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ABSTRACT
Nuclear safeguards is a collective term for the tools and methods needed to ensure
nonproliferation and safety in connection to utilization of nuclear materials. It
encompasses a variety of concepts from legislation to measurement equipment.

The objective of this thesis is to present a number of research results related to
nuclear materials control and accountability, especially the area of nondestructive
assay. Physical aspects of nuclear materials are often the same as for materials
encountered in everyday life. One special aspect though is that nuclear materials
also emit radiation allowing them to be qualitatively and quantitatively measured
without direct interaction with the material. For the successful assay of the material,
the particle generation and detection needs to be well understood, and verified with
measurements, simulations and models.

Four topics of research are included in the thesis. First the generation and
multiplication of neutrons and gamma rays in a fissile multiplying sample is treated.
The formalism used enables investigation of the number of generated, absorbed and
detected particles, offering understanding of the different processes involved.

Secondly, the issue of relating the coincident detector signals, generated by both
neutrons and gamma rays, to sample parameters is dealt with. Fission rate depends
directly on the sample mass, while parameters such as neutron generation by alpha
decay and neutron leakage multiplication are parameters that depend on the size,
composition and geometry of the sample. Artificial neural networks are utilized to
solve the inverse problem of finding sample characteristics from the measured rates
of particle multiples.

In the third part the interactions between neutrons and organic scintillation de-
tectors are treated. The detector material consists of hydrogen and carbon, on which
the neutrons scatter and transfer energy. The problem shares many characteristics
with the area of neutron moderation found in reactor physics.

Finally the last part of the thesis consists of measurement systems. Measuring
coincident neutrons and gamma rays using fast scintillation detectors and data ac-
quisition systems, can enable development of new types of methods for interpreting
material signatures.

Keywords : nuclear safeguards, master equations, number distribution, multiplicities,
fissile material, scintillation detectors, light pulse distribution, cross correlations
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CHAPTER

1

INTRODUCTION

This introduction describes the objective of the work which led to this thesis, and outlines the

contents of the following chapters.

1.1 Objective

Nuclear materials are a subcategory of radioactive materials, which are normally
harmful or even lethal to human beings when exposed to them without precautions.
At the same time, many cancer patients will associate the radiation to life saving
procedures. In older generations many have associations to the cold war and the
race to nuclear arms that it meant. The atomic bomb may be the pinnacle of man-
made destruction and horror, and thus a constant fear in the minds of many people.
The climate change has renewed focus to nuclear energy both in fission and fusion
format as a source of non-carbon emitting energy. The concept of nuclear means
fear and hopes, ideas and questions, all coexisting together in the collective minds
of people.

This opens a great possibility for research, understanding and knowledge: how
can the positive sides of a phenomenon or concept be utilized without insurmount-
able drawbacks and potential risks? In the specific area of nuclear materials, the key
issue is safeguards. A concept including areas such as physical protection, legislation
and measurement systems.

A very prominent source of nuclear materials is what is expelled as “waste” from
commercial nuclear reactors. The materials and elements contained within show
great differences, where some quickly decay into stable harmless isotopes, while
others stay radioactive and pose a very real threat for thousands of years. Due to
the mixed contents, some of the used fuel from reactors is put through reprocessing
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Chapter 1. Introduction

and separation, leading to materials with new signatures and uses. Among those
plutonium, unused uranium and long lived actinides are some examples of the more
dangerous nuclear materials.

The risk of nuclear proliferation is well-known and has been visible and im-
posing ever since the first countries acquired nuclear weapons. The International
Atomic Energy Agency (IAEA), which is part of the United Nations (UN), attempts
to address this issue by urging all countries to sign nonproliferation agreements,
and agreeing to implement additional safeguards measures, so that peaceful uses
of nuclear materials within energy production, agriculture and health care can be
sustained.

Naturally, having rules and legislations will mean nothing if there are no methods
of detection and understanding of what was the source of the signals detected.
This marks a dependence on research done within the areas of detectors, nuclear
physics, data analysis etc. to provide the means to enforce that no clandestine
activities or unintentional mistakes leads to proliferation or to exposure of persons
to unmotivated health hazards.

Present and future nuclear energy needs public acceptance for successful op-
eration and expansion. The acceptance in turn, depends on how the question of
radioactive waste is solved. what will be the final solution, how is the handling of
such material monitored to ensure the public safety? This means that expanding
and developing nuclear safeguards is very important to the nuclear industry as well
as for the authorities. The proposed solutions to the issue of nuclear waste include
repositories, reprocessing or other techniques. All of these require that the handling
of the material has to be guaranteed to be safe and with a minimal probability of
accidents and emissions of dangerous materials. Safeguards is a key parameter to
ensure all these things. The objective of the work presented here is to give contribu-
tion to the development of methods in specific areas of nuclear safeguards to achieve
the above goals.

1.2 Outline of the thesis

Nuclear safeguards is a very wide field, of which only selected parts have been the
subject of the work underlying this thesis. The work is oriented towards the nu-
clear physics, and specifically that of modelling nuclear materials and understanding
the physical interactions which allows for characterization and detection of nuclear
materials. The process of particle generation is normally through nuclear fission
in which a certain number of neutrons and gamma rays are produced. Since the
particle generation is not deterministic, instead it is described by random variables,
i.e. a stochastic process. Even when the particle parameters and the material con-
stituents are perfectly known, the result of a fission can only be described by a set
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1.2. Outline of the thesis

of probabilities. The stochastic aspects and the resulting probability theories are
addressed in the presented results.

This thesis starts with an introduction into safeguards and its history in Chapter
2 to give a overview of the area. Existing methods and tools will be detailed to some
extent in Chapter 3, to exemplify what the field of safeguards contains in form of
materials control and accountability. The publications that have been the result of
the work are then the foundation of the following chapters. Chapter 4, based on
Papers I-II, investigates the number distribution of particles generated in and de-
tected from fissile samples. A deeper survey into the multiplicity theory and sample
parameter unfolding is offered in Chapter 5 (Papers III-V). A way of detecting
the emissions from fissile samples is by using scintillation detectors, the interac-
tions between neutrons and such detectors are contained in Papers VI-VII which
give the foundation of Chapter 6. Chapter 7 then outlines some experimental work
and actual measurements, which have been the basis of Papers VIII-IX. Finally,
Chapter 8 summarizes the work and details possible future work and extensions.

It is the aim of the thesis to take a full journey from the motivation of safeguards
to the existing methods and tools and how they could be understood and improved.
Later it addresses some issues and models of the more specific scenarios dealt with
in safeguards. Finally a connection is made between theory and reality, when the
problem of interpretation of data by solving the inverse problem from the measur-
ables to sample parameters is studied, and finally some measurements are detailed
that investigate the applicability of some of the models.
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CHAPTER

2

SAFEGUARDS - BACKGROUND

Nuclear Safeguards is a term for tools and concepts used to quantify, detect and monitor

nuclear materials. Nuclear materials themselves can range from hospital radioisotopes and

nuclear batteries to spent nuclear fuel and weapons grade material. To understand the needs

of safeguards an initial foundation and motivation for the area will be given.

2.1 The origin

The origins and foundation of safeguards stem from the rapid development of the
nuclear age in connection to and after the Second World War. It quickly became
apparent that the possibility to acquire nuclear weapons was open to many nations.
Both the knowledge of designing such devices and the material needed for it was
quickly spreading around the world. The first attempt to address this issue was D.
Eisenhower’s “Atoms for peace”-speech to the United Nations assembly in 1953. It
outlined a desire to limit the number of nations who gained nuclear potential, by
offering them an incentive in the form of technology and knowledge needed for using
nuclear energy for peaceful purposes.

As the idea matured and the number of countries involved in the program in-
creased, it eventually led to the birth of the International Atomic Energy Agency
(IAEA). In the statute of IAEA the goals of the organization are outlined; promoting
nuclear development and peaceful technology, while also establishing safeguards for
the purpose of assuring that no nuclear assistance from IAEA was used to further
the development of nuclear weapons [1].

Also in the present and future utilization of nuclear power the concept is very
important. Much focus is currently aimed at developing the next generation nuclear
reactors, often referred to as Generation-IV reactors. Some of the main aspects of
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Chapter 2. Safeguards - Background

those designs are proliferations resistance, inherent safeguards, as well as destroying
some of the waste produced in previous generations reactors. So while safeguards
was born as a way to deal with an existing problem, it has now evolved to being
one of the driving forces of future innovations and safety considerations.

It is seen from the statute of the IAEA that safeguards have both a technical
and a political side. To give a broader view of what the challenges were and still are,
we can take the current divisions of the Institute of Nuclear Materials Management
which well exemplifies the different areas where safeguards are used [2]:

• International Safeguards - Exchange of information on the development, im-
plementation and effectiveness of nuclear safeguards. Promoting publications
and workshops on the spread of advancements in safeguard technologies.

• Materials Control and Accountability - Technology and knowledge needed by
professionals within the area of materials management.

• Nonproliferation and Arms Control - Efforts and support of nonproliferation
and arms control by treaty verification, transparency measures and nuclear
materials management aimed at furthering international stability.

• Packaging and Transportation - Promoting the safe and controlled packag-
ing and transportation of radioactive materials found in e.g. spent nuclear
fuel, materials containing induced radioactivity, radioactive waste and conta-
minated materials.

• Physical Protection - Advancements and implementations of technology and
systems for the physical protection of nuclear materials and facilities, such as
surveillance, protection barriers etc.

• Waste Management - Radioactive waste management technology such as stor-
age, handling, processing and disposal of nuclear waste produced around the
world.

By understanding the needs which the IAEA has, or more precisely the needs of
inspectors connected to IAEA or other agencies monitoring radioactive materials,
equipment and routines can be constructed for detecting and monitoring radioactive
materials. In the following the area of materials control and accountability (MC&A)
will be the focus.

2.2 Radioactive materials

The nuclear materials mentioned above are a subset of radioactive materials, and
those are characterized by the emission of radiation. This radiation can take a
number of forms: photons, neutrons, electrons and alpha particles. Radionuclides
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2.3. Special nuclear materials

can be divided into a number of different groups depending on their usage and
occurrence [3]:

• Nuclear materials: 233U, 235U, 239Pu, 241Pu.

• Industrial radionuclides: 60Co, 137Cs, 192Ir, 226Ra, 241Am, 238Pu.

• Medical radionuclides: 18F, 57Co, 67Ga, 99mTc, 201Tl, 123I, 125I, 111In, 192Ir.

• Naturally occurring radioactive materials (NORM): 40K, 226Ra, 232Th, 238U.

As can be noted there are several radionuclides, many of which are in regular
use in industry, medicine or energy production. The American Nuclear Regulatory
Commission defines those nuclear materials that could be used in the creation of
nuclear weapons as “special nuclear material”.

However, also the other radionuclides need to be monitored and verified to avoid
risks. The dangers of sources that are accidentally or intentionally lost are many
and some examples of incidents include: unintentional incorporation of radioactive
material into recycled steel [4, 5]; theft of radioactive material [6] and recovery of
lost sources by unsuspecting individuals [7]. Discovery of such sources might be best
implemented at points of transport, such as airports, stations, seaports etc.

2.3 Special nuclear materials

To more accurately address the needs of the IAEA, and to create quantifiable goals
of what the safeguards are aimed at achieving, a number of special terms need to
be defined. In the regime of nonproliferation, it is especially material that could
be used for creation of nuclear weapons that needs to be safeguarded. The IAEA
differentiate between “direct-use” and “indirect use” materials, by referring to the
time needed to develop nuclear weapons.

Direct-use material such as highly enriched uranium (HEU) has a timeliness of
as little as one month. Timeliness here is defined as a measure of how fast a nuclear
device could be created using that specific material. Indirect use material, such as
uranium enriched below 20%, has a timeliness longer than of one year. However it
is not only the time aspect of certain materials that put conditions on the goals of
safeguards, but also the quantities. For this purpose the term significant quantity
(SQ) has been defined, which corresponds to the total amount of material needed
to create a nuclear device (see Tab. 2.1).

The foregoing outlines the quantitative and qualitative goals associated with
safeguards for special nuclear material. The goal is to be able to detect whether 1
SQ of material has been diverted within a time frame that is less than the timeliness
of the specific material in question. This also describes the tools needed for this goal:
systems able to correctly quantify material such that diversion of material can be
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Chapter 2. Safeguards - Background

Material category SQ Comment

“Direct-use” Pu 8 kg Total amount of the material
233U 8 kg Total amount of the isotope
U (235U ≥ 20 %) 25 kg 235U
“Indirect use” U (235U < 20 %) 75 kg 235U
Thorium 20 000 kg Total amount of the material

Table 2.1: List of different types of materials and their respective significant quantities
(SQ) [8].

detected. Since all measurements have statistical uncertainties it means that those
need to be reasonably small, such that deviations between verifications really depend
on material unaccounted for, rather than uncertainties of the tools available to do
the verification.

Figure 2.1: The good and the bad sides of the situation? Nuclear power offers a solution
to very dire climate problems, but not without also solving the back-end situation of how
to handle nuclear waste. [9]
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CHAPTER

3

EXISTING METHODS AND TOOLS

The type of tools needed by safeguards depends on the radiation emitted, the type of material,

the mass and a number of other parameters. An overview of those tools will be given here

and it will also serve as an introduction to the work presented in the following chapters.

3.1 Material assay

Safeguards for analyzing materials can usually be divided into two subcategories:

• Destructive Assay (DA)

• NonDestructive Assay (NDA)

Destructive assay constitutes an intrusive handling of the material, and for that to
be possible, direct access to the material is needed. In a laboratory it can give very
precise information about the investigated material. For assaying large quantities of
material or packed materials that one finds in large volumes at seaports or airports,
this method is hardly suitable. Nondestructive assay on the other hand relies on
the material sending out radiation that can be detected: either by just passively
observing the inherent radiative signature of the material (passive interrogation) or
irradiating the material to induce emission of radiation and detecting that (active
interrogation). Passive interrogation means that the physical processes and interac-
tions of the material needs to be well understood, since that is what can be used to
apply inverse tasks such as finding source properties (type of nuclide, mass of the
sample) from the radiative signature.

In the following sections a few such methods will be described. The goal of the
work was to develop these methods further, to enhance the understanding of the
processes and to elaborate more sensitive and precise monitoring methods.
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Chapter 3. Existing Methods and Tools

3.1.1 Gamma measurements

Most nuclear materials emit characteristic gamma rays, which could be used for
identification. Enriched uranium has a strong 186 keV gamma ray associated with
the alpha decay of 235U, so gamma spectrum measurements of uranium can give
information on the enrichment level. Similarly plutonium samples tend to contain a
number of Pu isotopes, which gives rise to a characteristic mix of gamma ray energies.
This can be used to find the isotopic composition of said samples. Also spent fuel
can be assayed by a similar method utilizing the decay of 137Cs, to determine the
discharge date from the reactor.

Both scintillation detectors and solid state detectors are used for gamma ray
spectroscopy. They have different properties and tend to complement each other
depending on the situation and the task performed [10]:

• Sodium iodide (NaI) detectors can be made very large and thus have a high
detection efficiency. They can be used for enrichment measurements, but have
a rather poor energy resolution, meaning they can not be used to distinguish
gamma rays from nearby peaks. The time resolution is very high with the
signal carrier being photons in a scintillation detector.

• High purity germanium (HpGe) detectors have excellent energy resolution as
their main advantage, but they require low temperatures for optimal operation,
usually achieved by liquid nitrogen cooling. The time resolution for the solid
state HpGe detector is worse than that of a scintillation detector.

• Cadmium zinc telluride (CZT) detectors exhibit features such as room temper-
ature operation and an energy resolution in between NaI and HpGe detectors.
They also exhibit very high intrinsic efficiency (internal detection efficiency),
but are normally limited in size compared to the other detectors.

An example of a detection system for gamma ray measurements is the hand-held
HM-5 (fieldSPEC), which is normally based on a NaI-detector, but can also use a
higher resolution CZT detector. It represents a type of device that can be used for a
wide range of tasks: dose rate measurements, source searches, isotope identification
etc. in a wide range of situations enabled by the portability of the device. Some
examples of detectors can be seen in Fig. 3.1.

3.1.2 Neutron measurements

Neutron measurements are popular especially for determining Pu mass. With the
penetrability of neutrons through high-Z material they do not experience the prob-
lem of self-shielding that gamma rays exhibit in larger samples. Most neutron mea-
surement systems are based on coincidence or multiplicity counters measuring mostly
plutonium or uranium. Since neutrons are produced especially in fission events, they
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3.2. Multiplicity counters

Figure 3.1: The handheld HM-5 (right) shown together with an active well neutron
counter (left).

are normally a good indicator of fissile material. However they are also produced in
(α, n) events, so searching for the coincident neutrons from fissions enables better
verification of fissile material in the sample.

3.1.3 Example of implementation

Implementing safeguards, means using a number of different techniques and detec-
tors. Table 3.1 lists examples of the techniques used at different plants by IAEA
during 2002. In total over 700 NDA systems were used and a total of 2430 inspec-
tions were performed. In addition to the systems mentioned below, video cameras
for optical surveillance are extensively used together with seals on containers and
areas. Finally, also environmental sampling is being used, both at sites such as
enrichment plants but also in and outside other installations not mentioned in the
table.

3.2 Multiplicity counters

To give a flavour of the methods used in the research, neutron multiplicity measure-
ments are presented here. It is a proven method implemented at many facilities.
The properties dealt with in the physics of fission are neutron and gamma ray dis-
tributions, together with the changes introduced by having a multiplying sample.
Measurable units however are detection rates of neutrons in neutron assay. The mea-
surable units can be derived from factorial moments that can be calculated from the
particle distribution related to fission in different isotopes. A generalization of con-
cepts and equations mentioned below is a core part of the research presented in the
following chapters.

11



Chapter 3. Existing Methods and Tools

Plant Materials Main techniques deployed

γ-ray spectroscopy,
Enrichment plant UF6 Weighing

γ-ray spectroscopy,
Neutron counting,

Fuel fabrication plant U and Pu oxides, MOX
Destructive analysis,
Isotopic determination
Cherenkov glow detection,

Power reactors Spent fuel Gross γ-ray and neutron
detection

Destructive analysis,
Reprocessing plant U and Pu nitrates

Neutron counting

Table 3.1: Sample of implementation scheme of safeguards in the case of facilities con-
nected to nuclear power [11].

Multiplicity counters have been in use for some time now and which have evolved
since the original designs. Both passive and active mode are used in different multi-
plicity and coincidence designs, depending on how high of a fission rate the material
exhibits. They represent a type of system that closely connects the area of safeguards
to the specific research mentioned in the subsequent chapters.

Modern multiplicity counters use almost exclusively 3He-detectors for neutron
multiplicity measurements. However, originally fast plastic scintillation detectors
were used in a type of system called fission multiplicity detection. Where 3He-
detectors depend on moderated neutrons to undergo the 3He (n, p) 3H capture reac-
tion, which means that they are sensitive to neutrons only, the scintillation detectors
are also sensitive to high energy gamma rays [12]. The problem with this approach
is that, as will be demonstrated later, the so-called point model can be used to
correlate the important neutron parameters to sample parameters related to mass
and composition etc. but for gamma rays this equivalence did not exist. A total
multiplicity of the sample was measured rather than a neutron multiplicity, unless
special measures were taken to suppress the gamma rays.

3.2.1 Factorial moments

To understand the basis of the equations used the concept of factorial moments
needs to be introduced. Starting with a certain distribution of a discrete variable
P (ν), one can create a probability generating function (PGF) [13,14] in the form of:

Q(z) =
max∑

n

P (n)zn. (3.1)
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3.2. Multiplicity counters

The n-th factorial moment νn is taken from the relation:

νn =
dnQ(z)

dzn

∣∣∣∣
z=1

, (3.2)

thus the first factorial moment i.e. the expectation of the variable ν is

ν1 =
max∑

n

νP (ν). (3.3)

This can be applied very straightforward to the probabilities associated with the
number of neutrons generated in a spontaneous or induced fission event. This type of
distribution is a nuclear constant depending on which isotope(s) the sample consists
of:

νsf,n =
dnpsf (z)

dzn

∣∣∣∣
z=1

, νi,n =
dnpi(z)

dzn

∣∣∣∣
z=1

. (3.4)

Table 3.2 lists the neutron emission probabilities associated with the sample
composition used for quantitative work in Papers I-II.

number of
neutrons

spontaneous
fission, psf (n)

induced
fission, pi(n)

0 0.0638 0.0071
1 0.2316 0.0674
2 0.3325 0.2283
3 0.2533 0.3263
4 0.0987 0.2510
5 0.0181 0.0958
6 0.0020 0.0208
7 0 0.0029
8 0 0.0005∑

px(n) 1.000 1.000

Table 3.2: The nuclear data for the probabilities of emitting n neutrons from spontaneous
and induced fission in a sample of 20 wt% 240Pu and 80 wt% 239Pu.

3.2.2 Detector measurables

Formulae for the factorial moments belonging to a PGF for the number of neutrons
generating from a single source event in a multiplying sample were derived by Böhnel
[15] and Hage & Cifarelli [16]. By correlating those expressions to the process of
detection, analytical formulae for the first three detection rates (singles, doubles and
triples) can be obtained in the form of [17]:

S = FεnMνsf,1(1 + α), (3.5)
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D =
Fε2

nfdM
2

2

[
νsf,2 +

(
M− 1

νi,1 − 1

)
νsf,1(1 + α)νi,2

]
, (3.6)

T =
Fε3

nftM
3

6

{
νsf,3 +

(
M− 1

νi,1 − 1

)
[3νsf,2νi,2 + νsf,1(1 + α) + νi,3]

+ 3

(
M− 1

νi,1 − 1

)2

νsf,1(1 + α)ν2
i,2

}
.

(3.7)

In the above εn stands for the neutron detection efficiency, the neutron leakage
multiplication, M, and the α-ratio are defined in the following chapters, fd and ft

are gate fractions for the detectors and finally F is the spontaneous fission rate in
the sample. In the case of Pu assay, it is taken as 473 fissions per second per gram
of effective 240Pu mass. The effective mass depends on the isotopic composition
and is defined as the mass of 240Pu that would give the same number of doubles as
obtained from all even isotopes of Pu:

240Pueff = 2.52 238Pu + 240Pu + 1.68 242Pu.

By measuring the first three multiples rates (singles, doubles and triples), It is
possible to deduce the three unknowns F , M, and α, when the detector efficiency
is known. A schematic of a design for a 3He based multiplicity counter is found in
Figure 3.2.

Figure 3.2: Design schematic of the In-plant (Pyrochemical) Multiplicity Counter (from
[17]).
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CHAPTER

4

PARTICLE NUMBER
DISTRIBUTIONS

When dealing with neutrons branching processes are often encountered. The understanding of

the number of particles generated and how they are connected offers a deep insight into the

physics of fissile samples. This chapter details the mathematics needed as well as the basic

concepts behind the processes governing particle generation.

4.1 Branching processes

In fissile samples neutrons can be absorbed into a nucleus and generate a fission
event. In that process a number of new neutrons are born each with the same
ability to generate new fissions. However, not only fissions can take place but also
absorptions and leakage from the sample, which means that the number of neutrons
in the chain is reduced. The full behaviour of the neutrons in the sample can be
depicted as a branching process like the one in Fig. 4.1.

Mathematically it can be described in a number of ways depending on what
assumptions and approximations are made. From now on it is assumed that the
particles and sample have no “memory”, implying that a particle born later in the
branching process will has no altered behaviour depending on the previous history
of the branching process, such that the new particle have the same probability to
undergo reactions as a previous particle in the sample. Mathematically it can be
expressed using conditional probabilities in the form of:

Pr(Xn+1 = x|X1 = x1, X2 = x2, . . . , Xn = xn) = Pr(Xn+1 = x|Xn = xn), (4.1)

where xi is the state of the random process Xi at different discrete steps. The

15



Chapter 4. Particle Number Distributions

Figure 4.1: A branching process, where the event can lead to both a multiplication of
the number of particles but also the removal of a particle (cf. absorption).

generation of neutrons (and also gamma rays) is considered to follow this behaviour
and the process is then called a Markov process [18].

4.2 Master equations

A way of describing the generation of neutrons and gamma rays using master equa-
tions has been shown by Böhnel [15] and Pázsit & Pozzi [19]. Considering an
absorption-free system (or alternatively: investigating the total number of gener-
ated particles), the only reaction a neutron can be involved in is an induced fission,
which can be assigned a certain probability, p, and likewise the probability not to
induce fission is (1−p). The first collision probability is closely linked to the sample
mass, the larger the sample the more likely a neutron will suffer a collision. Us-
ing the tool of probability generating functions it is possible to define the following
generating functions for the probabilities of the number of neutrons generated in
the sample by a single neutron or by a source event (spontaneous fission), h(z) and
H(z), respectively:

h(z) =
∑

n

p1(n)zn (4.2)

and
H(z) =

∑
n

P (n)zn. (4.3)

Here p1(n) and P (n) are the probabilities to generate n neutrons starting with a
single neutron or a spontaneous fission respectively. By using the PGFs of the
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4.2. Master equations

neutron distribution from spontaneous and induced fission:

qsf (z) =
∑

n

psf (n)zn , qi(z) =
∑

n

pi(n)zn, (4.4)

a derivation of master equations can be performed by writing down the probability
balance equations. For the probability p1(n) of neutrons induced by a single starting
neutron, one has, by summing up the probabilities of the mutually exclusive events
of not having or having a first collision in the sample, the following:

p1(n) = (1− p)δn,1 + p
∞∑

k=1

pi(k)

∑ ∏k
i=1 p1(ni)

{n1 + n2 + . . . + nk = n} . (4.5)

By doing the same also for P (n), and converting the equations into those for the
probability generating functions, a pair of coupled backward master equations can
be derived:

h(z) = (1− p)z + pqi[h(z)] (4.6)

and
H(z) = qsf [h(z)], (4.7)

where according to Eq. (4.4), q1[h(z)] =
∑

n pi(n)[h(z)]n. In Eq. (4.6) the first term
represents the event that the neutron does not induce fission, and the process then
ends there. The second term however, indicates that a number of new neutrons are
generated in the induced fission event, each of which will be treated independently
and thus have the chance to generate new neutrons themselves according to the
generating function h(z) itself.

4.2.1 Gamma ray equations

For gamma rays the situation is very different compared to neutrons. The reason
is that gamma rays are not self-multiplying but rather depend on the neutrons for
multiplication through induced fissions. This means that to create master equations
similar to the case of neutrons the formulae needs to be connected to neutrons rather
than gamma rays. The distributions of gamma rays from induced and spontaneous
fissions are also needed, and their PGFs are defined as follows:

rsf (z) =
∑

n

fsf (n)zn , ri(z) =
∑

n

fi(n)zn, (4.8)

where fsf (n) and fi(n) are the probabilities of generating n gamma rays in a spon-
taneous or induced fission, respectively.

The next step is to define the probabilities f1(n) and F (n) for the numbers of
gamma rays generated by a single neutron or by a source event, respectively, and
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Chapter 4. Particle Number Distributions

their PGFs g(z) and G(z). The master equations for the generating functions can
now be expressed as:

g(z) = (1− p) + pri(z)qi[g(z)] (4.9)

and
G(z) = rs(z)qs[g(z)]. (4.10)

If the neutron fails to undergo fission, no gamma rays will be created, while if the
neutron does induce a fission, a number of gamma rays will be generated according
to the induced fission distribution fi(n). Further, each of the neutrons that are
generated in the same event needs to be accounted for and independently treated
again in the same type of equation. In the source event, one has both the initial
neutrons that can later create more gamma rays, as well as a number of gamma
rays created directly with probabilities described by the number distribution of
spontaneous fission, fsf (n).

In Paper II the same equations are also derived from a single joint formalism
treating both the neutrons and the gamma rays together. An additional benefit
then is that the joint moments of neutrons and gamma rays can be directly derived.
For a longer and more complicated derivation of neutron and gamma ray factorial
moments (which is valid only for the individual moments but not for the mixed
ones), and the effect of multiplication on them, we refer to Oberer’s thesis [20].

4.3 Probability distribution

As was described in Section 3.2.1, the factorial moments of the probability distribu-
tion P (n) can easily be obtained by repeated derivations of the generating function
H(z). Whereas the usage of factorial moments is well documented the calculation
of the probability distribution on the other hand is a new type of analysis. such
probabilities were previously calculated only for a few low order terms. Here we
embark on the calculation of the full probability distribution.

Using the definition of Eq. (3.1) one can also find an analogous way to express
the probabilities as the Taylor expansion of the PGF:

P (ν = n) =
1

n!

Qn(z)

dzn

∣∣∣∣
z=0

. (4.11)

The main difference is that, compared to the factorial moments, the expression is
evaluated at z equal to zero rather than at z = 1. For the higher order terms,
this will create additional terms as compared to the expressions for the factorial
moments. Since PGFs have the property that Q(z = 1) = 1, many terms will be
unity, especially when encountering multiple internal derivatives. In the case of the
probabilities however, this is not the case when the implicit functions such as Eq.
(4.6) are evaluated at z = 0. A great benefit however is that factorial moments can
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4.3. Probability distribution

only be used to reconstruct the probability distribution once the moments up to high
orders are known [21], however from the expressions for the probability distribution
the expressions for the same order factorial moments can be found as a simplified
limiting expression.

A large difference when comparing the factorial moments and the probabilities
is that the 0-th factorial moment is just equal to unity, while the lowest order
probability is actually a very important quantity that needs to be calculated for the
sake of completeness. The probability P (n) will contain terms corresponding to all
previous probabilities P (m), ∀ m < n. Consequently, the lowest order probability,
corresponding to h(0) in Eq. (4.6), needs to be calculated. Inserting z = 0 gives the
following:

p1(0) = (1− p)z + pqi[h(z)]
∣∣
z=0

= pqi[p1(0)] = p
N∑

n=0

pi(n)[p1(0)]n, (4.12)

where p1(0) is the probability to generate 0 neutrons when starting with a single
neutron. Intuitively it might seem that Eq. (4.12), which is a N -th order polynomial
equation in p1(0), is impossible to solve since no generated fission would lead to
keeping the single neutron, and a fission would normally lead to even more neutrons.
However, in a fission process it is possible to generate also zero neutrons. As can be
seen in the above equation the probability p1(0) is closely linked to the first collision
probability p.

In the case of 240Pu N is limited to 8 and Eq. (4.12) has a single positive root
which can be found. A more detailed investigation and a derivation of the expressions
for the probabilities of the number of generated neutrons and gamma rays can be
found in Paper I. Also in the case of gamma rays a high order polynomial equation
needs to be solved for the initial probability f1(0), the order of that equation is once
again decided by the number of neutrons that can be generated in an induced fission
event.

The important first collision probability, p, is listed in Table 4.1, for the metallic
plutonium samples that were used in a comparison between the analytical model
and simulations made using the Monte Carlo code MCNP-PoliMi [22].

Sample Mass (kg) p σ
1 0.335 0.0852 < 0.0002
2 2.680 0.1678 < 0.0002
3 9.047 0.2461 < 0.0002

Table 4.1: Probability to induce fission, p, for one neutron depending on the mass of the
sample. The metal spheres have a composition of 80 wt-% 239Pu and 20 wt-% 240Pu, and
a density of 15.9 g/cm3.

The probabilities P (n) and F (n) for neutrons and gamma rays, respectively,

19



Chapter 4. Particle Number Distributions

needs to be calculated up to high order to ensure that the probability distribution
is complete. This can be achieved by calculating the accumulated probability and
stopping the calculation once a certain threshold is reached such that

∑N
n=0 P (n) ≥

0.99, if 99% of the probability distribution is desired. For the number of generated
particles this can go as high has N = 100 depending on the size and composition of
the sample.

In Figure 4.2 excellent agreement between simulations done using the code
MCNP-Polimi and the analytical model is shown. To ensure that the comparison
is fair the value of p is taken from the MCNP-PoliMi simulations, and the nuclear
data constants are taken from the same database. Compared to the distribution of
the spontaneous fission, which is the limiting case for an infinitesimal sample, the
probability distribution acquires a tail, which means that there is a increasing prob-
ability to have larger neutron bursts generated by an increased amount of induced
fissions.
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Figure 4.2: Probability distribution of neutrons generated for three samples of Pu-metal
spheres. The results of the analytical model are compared to Monte Carlo simulations
using MCNP-PoliMi.

Figure 4.3 shows the probability distribution for gamma rays for the same sam-
ples as used in the neutron analysis. Similarly to neutrons also the gamma rays
acquire a tail to the distribution. A major difference though is that the gamma rays
have a wider distribution from fissions, as many as 20 can be generated in a single
fission. Considering the fact that larger numbers of gamma rays are generated also
in small samples, they could be a good candidate for multiplicity assay compared to
the neutrons. However, these are the number of generated particles, and when also
accounting for absorption and detection the situation can change drastically.

It can be noted that for the high order probabilities especially for neutrons, the
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Figure 4.3: Probability distribution of gamma rays and the comparison with MCNP-
PoliMi for three sample masses.

simulated results show some statistical scattering. This can be amended by running
longer simulations, but that can become rather time consuming. In the same spirit,
the analytical model is well suited for doing parametric studies to investigate the
dependance for example on the first-collision probability. Once the formulae have
been derived, it is straightforward to evaluate them with different values of the
parameters such as done for p in Fig. 4.4.
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Figure 4.4: The dependance on the first-collision probability, p, for neutrons and gamma
rays, respectively.

The value of p was changed in a range corresponding to tens of grams up to
multiple kilogram quantities. The high order probabilities continue to increase until
we reach a critical system at p = 1/νi,1; beyond that point, the calculations become
irrelevant.
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4.3.1 What about absorption?

The process of absorption can be modelled in different ways yielding the same result
but different equations. In the case of neutrons, the probability of having an internal
absorption in the sample is very small. The absorption can be modelled together
with the induced fission as one single reaction, yielding a certain number of new
neutrons (zero in the case of absorption). To use this approach the first-collision
probability, p, needs to be changed to be the probability of either absorption of
fission p′:

p̃i(n) =
p′ − p

p′
δn,0 +

p

p′
pi(n). (4.13)

The benefit of such an approach is that the master equations remain the same, while
only some of the input parameters change. For gamma rays the same procedure does
not work, and the effect of absorption is two-fold: direct absorption of gamma rays;
and also absorption of neutrons which will reduce the number of induced fissions
and thus reduce the number of generated gamma rays.

The alternative approach is to define generating functions also for the process of
absorption which can be described with a leakage probability, l, and the absorption
is then the reciprocal probability (1− l). Formulating it as a probability generating
function in the case of neutrons and gamma rays respectively gives the following
equations:

`n(z) = lnz + (1− ln), (4.14a)

`γ(z) = lγz + (1− lγ), (4.14b)

with ln and lγ being the leakage probability of neutrons and gamma rays, respec-
tively.

4.3.2 Detection probabilities

Detection is a process that occurs to a generated particle which escaped absorption
and then was detected with a certain detection probability, ε. Like in Eqs. (4.14)
this can be implemented using PGFs:

εn(z) = εn z + (1− εn), (4.15a)

εγ(y) = εγ z + (1− εγ). (4.15b)

The benefit of this approach is that new master equations for the detection statistics
are easily formulated in accordance with:

hd(z) = h[`n{εn(z)}] , Hd(z) = H[`n{εn(z)}], (4.16)

and in an analog manner for the gamma ray equations. Note can be made that
the equations needed for the 0-th order probability and the higher order derivatives
changes since new terms are introduced.
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Figure 4.5: Probability distributions with detection included. The results are obtained
from the analytical models. The shape of the curves will be dependent on the detector
efficiency εx, which was taken as 10% for neutrons (a) and 20% for gamma rays (b) in
these plots.

The effect of including absorption is mostly visible for the gamma rays since a
high-Z material such as plutonium is highly self-shielding for the gamma rays while
the neutrons are to large extent unaffected by absorption. When also adding the
process of detection, the probability distributions reduce even further as is seen in
Fig. 4.5. The “emitted” lines are the result when absorption is taken into account,
the large change for gamma rays is apparent when comparing to Fig. 4.3. It is very
interesting to note that the probability to detect the first few multiples is higher
for a small sample than for a larger one. The probabilities P (n) and F (n) are
the probability per source event though, and in a larger sample the rate of such
events will be higher. it is also apparent that although the gamma rays have higher
initial multiplication the neutrons exhibit larger probability of detecting higher order
multiples for this type of sample.

It is worth noting that the detection probabilities could be connected to detection
rates, by correlating to the number of source events per mass unit of the specific
material. It means that the probability distribution offers an alternative route to
finding the detection rates compared to using the factorial moments investigated in
References [15,16,19,23,24]. Compared to the theory mentioned in Section 3.2, there
is no mention of alternative source events other than spontaneous fission. Especially
in materials in oxide or fluoride form there are usually a large number of neutrons
created through (α, n) events. As was noted by Böhnel though, this can also be
simply modelled by creating a compound source and that approach will be utilized
in the next chapter.

23





CHAPTER

5

MULTIPLICITY THEORY AND
PARAMETER UNFOLDING

Detection rates for neutrons have already been briefly presented (Sec. 3.2). Here a deeper

investigation will be presented which also derives the detection rates of gamma rays and even

mixed multiples. Due to the complexity of the resulting multiplicity rate expressions, artificial

neural networks were applied for the unfolding problem.

5.1 Multiplicity theory

Multiplicity theory has long been applied to neutron counting for assay of nuclear
materials or nuclear waste. In the previous chapter similar theory for gamma rays
was outlined as the basis for possibly enabling also gamma ray multiplicity counting.
This is achieved by converting factorial moments into detection rates depending on
parameters which vary with the sample mass, because the distribution corresponding
to one source event cannot be measured. By doing a novel extension of the formalism
also to joint moments as will be demonstrated, there are nine auto- and cross factorial
moments when counting up to third order for neutrons and gamma rays. The main
problem when extending the theory is the complexity of the equations which becomes
more advanced with the additional parameters that are introduced especially for the
gamma rays. Simple analytical inversions of the formulae are no longer available;
therefore, the introduction of artificial neural networks (ANN) [25] is outlined in
Sec. 5.2. The non-linearity of the equations and the redundancy in the number of
measured rates compared to the number of output parameters is well handled by
the ANN.
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5.1.1 Neutrons, gamma rays and combinations

When measuring the detection rates of neutrons and gamma rays together with the
joint multiples there are a total of three neutron rates (S, D, T ), three gamma ray
rates (Sγ, Dγ, Tγ) and also three combined rates (Dnγ, Tnnγ, Tnγγ). A big challenge
of measurements of this type is how to detect the different types of radiation. Tra-
ditionally 3He-detectors were used for the neutron assay, and while they remove the
neutron from the system avoiding the risk of a single particle giving pulses in more
than one detector, they are on the other hand not capable of detecting gamma rays.

Within nuclear safeguards the prospects of using organic liquid scintillation de-
tectors have recently been investigated [26, 27]. This type of detector is capable of
detecting not only both neutron and gamma rays, but they are also giving different
pulse signatures such that one can discriminate which particle caused each pulse.
Other systems using plastic scintillation detectors [28] were also sensitive to both
types of radiation, but they did not offer the possibility to see which type of radiation
caused each pulse, which would make full joint multiplicity counting impossible.

Now that it is possible to detect both types of radiation with a single detector
setup in a relatively easy manner, the motivation for doing so must also be investi-
gated. One reason for finding and using also the joint moments can be illustrated by
the covariance between neutrons and gamma rays. As shown in Fig. 5.1 there is a
very strong relationship between the two particle types, for increasing values of the
probability to induce fission (p). The probability to induce fission is not normally
the parameter found in the formulae for the detection rates as seen in Sec. 3.2,
instead one usually converts it to the so called neutron leakage multiplication, M,
through:

M ≡ 1− p

1− pνi,1

; pνi,1 < 1. (5.1)

5.1.2 Mixed sources

In fissile material there may be other sources present besides spontaneous fission.
Neutrons produced through (α, n) reactions can also give rise to reaction chains pro-
ducing higher order multiples caused by the multiplication process of the neutrons.
To account for the presence of single neutron producing events, one introduces the
statistics of the total source events as a weighted average of the two processes of
spontaneous fission and (α, n) reactions [15], [29]. Denoting the generalized source
event by a subscript s, the source moments of neutrons can be described as follows:

νs,n =
νsf,n(1 + αδ1,n)

1 + ανsf,1

. (5.2)
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Figure 5.1: Covariance between neutrons and gamma rays, defined as: Cov(ν, µ) =
〈ν µ〉 − 〈ν〉 〈µ〉.

The factor α is defined as

α =
Qα

Qfνsf,1

.

Here Qf and Qα are the intensities of spontaneous fission and (α, n) processes,
respectively, and hence α stands for the ratio of (α, n) neutrons to spontaneous
fission neutrons. Similarly the source moments for gamma rays can be modified to
account for gamma rays produced in the (α, n) events. A recent investigation into
the derivation of the effect of (α, n) events on the neutron detection rates can be
found in Paper III.

An additional benefit of having a formalism for other neutron events is that it
could be used as basis for a formalism for an actively interrogated sample where
a neutron accelerator producing neutrons is used to induce reaction chains in the
sample.

5.1.3 Formulae for detection rates

To find the detection rates such as those listed in Eqs. (3.5)-(3.7), one needs to first
derive the factorial moments of the same order. For neutrons they are just the n-th
derivative of Eq. (4.7), evaluated at z = 1, giving the following expression for the
first three moments:

ν1 =
M

(1 + ανsf,1)
νsf,1(1 + α), (5.3)

ν2 =
M2

(1 + ανsf,1)

[
νsf,2 +

(
M− 1

νi,1 − 1

)
νsf,1(1 + α)νi,2

]
, (5.4)
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ν3 =
M3

(1 + ανsf,1)

[
νsf,3 +

(
M− 1

νi,1 − 1

)
[3νsf,2νi,2 + νsf,1(1 + α)νi,3] +

+ 3

(
M− 1

νi,1 − 1

)2

νsf,1(1 + α)ν2
i,2

]
.

(5.5)

Use have been made of the combined source moments defined in Eq. (5.2).

Similarly for gamma rays the equivalent expressions can be found from deriva-
tions of Eq. (4.10). This leads to the expression:

µ1 =
µsf,1 + ανsf,1

(1 + ανsf,1)
+

νsf,1(1 + α)

(1 + ανsf,1)
Mγ, (5.6)

with
Mγ ≡ pµi,1

1− pνi,1

(5.7)

being the gamma leakage multiplicity per one initial neutron. Note that Mγ is not
strictly a new parameter since it depends foremost on the fission probability p which
occurs similarly in the expression for the neutron leakage multiplication M. The
second and third factorial moments are:

µ2 =
µsf,2

1 + ανsf,1

+ 2
(µsf,1 + ανsf,1)

(1 + ανsf,1)

νsf,1(1 + α)

(1 + ανsf,1)
Mγ+

+
νsf,2

(1 + ανsf,1)
M2

γ +
νsf,1(1 + α)

(1 + ανsf,1)
g2

(5.8)

and

µ3 =
1

(1 + ανsf,1)

[
µsf,3 + 3µsf,2

νsf,1(1 + α)

(1 + ανsf,1)
Mγ+

+3(µsf,1 + ανsf,1)

{
νsf,2

(1 + ανsf,1)
M2

γ +
νsf,1(1 + α)

(1 + ανsf,1)
g2

}
+

+νsf,3M
3
γ + 3νsf,2g2 + νsf,1(1 + α)g3

]
.

(5.9)

In Eqs. (5.8)-(5.9) gn are the factorial moments of the gamma ray distribution
initiated by a single neutron, which are defined as [29]:

gn =
dng(z)

dzn

∣∣∣∣
z=1

. (5.10)

Factorial moments alone are not enough to relate to the measurable quantities
such as singles, doubles etc. First it is needed to find the factorial moments ν̃k
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of the detected neutrons per one initial event. This requires the introduction of
the detector efficiency and for the first few moments these factorial moments are
obtained as:

ν̃1 = εnν1, (5.11a)

ν̃2 = ε2
nν2, (5.11b)

ν̃3 = ε3
nν3. (5.11c)

Additionally it is important to account for the fact that a measured doublet could
be the result of detecting two particles from a higher order multiplet, and that the
detection rates Ck, k = 1, 2, 3 are also related to the total source intensity. Using
Ck as the notation for the k-th order multiplet (such that C1 = S, C2 = D etc.)
and the total neutron source rate Qs ≡ Qf + Qα, it follows that

Ck = Qs

〈(
ñ

k

)〉
= Qsε

k
n

∑
n

n!

k!(n− k)!
P (n) = Qs

ν̃k

k!
. (5.12)

Using the α ratio it is possible to rewrite the source rate as depending only on the
rate of fission, F : Qs = F (1 + ανsf,1). Using the equation (5.12) together with
(5.11) on the factorial moments of neutrons, gives the previously mentioned neutron
detection rates, Eqs. (3.5)-(3.7).

For gamma rays a parameter for a single gamma ray generating source can be
introduced in an analogue way as for the neutron case. The gamma ratio, γ, is
defined as the ratio of the single gamma ray source strength, Qγ, and the neutron
source strength, Qs. The gamma detection rates are now given by the following
expressions:

Sγ = [γF (1 + ανsf,1) + F (1 + ανsf,1)µ̃1] , (5.13a)

Dγ = F (1 + ανsf,1)
µ̃2

2
, (5.13b)

Tγ = F (1 + ανsf,1)
µ̃3

3!
. (5.13c)

For mixed detection rates the formulae grows longer and more complex and can
be found in Paper IV.

5.2 Parameter unfolding

The application of artificial neural networks on the unfolding of the sample rates
was the main focus of Paper V, while the derivation of the required formulae can
be found in Paper IV. This section will investigate some of the results and findings
of the prospect of using ANNs for parameter unfolding from neutron and gamma
ray detection rates.
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Chapter 5. Multiplicity Theory and Parameter Unfolding

5.2.1 Artificial neural networks

Since the neutron rates can be analytically inverted they present a good opportunity
for validating the design and layout of the neural network [30]. Figure 5.2 shows
the schematic structure used when trying to unfold three sample parameters (fission
rate, alpha ratio and neutron leakage multiplication).

Input
multiplicity
rates (3)

Output
parameters (3)

Tansig hidden
layer

Tansig hidden
layer

Linear output
layer

(25 nodes) (15 nodes)

Figure 5.2: ANN schematic.

The network contains two hidden layers, each with a number of nodes which
connect to the nodes of the next layer. In the end a number of output parameters are
produced according to the design of the network. It can be noted that although the
fission probability p is an important parameter, it might be more straightforward to
unfold the neutron leakage multiplication, M, due to the way the two terms appear
in the formulae for the detection rates. These types of considerations were tested
with trial and error to achieve optimized networks.

5.2.2 Validation and training

The application of ANNs require large sets of training and validation data. In the
case of unfolding the neutron detection rates it is the three detection rates that are
the input data while the parameters p, α and F are varied over ranges of values
corresponding to different sample masses and compositions. Figure 5.3 shows a
sample of the generated training data.

fission rate (F) α p

max. abs. rel. error (%) 0.0001 0.0021 0.0001
mean error of training (%) -1.98e-9 -4.14e-7 4.96e-9

standard deviation of training (%) 7.56e-6 2.11e-4 3.24e-5
mean error of test data (%) 1.28e-6 -7.15e-6 2.56e-6

standard deviation of test data (%) 9.34e-6 1.42e-4 3.29e-5

Table 5.1: Training results of ANN, using the neutron equations to simulating large
plutonium samples in the kg-range.

The training and testing data show that for the neutron rates extremely low
errors are to be expected when unfolding the sample parameters (Tab. 5.1). The
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Figure 5.3: Training data that are used to calculate F , α and p. The surfaces correspond
to different values of p while F and α are represented on the x, y-axis, respectively.

shown inaccuracies are small enough to warrant usage of ANNs for unfolding also
of neutron rates measured in neutron multiplicity counters. A motivation for using
the ANNs rather than the analytical unfolding is that the neutral network is less
sensitive to error propagation from measurement uncertainties, provided that the
network has been properly trained and validated.

5.2.3 Results

As more detection rates are added to the neural network it also introduces new
parameters. When using both neutron and gamma ray rates, there are a total of 6
inputs, but the number of sample parameters is also increasing with the parameters
γ, Mγ and εγ being introduced. For the network to perform adequately there is
a need to increase the complexity of the internal structure, while also spending a
bigger computational effort of training. As shown in histograms in Fig. 5.4, the
errors in unfolding of the added parameters from the gamma ray detection rates are
also kept promisingly low.

For successful application of neural networks on measurement data there is a
need to investigate the sensitivity of the network. The neutron rates were perturbed
by random noise of different levels to investigate how the unfolding of the most im-
portant parameter, the fission rate F , is affected. Figure 5.5 shows the effect of 1%,
5% and 10% noise on the input data. It is significant to note that it is especially
the singles rate that will induce errors in the predicted fission rate. The extent
of the error though is quite small in comparison to the introduced perturbation.
In measurements it is especially the triples rate that has the largest statistical un-
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Figure 5.4: Histograms of the relative errors of some of the parameter occurring in the
expressions for the gamma ray detection rates.
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Figure 5.5: Influence of noise on different neutron rates, when unfolding the fission rate.

certainties [31, 32], fortunately the results show that it is the triples that have the
smallest effect on the unfolded fission rate. This is a very promising feature of the
neural network approach, especially if considering applying it for the widespread
neutron multiplicity analysis.

Sensitivity analysis was also performed for the case of using all 9 neutron, gamma
ray and mixed rates. Since this is the case of the maximum number of available
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inputs it implies large requirements on the accuracy of the measurement. That
all the multiplicity rates would be accurately acquired is unlikely. Therefore, the
ANN was tested when omitting different inputs. An additional benefit of such an
approach is that it can show the relative importance of different inputs, by showing
which introduces the largest uncertainties when it is omitted.
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Figure 5.6: Maximal variation of the unfolded fission rate after omitting one of the
inputs.

The results shown in Fig. 5.6 indicate that the variation in the unfolded fission
rate is relatively small when omitting most of the input rates. For the case of doubles
and triples for gamma rays the generated variation is much larger though. This also
confirms the importance of measuring the gamma rates when attempting unfolding,
since almost all parameters occur in the expression of those rates.

While very promising results are shown for the application of neural networks,
it is also important to understand the complexity of properly designing and using
them to solve the problem at hand. Choosing which parameters to unfold, such as
M and (1 − α) rather than p and α, can improve the accuracy. Likewise choosing
the inputs in a sophisticated way is of great importance. Using S, D/S, T/S rather
than S, D, T means that the input parameters are more independent and once again
better accuracy in achieved. The expertise within neural networks belongs to the
co-author of Papers IV-V: Senada Avdic, who performed the analysis described
here.
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CHAPTER

6

SCINTILLATION DETECTORS AND
NEUTRONS

This chapter presents an analytical model of how the interaction between neutrons and organic

scintillation detectors results in light pulses. The idea is to create additional understanding of

the interaction physics while also giving new ideas in how to best use scintillation detectors

when trying to understand the incident neutron radiation. In the words of the neutron: “Let

there be light!”

6.1 Theory

A way of detecting and identifying nuclear materials in nonproliferation applications
is by use of organic scintillation detectors in both liquid and plastic form. The
mechanism of neutron detection is light generated by scatterings on hydrogen (H)
and carbon (C) nuclei, which are the main constituents of the detection material.
These detectors are as previously mentioned also sensitive to gamma rays, but by
using pulse shape discrimination those pulses can be discarded and a pure neutron
pulse analysis is then achievable [33, 34].

The light produced in the scintillation material is scattered inside the detector
until it reaches a photo multiplier tube (PMT) - Fig. 6.1. This device transforms
the light quanta to electrons via a photocathode. The electrons are then multiplied
through a cascade process, and thus generate an electric signal. In the following
it will only be the parts prior to the PMT that will be modelled, meaning the
initial generation of light from energy transferred by neutrons. A first investigation
into finding individual neutron collision contributions was reported by Hermsdorf
et al. [36]. Since this problem was so far only handled by Monte Carlo methods we
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Chapter 6. Scintillation Detectors and Neutrons

Figure 6.1: Photo multiplier tube (from [35]).

wanted to have also an analytical model for comparison. The basis of this chapter
is the results found in Papers VI-VII, together with some additional work [37,38].

6.1.1 Collision probabilities

It is intuitively clear that the distribution of the light pulse amplitudes is strongly
depending on the probability of the neutron to undergo certain reactions in the de-
tector. In an analytical model this step, which depends on the material cross section
and the system geometry, presents a challenge which is hard to handle without ap-
proximations. The collision probability for an isotropic neutron source distributed
uniformly in a sample of volume V , is given by the so-called Peierls-formula [39]:

P =
Σ

V

∫

V

dr

∫

V

dr′
e−Σ|r−r′|

4π|r− r′|2 . (6.1)

For homogeneous samples, which we will assume here, and for some regular
geometries such as a sphere, this expression can be brought to either a closed form,
or to a form sufficiently amenable for numerical calculations. This approximation
works best when the neutron undergoes several collisions which will force them to
approach such a uniform isotropic source before the next collision in the sequence.
For a cylinder an expression was given for this probability by Carlvik [40] in the
form :

Pc = 1− 1

h
[E3(0)− E3(h)] +

4

πd2h

∫ d

0

dt
{
E3(t)− E3

[
(t2 + h2)1/2

]}
(d2 + t2)1/2

− 4

πd2h

∫ h

0

du(h− u)

∫ d

0

t2dt
e[−(t2+u2)1/2]

(t2 + u2)3/2
(d2 − t2)1/2 ≡ P (E),

(6.2)
where

En(z) =

∫ ∞

1

e−zu

un
du
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6.1. Theory

is the exponential integral. The height and the diameter is expressed in mean free
paths, and this is where the energy dependence of the collision probability enters.
However, it is not only the geometry that decides h(E) and d(E), but also the
exact composition. In the quantitative work the composition chosen is that of the
scintillation liquid BC-501A, which is commonly used in liquid scintillation detectors.
Table 6.1 shows the detector dimensions in mean free paths for neutrons of energy
1 MeV.

Detector dimensions: h = d
cm MFPs

1 0.308022
5 1.54011
10 3.08022
15 4.62033

Table 6.1: Detector dimensions for a right cylinder, expressed in centimeters and in mean
free paths for a neutron energy of 1 MeV.

6.1.2 Light pulse distributions

Since the energy transferred from the neutron inside the scintillation material is what
creates the light pulses, the first step it to create a model for the energy transfer
from a neutron. As can be seen in Figure 6.2, a neutron with initial energy E0 can
undergo a series of collisions, each reducing the remaining energy of the neutron
which affects the amount of energy that is transferrable in later collisions.

H

H

C

neutron

E0

E
E E

1
2

3

Figure 6.2: Collision sequence for e neutron of initial energy E0. Collisions on hydrogen
(H) and carbon (C) are resulting in scintillation light.

For collisions on hydrogen the energy distribution for the neutron is a simple
flat distribution since the hydrogen nuclei (proton) has practically the same mass as
the neutron itself, and thus a full energy transfer is possible while still maintaining
conservation of momentum in the collision. The distribution in transferred energy,
T , for a neutron of initial energy E0 is:

p(T, E0)dT =
dT

E0

. (6.3)
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The transferred energy is then transformed into light, and the amount of light pro-
duced will depend on the nuclei involved and for the following calculations is taken
as the empiric relation

L = aT 2 + bT ≡ Lh(T ), (6.4)

with L being the produced light in MeVee (MeV electron equivalent), and a, b are
constants. Combining these formulae and calculating the distribution of a function
of a random variable with a known distribution, the light distribution for a neutron
colliding once with hydrogen is as follows:

f1h(L,E0) =
1

E0

√
b2 + 4aL

. (6.5)

Similarly for collisions on carbon, the same type of derivation can be made. The
light generation from energy transferred to carbon however is simpler and follow
the relationship Lc(T ) = c T , with c being a constant. A neutron colliding with a
carbon nuclei can only transfer a fraction α of its energy in each collision, and the
following light distribution is found for a single collision on carbon:

f1c(L,E0) =
θ(Lmax,c − L)

c (1− α) E0

, (6.6)

with θ being the Heaviside function.

When calculating the amount of light produced by a certain energy transfer
from two collisions the specific energy transfer in each is an unknown variable, and
the formulae generated will be in the form of convolution integrals of higher and
higher order when adding more collisions. The manner of creating such formulae is
found in Paper VI. In the case of collisions on carbon, the linear relation between
transferred energy and light means that the problem is very closely linked with the
slowing down problem in a graphite moderator. Figure 6.3 show the distributions
after each added collision on carbon.

Since the collision probability is given via Eq. (6.2), it is possible to use that
factor to get correctly weighted light distributions for a specific detector geometry
and composition. Weighting factors depending on if the collisions was on hydrogen
or carbon can be created as:

cH(E) = P (E)
ΣH(E)

ΣT (E)
, (6.7a)

cC(E) = P (E)
ΣC(E)

ΣT (E)
, (6.7b)

where ΣT = ΣH + ΣC + Σa are all macroscopic cross sections. The probability that
the neutron history is terminated by either absorption or leakage, is given as

W (E) = 1− cH(E)− cC(E).
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Figure 6.3: Light pulse distributions normalized to unity, for 1-4 collisions on carbon.

W (E) is a quantity that has to be used when calculating the probability that a
neutron history will end after a certain number of collisions of a given sequence.

A proper collision probability weighted distribution of light when colliding once
with hydrogen or carbon respectively, reads as:

fH(L,E0) ≡ cH(E0)f1h(L, E0), (6.8a)

fC(L,E0) ≡ cC(E0)f1c(L,E0). (6.8b)

Since the equations are given in terms of light generated, L, there is a need to
find the inverse relation of Eq. (6.4), giving the transferred energy as a function of
the produced light, Th(L) and the equivalent for carbon. Probability distributions
for any given collisions sequence can now be formulated (see Paper VII), where an
example in the form of the three-collided H-C-H distribution is shown below (the
last index indicating first collision):

fHCH(L,E0) =

∫ L−l1

0

∫ L

0

fH [L− (l1 + l2), E0 − (Th(l1) + Tc(l2))]×

fC [l2, E0 − Th(l1)] fH [l1, E0]W [E0 − Th(l1)− Tc(l2)− Th(L− (l1 + l2))] dl1dl2.
(6.9)

A real light pulse distribution which takes into account all different collisions se-
quences, will be the sum of the once-, twice-, etc. collided neutrons in the form of
a collision number expansion:

f(L,E0) = f1(L,E0) + f2(L, E0) + f3(L,E0) + . . . (6.10)

A truncation can be made at a higher number of collisions either based on the
lower probability of having a high-order collision history, or alternatively, based
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on the fact that additional collisions are likely to only produce minor light when
the neutron is already slowed down, and thus the next order distribution will be
approximately the same shape as the previous order. The separate formulae do
however provide an opportunity to study the effects of collision order and sequences
as will be demonstrated in the next section.

6.2 Collision history importance

The light pulse distributions without collision probability normalization have been
validated and compared to simulations made using the code MCNP-PoliMi, and very
good agreement was found. Considering the case of twice collided neutrons which
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Figure 6.4: Double collision comparison with MCNP-PoliMi for neutrons of initial energy
2 MeV.

had one collision each on carbon and hydrogen, one could expect a very similar light
pulse distribution for the same initial energy and light output. However, as can
be seen in Fig 6.4, there are actually quite notable differences for different collision
sequences, primarily arising from the limited energy transfer when colliding with
carbon.

Similarly when comparing three times collided neutrons (Fig. 6.5) the differences
grow even larger, and it is notable to see that the light pulse distribution might have
peaks corresponding to a light output different from what could be expected from
the maximum transferable energy. Also in this case the comparisons with Monte
Carlo show a good agreement. It is also notable that the main simplification in the
analytical model comes from the empiric formulae of light generation on different
nuclei, and it seems probable that without the statistical scatter on the Monte Carlo
results the shape of the curves would converge even closer to the analytical model.
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Figure 6.5: Triple collision comparison with MCNP, for neutrons of initial energy
1.5 MeV.

6.3 Detector models

The initial validation was made without proper collisions weighting, which is achiev-
able by using Eqs. (6.2)-(6.7), and the termination probability W (E). Such results
will be presented below.

6.3.1 Impact of detector sizes

It is apparent that the order and amount of collisions greatly affect the scintillations
pulses, but what about the detector size? The geometry of the detector will have a
large effect on the likelihood of different collisions sequences, when some detectors
are seen as “thin” by the neutron and others are seen as “thick”, meaning a small or
large probability to suffer a high number of collisions. In Fig. 6.6 this effect is shown
for the distributions of all twice collided neutrons for 4 different detector sizes.

The fact that the scattering cross sections are not constant for different energies
also changes the distributions. This can be seen especially when comparing indi-
vidual collision histories for different detector sizes, such as done in Fig. 6.7. At
about 0.145 MeVee light output the distribution shows a peak (Figs. 6.7(a)-6.7(b))
corresponding to a minor peak in the cross section of carbon. While such small
effects would be very hard to detect in measurements, they offer insight to and un-
derstanding of the interaction process between neutrons and scintillation detectors.
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Figure 6.6: Light pulse distribution for twice collided neutrons of initial energy 2 MeV
for four different detector sizes. Light output L is given in MeVee.
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Figure 6.7: Light pulse distribution for two different collision histories both in a 1 cm
and a 10 cm scintillation detector (left and right figures, respectively). Incident neutron
energy is 1 MeV.
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CHAPTER

7

CORRELATED PARTICLES AND
MEASUREMENTS

By correlated particles we refer to particles created in correlated events, such as a “superfission”

as defined by Böhnel [15]. They are generated in reaction chains started with a single source

event. In a very fast measurement system it is possible to measure only true coincidences of

neutrons and gamma rays, thus simplifying the analysis and enhancing the nuclear materials

signatures that such a system can provide. This is an example of the practical applications

that the research in the previous chapters aimed at modelling and improving.

7.1 Turning theory into practice

While much of the current research within safeguards concerns simulations and mod-
els (the latter being the main focus of this thesis), the work must aim at developing
methods and systems that can be used in realistic situations for assuring safeguard
performance. The vital part of testing the theories and seeing how they measure up
to reality is best done in experimental work. In this chapter two methods: cross-
correlation measurements; and mixed multiplicity counting will be detailed.

7.1.1 Which detectors?

When creating or using measurement systems for detection of nuclear material, a
key issue is the type of detectors chosen. Proportionality counters, semiconductor
detectors, scintillators or capture detectors are just some of the examples available.
The use of scintillation detectors is a interesting one, due to the inherent property
of utilising the speed of light they can often offer excellent timing characteristics.
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Especially liquid organic scintillation detectors are suitable for use when detecting
dual radiation, i.e. both neutron and gamma rays, while also being able to determine
which pulse came from what as previously mentioned.

With fissile samples sending out large amounts of both neutrons and gamma
rays, the scintillation detectors are suitable for assaying this type of material. The
detectors can also be found in a variety of sizes and geometries, some of which can
be seen in Fig. 7.1 showing the detection setups for cross-correlation measurements
and multiplicity counting as used in Papers VIII-IX.

(a) Oak Ridge national Labs. (b) University of Michigan.

Figure 7.1: Measurement setups used for cross-correlation measurements and other ex-
periments.

Using fast detectors is only optimized if they are coupled to a data acquisition
system capable of handling the fast pace of information. Such equipment is available
in the form of fast digitizers able to read and output the pulse information in digital
format at rates approaching the GHz-range, i.e. sampling at close to nanosecond
intervals.

With particle identification being a key issue in environments containing both
neutron and gamma ray radiation, there is another type of detector which also
has interesting properties: capture-gated detectors. In such a detector, a pulse is
produced by neutrons and gamma rays interacting with the scintillation material.
In addition to that, neutrons can also undergo capture and thus create an additional
pulse. This pulse is very distinct, and can be used to verify that a previous pulse was
generated by a neutron. This property is achieved by doping the detector material
with a neutron absorber such as boron or lithium. A more detailed description and
discussion of such detectors can be found in References [41–44]. The drawback of the
design though is that for the capture to be likely the neutron needs to be moderated
to much lower energies, which normally require a large number of scatterings. For
this to occur frequently the detector volume needs to be quite large, and the process
of slowing down, capture and the subsequent generated capture pulse will be on the
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order of microseconds which is much longer than the pure scintillation pulse lasts.
Having a high count rate would then be impairing due to the large probability
that an additional particle interacts with the detector within the time frame of the
neutron capture.

7.1.2 Pulse shape discrimination

With pulse shape discrimination (PSD) being of utmost importance in the proposed
applications, it is important to understand how the PSD works. In an organic
scintillator most of the observed scintillation light comes as a prompt florescence,
but also a minor longer-lived component can be observed. While the prompt part
has a decay time on the order of nanoseconds, the delayed part has a decay time
in the order of hundreds of nanoseconds. The slow component depends primarily
on the energy loss dE/dx of the exciting particle and is higher for large values of
dE/dx. This makes it possible to distinguish heavier particles such as α-particles,
from neutrons (recoil protons) and gamma rays (recoil electrons). The behaviour
of the scintillation pulses generated by different types of radiation can be seen in
Figure 7.2.

Figure 7.2: Particle pulse dependence (from [45]).

Quantitatively, PSD can be performed either by differentiation or integration
[46,47]. In the following the integration method will be detailed as implemented in
some of the measurements in Sections 7.2-7.3. By integrating the total pulse and
comparing it to the integral of the pulse tail a characteristic ratio is found. By
observing the plot of total integral versus tail integral (Fig. 7.3) it is clear that
neutron and gamma ray pulses divide into two distinct regions, where the neutrons
are indicated by larger tail integrals. A discrimination curve can then be used to
discriminate the neutrons from gamma rays in the analysis.
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Figure 7.3: Tail versus total integrals for a 252Cf measurement. The data shown are for
a single EJ-309 detector, and the discrimination line indicates which pulses are created by
neutrons (above the line) and by gamma rays (below the line).

7.2 Cross-correlations

Cross-correlations are measurements where two coincident pulses in the detectors
are used to create a data point which depends on which detector each pulse was
recorded in and the relative time difference. Since both neutrons and gamma rays
occur it means that 4 different pairs can be detected: (n,n), (γ, γ), (n,γ), (γ,n),
where the difference between (n,γ) and (γ,n) lies in which particle was detected in
the “reference” detector. The analysis could be extended also into bi-correlations
where three detector pulses are correlated to find a two-dimensional time difference
distribution (see Ref. [20]). The cross-correlation measurements were performed
using the setup displayed in Figure 7.1(a) and are presented in Paper VIII.

7.2.1 Measurements and comparisons

The measured cross-correlation curves have a unique shape for each material-geometry
configuration. Most notably detecting two gamma rays, (γ, γ), will result in a peak
well centred around zero time difference since both particles travel at the speed of
light, and for the configurations used, it means a equal delay of around 1 ns from the
source event. The neutron doublet will also have a distribution that is symmetric
around zero, but it will be much wider due to the variation in arrival time depending
on the neutron energy. The (n,γ) and (γ,n) peaks occur on negative and positive
time differences, respectively.

A 252Cf source was used to show the cross-correlations from a fissile source.
Figure 7.4 shows the results with a 30 cm source–detector distance.
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Figure 7.4: The measured cross-correlation functions for a 30 cm symmetric bare case.

Since nuclear materials could potentially be concealed by shielding, the effect
of 2.2 cm Pb shielding was also investigated and is shown in Fig. 7.5. Neutrons
will mostly be unaffected by the added shielding, but the gamma rays on the other
hand are heavily reduced in number and that affects especially the (γ, γ) peak which
has reduced in magnitude by approximately a factor 20. Also the (n,γ) and (γ,n)
doublets are affected by the reduction in gamma rays that reach the detectors suc-
cessfully.
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Figure 7.5: Measured cross-correlation functions for a 30 cm case with 2.2 cm lead
shielding.
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Comparisons were also made with simulations performed with MCNP-PoliMi. A
good general agreement is found in Figure 7.6. Among the differences it is notable
that the shape of the (γ, γ) peak is much narrower in the Monte Carlo simulations. A
possible explanation here is that that simulation did not account for any uncertainty
and delay that might exist in the electronics that acquires and stores the pulses. The
digitizer in the experiment was run at 250 MHz sampling, extrapolation was used
to determine pulse timings down to 1 ns time scale in the measurement. Comparing
the width of the total cross-correlation is the equivalent of comparing the applied
thresholds in the simulation and experiment. The lowest energy neutrons are those
that generate the correlations on the highest positive and negative time delays.
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Figure 7.6: Comparisons of experimental and Monte Carlo results for the total and the
partial contributions to the cross-correlation functions in the case of 30 cm source-detector
distance. The most notable differences can be seen in the shape of the (γ, γ) and (n,n)
peaks.

The time needed to obtain sufficient data in the measurements depends on the
total detector efficiency, which rapidly increase with decreasing distance. The down-
side of shorter source–detector distance is that cross-talk between the detectors will
increase.

7.3 A mixed multiplicity counter

Now that the theory behind mixed multiples has been mentioned in Chapter 5
and the cross-correlation measurements have shown that specific particle multiples
(doubles) can be successfully measured, it is natural to attempt to extent the mea-
surements into a full mixed multiplicity counting. The extension from the pure
neutron counting is far from trivial and an initial evaluation of the capabilities of
such a system is the subject of Paper IX.
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7.3.1 Count rates

When doing multiplicity counting up to the third order, there are 9 different mul-
tiples whose detection rates can be measured. Measuring third order multiples
naturally requires a minimum of three detectors. In the system used here (Fig.
7.1(b)), 4 detectors were used. The increased number of detectors means that the
data analysis becomes all the more important to effectively determine which pulses
are from correlated events. Having high PSD performance is also very important
such that a neutron triplet, nnn, is not mistaken for an nnγ triplet. Due to the high
number of measurables though, correction factors could be found by comparing the
ratios of neutrons and gamma rays, Rn/Rγ, to correct higher order measured rates
such as Rnnn.
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10

−1

10
0

10
1

10
2

10
3

10
4

Multiple

R
at

es

15cm
20cm
30cm

Figure 7.7: Detection rates of different multiples at different distances for the 252Cf
source.

Figure 7.7 shows the measured rates of all multiples up to third order, for 3
different detector distances to a 252Cf source of strength 17 µCi. The higher detection
rates seen for shorter distances means that decreased statistical uncertainty can be
achieved, or alternatively, that the measurement times could be reduced without
loss of statistical accuracy compared to larger detector distances. The measurements
show that with measurement times on the order of a few minutes very good accuracy
for the singles and doubles rates can be achieved. The rates and statistical errors
are listed together with the measurement times in Table 7.1.

It is very encouraging to see that a relatively simple setup could be used for the
type of measurement detailed here. The results show the feasibility of the method,
and while improvements are possible with more sophisticated detector setups or
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Count rates (s−1) and statistical errors:
30cm ±1σ 20cm ±1σ 15cm ±1σ

Rn 690.4 0.63 1338.6 0.95 1947.4 1.36
Rγ 3119.9 1.34 5335.6 1.90 7256.6 2.62
Rnn 13.3 0.09 51.5 0.19 114.3 0.33
Rnγ 52.3 0.17 197.3 0.37 409.3 0.62
Rγγ 63.4 0.19 227.7 0.39 455.0 0.66
Rnnn 0.1 0.01 0.8 0.02 3.0 0.05
Rnnγ 0.6 0.02 5.5 0.06 18.7 0.13
Rnγγ 1.5 0.03 12.0 0.09 38.7 0.19
Rγγγ 1.2 0.03 8.8 0.08 27.0 0.16

Measurement time (s):
T 1735.8 1475.3 1054.6

Table 7.1: 252Cf count rates for different source–detector distances and all possible neu-
tron, gamma ray multiples up to the third order. The statistical error is calculated as the
square root of the total counts divided by the total measurement time.

altered data acquisition the initial findings are very promising for a continued eval-
uation of mixed multiplicity counters.
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CHAPTER

8

SUMMARY AND FUTURE WORK

This last chapter will summarize the work presented in the thesis and also outlines some of

the prospective future extensions which were not hitherto included into the research.

8.1 The presented work

The work has been divided into four main areas each with a dedicated chapter (4-7).
Summaries of the areas are presented below:

1. Number distributions.

The work presented in Papers I-II builds on the concept of describing a
multiplying sample by master equations both for neutrons and gamma rays.
The novelty lies in the derivation of probability distributions, rather than
factorial moments, for the generated, emitted or detected particles.

2. Multiplicity theory.

While neutron multiplicity, based on factorial moments was already well es-
tablished, the theory was revisited and extended not only to gamma rays but
also to neutrons and gamma rays in combination. The idea of using neural
networks to relate measurables to sample parameters was also presented -
Papers III-V.

3. Neutron–scintillator interactions.

Scintillation light pulses generated by fast neutrons is the subject of Papers
VI-VII. While individual collision contributions to light generations cannot
be measured, the validation and understanding of the physics behind neutron
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energy transfer and light generation gives insight into the proper utilization
and modelling of organic scintillation detectors.

4. Experimental measurement systems.

The last chapter was dedicated to measurements of cross-correlations (Paper
VIII), as well as an extension to all neutron and gamma ray multiples up to
third order (Paper IX). The work serve as a initial evaluation of the prospect
of using measurements to acquire novel sample characteristics of nuclear mate-
rials. It was done in accordance to the ideas in the analytical models presented
in the previous works.

8.2 Future extensions

While the work aimed at exploring all the interesting aspects of each topic, there
are a number of unanswered questions that have arisen from external input as well
as from matured insights. Some of those unexplored areas are detailed below as
suggestions for future work:

• How would the probability distribution of detected particles compare to the
factorial moments as an alternative route to modelling detection rates and
sample parameters?

• The multiplicity theory that was derived would be very interesting to apply
to measured data, and also comparing to Monte Carlo simulations, to see also
how the neural network approach holds up to non-ideal measurement data.

• While the models for light pulse distributions are expressed as functions of a
discrete neutron energy, it could be extended to account for energy spectrums
by superimposition of functions.

• The differences in light pulse distributions regarding the detector sizes would
be very interesting to investigate further and to determine whether additional
spectroscopic information could be obtained by using detectors of different
sizes.

• The experimental measurements could benefit greatly by being extended to
additional samples such as special nuclear material: HEU, Pu.

• The idea of a mixed multiplicity counter would be interesting to develop further
using simulations and improved designs with the aim of creating a versatile,
usable system.
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8.3 Final words

Finally, I want to conclude with a short summary of what this work has meant to me
and what I have learnt from it. The area of nuclear safeguards is a very interesting
one, where many different disciplines meet and combine. When it comes to the
actual methods and tools needed the work can be divided into three main areas
as experimental work, analytical models and numerical models (mainly through
Monte Carlo simulations). Though the main focus here has been analytical methods,
the models have often been compared to Monte Carlo simulations, showcasing the
weaknesses and strengths of both the models and the simulation codes. The hope
is that the comparisons can lead to implementation of improvements in both areas,
which can then lead to better tools and measurement systems. Being able to also
do experiments and actual measurements have brought an additional understanding
and appreciation of the theory and models described, while also removing the idea
that idealized models and simulations could create perfect results without proper
validation.

Lastly the whole experience has been utmost rewarding and educational, with
benefits hopefully not only to the author but perhaps also for the reader of this
thesis.
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(Hidden section)

Words offering wisdom, amusement and astonishment...

Why should I care about future generations? What have they ever done for
me?

- Groucho Marx.

The elusive erogenous zone said to exist in some women may be a myth, say
researchers who have hunted for it.

- BBC headline.

There is not the slightest indication that (nuclear) energy will ever be
obtainable.

- Albert Einstein.

A farmer noticed that his chickens were sick, and called in a biologist, a
chemist, and a physicist to help diagnose the problem. The biologist observed
the chickens, concluding, ”I can tell you there’s something wrong with your
chickens, but I don’t know what’s causing it.” The chemist took fluid samples
from the chickens back to his lab, and returned saying, ”I can tell you what’s
infecting your chickens, but I don’t know how they got it.” Meanwhile, the
physicist had been sitting on the floor, scribbling madly on several notebooks
worth of paper. Suddenly, he jumped up, exclaiming, ”I have the answer, but
it only works for spherical chickens in a vacuum.

- The big bang theory; TV show.

I named him Blix, because he is a Weapon of Mice Destruction (WMD).

- Canadian woman explaining the name of her cat in a letter to Hans Blix.

You can’t be a real country unless you have a beer and an airline - it helps if
you have some kind of a football team, or some nuclear weapons, but at the
very least you need a beer.

- Frank Zappa.

Well you know boys, a nuclear reactor is a lot like women. You just have to
read the manual and press the right button.

- Homer Simpson (Dan Castellaneta).

US intelligence gave 200 tips regarding nuclear activities in Iran. 36
unannounced IAEA inspections following the tips found nothing!

- Hans Blix wondering why it is called American “Intelligence”?
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