conditions. Typically, after a few periods, the 
system reaches stationary conditions. Fitting a sine function to the local response of the system then allows estimating the 
magnitude and phase of the local response.

3.1. Case of a localized absorber of variable strength in the time domain

In this first case, a two-dimensional slab is modelled. The system has a finite height of 50 cm, with zero flux boundary 
conditions at the top and bottom of the system. In the finite radial direction, the system is made of two regions: a fuel region 
of width 0.45 cm and a moderator region of 0.25 cm. Reflective boundary conditions are applied in this radial direction, 
whereas the system is infinite in the transverse radial direction. A perturbation in a rectangular domain of width 0.35 cm 
and height 10 cm, placed 10 cm from the bottom of the fuel region is considered. Fig. 5 gives a representation of the system 
and of the region V P on which the perturbation is applied. The perturbation is furthermore expressed as fluctuations of 
the total macroscopic cross-section in the thermal group. Since the simulations are performed in the time-domain, the 
fluctuations in the cross-section follow a user-defined sinusoidal temporal dependence as:

ΣT ,2(r, t) = ΣT ,2,0(r) + A sin(ωt) for r ∈ V P (37)

Although the perturbation is applied on the region V P having a spatial spread, the perturbation only occupies a fraction of 
the entire spatial domain. Deviations from point-kinetics are thus expected, especially at high frequencies. The amplitude of 
the perturbation, which is homogeneous on V P , is set to 0.1% of the unperturbed total macroscopic cross-section.

The frequency-dependence of the point-kinetic component of the zero-power reactor transfer function is represented 
in Fig. 6 computed per the methodology earlier highlighted and then compared to the expected analytical expression. 
The numerical evaluation is based on the actual neutron noise induced by the localized perturbations. The theoretical 
expression, on the other hand, is independent of the perturbations applied to the system. As can be seen in this figure, 
recovering the point-kinetic component of the induced neutron noise leads to a correct estimation of the transfer function, 
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Fig. 6. Frequency-dependence of the amplitude (left figure) and phase (right figure) of δP (ω)/[P0δρ(ω)] as estimated from the two-dimensional time-
dependent simulation in the case of an absorber of variable strength and compared to the analytical expression.

Fig. 7. Frequency-dependence of the relative difference in amplitude (left figure) and absolute difference in phase (right figure) in δP (ω)/[P0δρ(ω)] between 
the numerical evaluation and the analytical expression, as estimated from the two-dimensional time-dependent simulation in the case of an absorber of 
variable strength.

even at high frequencies. Although the point-kinetic component is several orders of magnitude smaller at high frequencies 
than at the plateau region-frequencies, the estimation of the point-kinetic component is still correct. The relative difference 
in magnitude and absolute difference in phase, respectively, between the numerical evaluation of the zero-power reactor 
transfer function and its analytical expression as a function of frequency, generically expressed as:

relative difference in
∥∥X(ω)

∥∥ = ‖Xnum(ω)‖ − ‖Xana(ω)‖
‖Xana(ω)‖ (38)

and

absolute difference in phase of X(ω) = phase of Xnum(ω) − phase of Xana(ω), (39)

respectively, are represented in Fig. 7. Xnum represents the numerical evaluation of δP (ω)/[P0δρ(ω)] and Xana represents 
the corresponding analytical expression. One notices that the largest deviations in absolute values are observed at low 
frequencies for the magnitude (amounting to 5%) and at high frequencies for the phase (amounting to nearly 4.5 deg). Such 
relative deviations are small and are most likely related to the fitting procedure used to estimate the magnitude and phase 
of the point-kinetic component from the time-dependent simulations. It can thus be concluded from this first test case that 
retrieving the point-kinetic component of the zero-power reactor transfer function is possible. In the present case, it also 
demonstrates that the in-house time-dependent tool gives a faithful estimation of the expected analytical transfer function, 
thus providing a further verification and validation of the tool.

3.2. Case of a localized absorber of variable strength in the frequency domain

This second case is, in essence, similar to the first test case earlier presented. The main difference lies with the fact that 
the simulations are directly performed in the frequency domain and that the calculations are carried out for an entire reactor 
core. The system being considered is typical of a pressurized water reactor, and is modelled by a Cartesian coarse mesh grid 
of radial size 32 ×32 and of axial size 26, as depicted in Fig. 8. The active core region is of radial size 30 ×30 and of axial size 
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Fig. 8. Representation of the system modelled for the case of a localized absorber of variable strength in the frequency domain (radial layout on the left, 
axial layout on the right). The grey colour corresponds to the node on which the perturbation was applied. The depicted system is compressed in the axial 
direction for illustration purposes.

Fig. 9. Frequency-dependence of the amplitude (left figure) and phase (right figure) of δP (ω)/[P0δρ(ω)] as estimated from the three-dimensional frequency-
dependent core simulations in the case of an absorber of variable strength and compared to the analytical expression.

24 and is surrounded by a reflector being modelled explicitly. Zero flux boundary conditions are applied at the periphery 
of the system. Each elementary node, assumed to be spatially homogeneous, has for dimensions 10.75 cm in both radial 
directions and 15.24 cm in the axial direction. A white noise point-like perturbation located radially in one of the quarters 
of the core and axially in its lower half is considered, as can be seen in Fig. 8. This perturbation is furthermore expressed 
as fluctuations of the macroscopic absorption cross-section in the thermal group. Since the calculations are performed in 
the frequency domain directly after removal of the static solution, only the fluctuations need to be resolved. Because of 
the inhomogeneous nature of the set of differential equations obtained, the amplitude of the perturbation simply acts as a 
scaling factor to the solution and is thus unimportant. The definition of the perturbation thus reduces to a non-zero value 
in the node where the perturbation exists and the amplitude of the solution is thus proportional to the amplitude of the 
perturbation applied.

The frequency-dependence of the point-kinetic component of the zero-power reactor transfer function is represented 
in Fig. 9 and compared to the analytical expression. The relative difference in amplitude and absolute difference in phase, 
respectively, as evaluated in Eqs. (38) and (39), are given in Fig. 10. As for the simulations performed in the time domain 
presented in Section 3.1, excellent agreement is reached between the evaluation based on the actual neutron noise induced 
by the localized perturbations and the theoretical expression. The maximum deviation is slightly above 2% for the magnitude 
and −0.5 deg for the phase. Such deviations are smaller than the ones reported in Section 3.1. This is explained by the fact 
that no fitting procedure as the one used in the time-domain is required, since the simulations are directly performed in 
the frequency domain, thus directly providing amplitude and phase of all computed quantities. It is remarkable that the 
theoretical expression is independent of the perturbations applied to the system, whereas the numerical estimation relies 
on the actual perturbation applied to the system. Very good agreement can even be noticed at high frequencies, for which 
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Fig. 10. Frequency-dependence of the relative difference in amplitude (left figure) and absolute difference in phase (right figure) in δP (ω)/[P0δρ(ω)]
between the numerical evaluation and the analytical expression, as estimated from the three-dimensional frequency-dependent core simulations in the 
case of an absorber of variable strength and compared to the analytical expression.

Fig. 11. Relative deviation of the reactor response from point-kinetics as evaluated from Eq. (40) in the case of an absorber of variable strength in the 
frequency domain.

the contribution of the point-kinetic component is small compared to the actual neutron noise. This can be seen in Fig. 11, 
where the deviation from point kinetics is estimated according to the following integral measure:

dev(ω) =
∥∥∥∥
∫
V

δφ1(r,ω) + δφ2(r,ω) − G0(ω) × [φ1,0(r) + φ2,0(r)] × δρ(ω)

G0(ω) × [φ1,0(r) + φ2,0(r)] × δρ(ω)
dr

∥∥∥∥ (40)

It is observed in this figure that the reactor deviates from point-kinetics already at plateau frequencies. The retrieval of 
the point-kinetic component and its successful comparison with the analytical expression demonstrates that the proposed 
method is a powerful tool for verification and validation.

3.3. Case of a travelling perturbation in the frequency domain

In this third and last case, a propagating perturbation assumed to travel upwards in one of the fuel assemblies with the 
coolant, having a flow velocity v , is considered. The system being considered is identical to the one used in the previous 
case, i.e. a pressurized water reactor modelled by a Cartesian coarse mesh grid of radial size 32 × 32 and of axial size 26, 
as depicted in Fig. 12. The active core region is of radial size 30 × 30 and of axial size 24 and is surrounded by a reflec-
tor being modelled explicitly. Zero flux boundary conditions are applied at the periphery of the system. Each elementary 
node, assumed to be spatially homogeneous, has for dimensions 10.75 cm in both radial directions and 15.24 cm in the 
axial direction. The perturbation is assumed to modify the removal macroscopic cross-section. In the time-domain, such a 
perturbation would be expressed as:

δΣ(x0, y0, z, t) = δΣ

(
x0, y0,0, t − z

v

)
(41)



408 C. Demazière et al. / Journal of Computational Physics 339 (2017) 396–411

Fig. 12. Representation of the system modelled for the case of a travelling perturbation in the frequency domain (radial layout on the left, axial layout on 
the right). The grey colour corresponds to the nodes on which the perturbation was applied. The depicted system is compressed in the axial direction for 
illustration purposes.

Fig. 13. Frequency-dependence of the amplitude (left figure) and phase (right figure) of δP (ω)/[P0δρ(ω)] as estimated from the three-dimensional 
frequency-dependent core simulations in the case of a travelling perturbation and compared to the analytical expression.

or in the frequency-domain as:

δΣ(x0, y0, z,ω) = δΣ(x0, y0,0,ω)exp

(
− iωz

v

)
(42)

where (x0, y0) represents the radial location of the fuel assembly in which the perturbation is applied, and z corresponds 
to the axial elevation within the core. As for the case of the absorber of variable strength detailed in Section 3.2, the noise 
source is assumed to be a white noise source and is this time applied at the inlet of the fuel channel. The main difference 
compared to the previous case lies with the fact that the noise source is spread over the entire length of the core (but still 
radially localized) and most importantly that the phase varies linearly with height. In terms of definition of the perturbation, 
this means that the amplitude of the perturbation is axially homogeneous, whereas the phase is changing.

The frequency-dependence of the point-kinetic component of the zero-power reactor transfer function is represented in 
Fig. 13 using the methodology earlier highlighted and compared to the expected analytical expression. The relative difference 
in amplitude and absolute difference in phase, respectively, as evaluated in Eqs. (38) and (39), are given in Fig. 14. As for 
the absorber of variable strength, the evaluation is based on the actual neutron noise induced by the applied perturbations 
for the former case, whereas in the latter case, the theoretical expression is independent of the perturbations applied to 
the system. It can be seen from the figure that recovering the point-kinetic component of the induced neutron noise leads 
to a correct estimation of the transfer function. The relative deviation in amplitude is at maximum around 2.5% and the 
absolute deviation in phase amounts to nearly 1 deg in absolute value. Although the observed deviations are comparable 
to the ones obtained for the absorber of variable strength, some “wobbling” of the numerical solution around the expected 
smooth analytical solution can be seen.

The relative deviation of the reactor response from point-kinetics, calculated using the same integral measure as for the 
case of the absorber of variable strength – see Eq. (40) –, is represented in Fig. 15. One notices that the deviation from 
point-kinetics is also comparable to the one corresponding to the absorber of variable strength.
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Fig. 14. Frequency-dependence of the relative difference in amplitude (left figure) and absolute difference in phase (right figure) in δP (ω)/[P0δρ(ω)]
between the numerical evaluation and the analytical expression, as estimated from the three-dimensional frequency-dependent core simulations in the 
case of a travelling perturbation and compared to the analytical expression.

The “wobbling” of the numerical solution cannot thus be explained by a loss of point-kinetic behaviour of the system. 
Rather, it is the result of the linear phase of the applied perturbations leading to a smaller reactivity effect. This can be 
noticed from Eq. (27), which written in the frequency domain and only retaining first-order terms leads to:

δρ(ω) =
∫ [−δΣrem(r,ω)φ+

1,0(r)φ1,0(r) + δΣrem(r,ω)φ+
2,0(r)φ1,0(r)]dr∫ [υΣ f ,1,0(r)φ

+
1,0(r)φ1,0(r) + υΣ f ,2,0(r)φ

+
1,0(r)φ2,0(r)]dr

(43)

The phase varying linearly along the height of the channel implies that for high enough frequencies, the phase will spread 
over the entire interval [0; 2π ] and for even higher frequencies, the interval will be covered several times along the height. 
This results in partial compensation of the reactivity contribution when integrating along the height of the system. Since the 
reactivity appears in the denominator of δP (ω)/[P0δρ(ω)], small values of the reactivity will lead to less reliable estimations 
of the transfer function. This is more clearly demonstrated in Fig. 16, where an analysis of the results is presented. In this 
figure, the extracted point-kinetic component and its relative deviation from its analytical expression are plotted, together 
with the relative amplitude factor δP (ω)/P0 and the reactivity effect δρ(ω). The ratio between the two last quantities 
corresponds to the extracted point-kinetic component. One notices from these figures that the amplitude of the reactivity 
effect starts to significantly decrease at around 0.6–0.8 Hz, which also corresponds to the frequency range for which the 
reliability of the method starts to slightly deteriorate. Compared to Fig. 15, one also notices that the loss of the point-kinetic 
behaviour is already appreciable at 0.1 Hz, i.e. at lower frequencies. Therefore, the slight deterioration in the reliability of the 
method cannot be solely related to the loss of point-kinetic behaviour of the system, but also to a reactivity perturbation 
having a much lower amplitude.

If the applied perturbation had a reactivity effect exactly equal to zero, the point-kinetic component of the induced 
neutron noise would be identically equal to zero, as Eqs. (23), (24) and (29) demonstrate, and the method proposed in this 
paper would break down.

Despite the apparent slight deterioration of the reliability of the method at higher frequencies for the case of the 
travelling perturbation, the relative deviation between the extracted point-kinetic component and its expected analytical 
expression is about a few percent. This is comparable with the small deviations noticed in the case of a localized ab-
sorber in both the time- and frequency-domain. Such small deviations are marginal, demonstrating that the method can be 
faithfully used to assess the validity of core simulators.

4. Discussion and conclusions

In this paper, a methodology was presented to estimate from the results of calculations of three-dimensional frequency 
domain-based and time domain-based neutronic core simulators the point-kinetic component of the neutron fluctuations 
induced by given perturbations. Correspondingly, the zero-power transfer function can be estimated by renormalizing this 
component to the reactivity effect of the applied perturbations.

This paper demonstrated that even in challenging situations when the reactor response significantly deviates from point-
kinetics, such as extremely localized perturbations and high frequencies, such a point-kinetic component is retrievable and 
could be successfully used to benchmark core simulators. This method represents one of the very few methodologies where 
the results of three-dimensional calculations of a heterogeneous system can be compared with an analytical expression, 
thus offering an opportunity to further verify and validate such codes.

Nevertheless, this method also assumes that the point-kinetic component of the induced neutron fluctuations does exist. 
Perturbations resulting in exact reactivity compensation lead to a point-kinetic component identically equal to zero, for 
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Fig. 15. Relative deviation of the reactor response from point-kinetics as evaluated from Eq. (40) in the case of a travelling perturbation.

Fig. 16. Plotting of the amplitude of: the extracted point-kinetic component and its relative deviation from its analytical expression (upper figure), the 
relative amplitude function (middle figure), and the applied reactivity perturbation (lower figure) in the case of a travelling perturbation.

which the method will fail. Close to zero reactivity effects are also expected to lead to slightly less reliable estimations of 
the point-kinetic component of the transfer function, as the case of a travelling perturbation demonstrated in this work.

When applying the method, the analyst can consider any type of stationary perturbations, i.e. he/she does not need 
to only consider situations where point-kinetics is applicable. Although the method was tested in this study by direct 
perturbations of the macroscopic cross-sections, other types of perturbations can be introduced, such as perturbations of the 
thermal-hydraulic variables. The only restriction lies with the necessity to define perturbations having a non-zero reactivity 
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effect. The method also requires scanning a frequency range of the applied perturbations, so that the actual dependence 
on frequency of the point-kinetic zero-power reactor transfer function can be determined and compared to its expected 
analytical expression. If the frequency-dependence of the extracted point-kinetic component does not follow its expected 
analytical expression, a modelling issue (bug) in the code used for the calculations is to be suspected.

Extension to neutron transport methods of higher order than diffusion theory and a generalization of the methodology 
to any number of energy groups will be the subject of future publications. Available multi-group time-dependent neutron 
transport solvers that can estimate the adjoint function of the static flux will be used to test the applicability of the 
proposed method. Due to its generic nature, this verification and validation framework could be applied to any type of core 
simulators.
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