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Abstract

The materials of a nuclear power plant are subject to extreme conditions during

the lifetime of a reactor and therefore must be thoroughly studied. The variation

of the microstructure will affect the macroscopic properties which in turn can lead

to accidents. Several experimental techniques can be used to study and predict

the lifetime behaviour of the materials such as the isochronal annealing experi-

ments that have been among the first to be performed. As theory progressed and

increasing computational power was available it became even possible to simulate

such experiments on computers and several successful examples are now available

but the research can still be refined. A simple relation has always been used for

the residual resistivity variation which was never investigated.

An ab-initio study has therefore been performed to analyse the variation of

the residual resistivity depending on the crystalline configuration of defects using

Density Functional Theory (DFT) and Boltzmann theory. Two methods have been

applied to cross check the results and comparison to experimental values has shown

satisfactory agreement. Two materials have been thoroughly investigated, iron and

tungsten, due to their importance in the nuclear industry. The results have shown

that different effects may take place which negate a purely linear relation between

the number of defects and the residual resistivity for both iron and tungsten. A

previous study on the topic was also re-analysed in light of the results obtained

within this work. However, only a quantitative difference has been found whereas

the general behaviour of the results remains unchanged.





Sammanfattning

Vissa komponenter I kärnkraftverk utsätts för extrema förh̊allanden under re-

aktorns livstid och bör därför studeras noggrant. Förändringar I mikrostrukturen

p̊averkar makroskopiska egenskaper, vilket I sin tur kan leda till olyckor. Många ex-

perimentella tekniker kan användas för att studera och förutsp̊a beteendet av ma-

terial, en av dessa är isokron anlöpning. Med vidareutvecklad teori och kraftfullare

datorer är det nu möjligt att simulera dessa experiment. Det finns för närvarande

många exempel p̊a lyckade simuleringar, men modellerna kan fortfarande förfinas.

Hittills har endast enkla modeller för den residuella resistiviteten använts, och

försök till att implementera förbättringar av dessa modeller har aldrig gjorts.

En ab-initio-undersökning har därför utförts med syftet att analysera varia-

tioner i den residuella resistiviteten beroende p̊a konfigurationen av kristalldefek-

ter med hjälp av täthetsfunktionalteori (DFT) och Boltzmannteori. Tv̊a metoder

har tillämpats för att erh̊alla resultat, och jämförelse med experimentella värden

har visat god överensstämmelse. Tv̊a material har undersökts ing̊aende, järn och

wolfram, p.g.a deras betydelse i kärnkraftsindustrin. Resultaten visar att olika

effekter kan äga rum vilka leder till en avvikelse fr̊an en rent linjär relation mel-

lan antalet defekter och den residuella resistiviteten, b̊ade i järn och wolfram. En

tidigare studie av ämnet har återanalyserats med hänsyn till resultat fr̊an denna

undersökning. En kvantitativ skillnad har funnits, medan de allmänna slutsatserna

är oförändrade.
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Chapter 1

Introduction and Motivation

1.1 Introduction

In metallurgy many different techniques have been used throughout the decades

in order to study materials, investigate their microstructure, their macroscopic

properties and how these two are related. It is known that defects in the matrix

can affect greatly the properties of the material and therefore it has always been

of interest to find methods to characterize these defects. A multitude of tech-

niques have been developed, making use of various phenomena such as quantum

tunnelling, diffraction, but also simple resistivity measurements.

An industry which makes extensive use of this knowledge is the nuclear one.

Nuclear power plants (NPPs) produce an important share of the electricity in the

world and an increase may even be considered to reduce the production of carbon

dioxide. However, safety is the primary concern in such facilities, therefore the

research to reduce risks and increase the capabilities of NPPs is still ongoing and

probably never-ending. Among others also the materials deserve a special focus

because the conditions created inside a nuclear power plant are unique and among

the most extreme known. What makes the environment so hostile is a combination

of rather high temperatures (with peaks of almost 350 ◦C during normal operation),

mechanical and thermal stress, high concentration of corrosive agents and a very

high neutron flux. This last element is particularly important as it increases by a

significant factor the amount of defects present in the materials.

Focusing only on the steels in the NPP it is possible to characterize different
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materials, such as austenitic stainless steels (SS) used in cladding and internal

parts, low alloy steels for the Reactor Pressure Vessel (RPV), body centred cu-

bic (bcc) Fe-Cr alloys used in the primary system and ferritic/martensitic steels

which are considered to be the best candidates for IV generation reactors [1] also

containing oxides to strengthen the steel [2]. Therefore a big experimental effort is

needed to be able to investigate properly the microstructure of each of these ma-

terials and how this determines the macroscopic properties. It is known that the

defects in the material affect the swelling, the ductility, the thermal conductivity

and other properties of the material but their response greatly varies depending

on many parameters, difficult to study separately.

The theory has evolved at the same pace as experiments in order to verify

and study the experimental results and now models are available to simulate the

kinetics of the defects inside the materials through methods such as atomic kinetic

Monte Carlo (AKMC) and object kinetic Monte Carlo (OKMC). These methods

yield results precise enough to be compared to the experiments but they are ad-

justed to the theories which rely heavily on the experimental data. Therefore when

different methods used to investigate the microstructure yield different results,

problems arise. In [3–5], for example, small angle neutron scattering (SANS) and

atom probe tomography (APT) yield different results regarding the composition

of the precipitates after irradiation. In other cases, such as isochronal annealing

experiments [6, 7], results are found but assumptions must be made to understand

them properly. In all of these cases the theories and the models at hand can pos-

sibly be used to verify the source of discrepancies or the origin of some data, given

that the models are good enough to represent the experiments.

Focusing on this last cited method, the isochronal annealing with resistivity

recovery measurements, many materials have been investigated through the years

for a better comprehension of their microscopic structure. These relatively sim-

ple experiments have been used since the fifties in order to study the kinetics of

the defects and are still an interesting source of data. Nowadays, however, it has

become possible to simulate these very same experiments on a computer using ab

initio Density Functional Theory (DFT) methods together with Monte Carlo sim-

ulations as in [8, 9] in order to improve the analysis. In the first reference Fu and

co-workers have reached results comparable to the experiments and her work has

been used to validate the assumptions that had been accepted for half a century
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regarding the kinetic of the defects in Iron. This has shown how much theories and

computational instruments have evolved to the point of being able to complement

experimental data.

In her work, however, a simple assumption has been made to calculate the resis-

tivity, that is that single defects contribute equally to the resistivity independently

from their aggregation, i.e. a cluster of n vacancies has the same effect of n in-

dependent vacancies. This assumption derives from the fact that modelling the

resistivity is no easy task and much work is needed in order to obtain significant

results. In a work from Clouet [10] a simple relation is used for resistivity of scan-

dium solutes in aluminium but only the dependence of resistivity on the cluster

dimension is considered and the data are taken from experiments. Effort has been

placed to compute the resistivity using first principle methods for several differ-

ent systems, such as sodium [11–13], aluminium [11, 14, 15], iron [16] and others.

Although giving good results, these calculations have the drawback of demanding

a significant amount of computational power which increases dramatically as the

temperature decreases because bigger and bigger cells are required to have conver-

gent results [16]. This is also the reason why the majority of the referenced papers

deal with the liquid form of the corresponding element.

On the other hand most microstructural changes occur at low temperature and

to model isochronal annealing experiments this knowledge is necessary. Therefore

different models have been investigated to simulate the electrical resistivity for

defected systems at low temperature. The Boltzmann theory of transport has been

used to calculate electrical resistivity at room temperature in materials containing

defects, such as vacancies or solutes [17–19] with good results. Different approaches

can be taken towards the solution of the Boltzmann equation, each with its own

advantage and drawback, but it has been shown that interesting results have been

found even for spin-dependent systems, such as iron and cobalt [20] at temperatures

varying from 0 K to several hundreds K.

1.2 Aim of the work

The aim of this work is to try to complement the current knowledge about the

resistivity of defected systems possibly becoming a reference for further research by

setting up a simple and easy-to-reproduce method for calculating these quantities.
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Basic models have been used until now, as in the work of Fu [9], or calculations

have been run for single systems, within other studies. However, at this moment

it is thought that the possibility of investigating thoroughly the topic exists and

must be attempted.

First of all it would be interesting to verify if the models proposed by Fu or

Clouet actually hold starting from first-principle calculations or if they are too

simplistic and should be improved upon. The objective is not to question their

results, most of which would hold whatever the outcome of this thesis, but to

complement them and propose better methods for future research.

This work is also interesting to question how far the models have advanced

and if computer simulations are capable of investigating phenomena that are not

fully available from experiments. In order to validate theories, experiments are

necessary and generally they are run in extreme conditions to study one quantity

at a time. But despite the incredible steps forward in the theories, the models are

usually kept simple. This becomes a limiting factor in the field here considered

because it is difficult to study how single defects affect the resistivity. Therefore

some assumptions must be made but they limit how far it is possible to properly

study the topic. For example a common assumption is that during isochronal ex-

periments the defects are originally created singularly. So, if the number of defects

can be estimated using other theories, it is possible to calculate how single defects

contribute to the resistivity. However, starting from first principle calculation it is

possible to investigate the effect of a single defect and estimate their contribution

to the total resistivity.



Chapter 2

Theoretical Background

This part of the thesis is written to provide a general background on the physics

and the methods that have been used for this work. The first topic will be an in-

troduction to the crystal structure and the defects that can be found in it, followed

by an overview of the isochronal annealing experiments and their usefulness in the

study of the behaviour of defects. The modelling methods that have been used

to study the resistivity recovery will then be presented and explained, from the

theory to their implementation in the codes. The first topic introduces is DFT,

which provides essential information that can be used as an input for other mod-

els. Then the focus will be placed on the different theories of transports that have

been developed over time and that are used within this work in order to estimate

the conductivity of the chosen materials and that make use of the output from the

DFT calculations.

Atomic units are used in this chapter unless specified.

2.1 Crystal structure and defects

2.1.1 Crystal structure

The crystal structure describes the manner in which the atoms are spatially ar-

ranged. The atoms of a crystalline solid tend to self-organize in highly ordered

structures due to the symmetric nature of the bonds that they can form. In the

crystalline lattice a unit cell can be identified, which is the smallest structure that
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(a) (b)

Figure 2.1: The atomic configurations of a BBC (Fig. a) and FCC (Fig. b)

repeats by translation in the crystal without overlapping.

Given the intrinsic difference among atoms, it is clear that not all of them will

have the same structure, although some simple and common ones can be identified.

Most metallic atoms adopt one of three basic structures: the body centred cubic

(BCC), the face centred cubic (FCC) and the hexagonal close packed (HCP), two

of which are shown in figure 2.1.

2.1.2 Defects

A crystalline defect is a region where the local arrangement of ions differs from that

of a perfect crystal. Several defects can be distinguished and they are generally

classified by the dimension, spanning from 0 (point defects) to 3 (bulk defects).

In this work the focus will be placed on 0D defects, as they are the main topic

of study in DFT simulations where the dimension of the cell is not large enough

to include bigger defects and because they constitute the main defects caused by

irradiation. A brief review of these will follow.

A lattice site which should have been filled with an ion but instead is left empty

is called a vacancy. The surrounding crystal structure is stable enough to avoid

that the crystal will collapse on the void left, but some re-organization is expected

in order to cope with the different electronic density.

On the other hand, an atom can be found in a position that should have been

otherwise empty and this is called an interstitial defect. It is possible to observe

both Self Interstitial Atoms (SIA), where the extra atom is of the same type of
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(a) (b) (c)

Figure 2.2: Three point defects illustrated in a BCC structure. Figure (a) shows

a vacancy in position (0 0 0), Fig. (b) a dumbbell SIA along the [110] direction

and Fig. (c) shows a substitutional atom in the central position.

the lattice, or Foreign Interstitial Atoms (FIA) if it is an alien specie. The former

tend to occupy the same lattice site of another atom, thus creating a dumbbell

structure, whereas the latter can usually be found in octahedral or tetrahedral

sites in between the other atoms.

A foreign atom which occupies a normal lattice site is generically referred as a

substitutional defect. Examples of these three point defects can be seen in figure

2.2. It must be noted that all of these defects can be present at the same time

and it is not unusual that they will interact among themselves. For example,

two vacancies that come too close to each other will form a di-vacancy, whereas

interstitial and vacancies can recombine destroying each other. The di-vacancy is

of particular interest as it will move and behave as a different entity compared to

two single vacancies.

Depending on the position of the second vacancy with respect to the first, we

will be referring to xth nearest neighbour (xnn), where x identifies the distance

from the first site, as shown in figure . Sometimes the concept of a far away

divacancy will be used. This indicates that the second vacancy is placed in the

furthest position available in the configuration. In direct coordinates this can be

expressed saying that the vacancies are placed at (0 0 0) and (.5 .5 .5).
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5

1
4

2

3

Figure 2.3: The 5 nearest neighbours to the atom in position (0 0 0) in a BCC

lattice

2.1.3 Generation of defects

Point defects are always present in crystals at thermal equilibrium and thus a

perfect crystal does not normally exist. The probability that enough energy to

cause a point defect is gathered due solely to local fluctuations is finite. This can

be shown rather easily starting from the Gibbs free energy function G applied to

a system of N atoms with n defects. The basic idea is that the presence of defects

increases the entropy of the crystal and thus G is minimized for a non-zero n at

finite temperature [21, 22]. The n/N ratio will indeed be very small, but not zero.

In the presence of radiation the number of point defects can be greatly in-

creased. This is due to the fact that the average energy of the radiation is usually
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several orders of magnitude higher than the threshold displacement energy of the

atoms (MeV against eV), therefore each radiation-matter interaction (neutrons

against steel in the case of a Nuclear Power Plant) will contribute to the cre-

ation of several defects, mainly Frenkel pairs (combination of a vacancy and an

interstitial). Most of these will recombine, but the remaining ones will affect the

properties of the material.

2.2 Isochronal annealing

Isochronal annealing is one of the first techniques used by scientist to investigate

the defects in a material. The experimental set-up is rather simple compared to

the complexity of the problem that it allows to investigate. In this case it is related

to the resistivity recovery that will be treated within this same section for brevity.

A typical experiment of interest in the nuclear industry consists in the irradia-

tion of a material whose composition is known (pure materials, alloys or materials

with known concentrations of impurities are commonly used) at a certain, usually

low, temperature. Later the material is heated following a precise and regular

scheme; the temperature is raised by a fixed amount and kept constant for a cer-

tain time (whence ”isochronal”). It is thus expected that the defects caused by

the radiation, as explained in section 2.1.3, will begin diffusing in the material and

be destroyed (annealed) by interacting with other defects, e.g. the recombination

of a Frenkel pair. The basic idea is that the defects will begin diffusing at dif-

ferent temperatures, thus it is possible to study the energy needed by each one

to begin migrating. Such experiments have permitted to study the kinetic and

the dynamics of the defects even in times when modern technologies were not yet

available.

In order to ascertain the annealing of the defects, the resistivity of the material

is measured. In particular it is assumed that each defect will contribute to a raising

of the resistivity due to the change in the electronic configuration in the metal as

∆ρ =
∑
i

ciρiD (2.1)

where ci is the concentration of a type of defect and ρiD the resistivity contribution.

Therefore when a defect gets annealed and disappears from the material a decrease
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in the resistivity is expected to be seen. The exact number of defects that have

actually annealed is unknown but it is known that a certain type of defect (SIA,

vacancies etc.) has started diffusing at that temperature.

With the knowledge obtained from such experiments it is possible to evaluate

the radii of interaction of the defects, the activation enthalpy of migration and

much more.

2.2.1 Isochronal annealing in modelling

These experiment have not been abandoned despite the advent of much more

sophisticated methods that have been developed from the ’50s till today. It has

become of particular interest also to model the experiments in order to be able

to verify certain hypothesis that had been made in the past. For example Fu and

co-workers [9] have been able to verify the order in which the defects begin moving

in iron using only first principle and kinetic Monte Carlo calculations. Within

their work the necessity to simulate the resistivity was faced through the use of a

very simple method. It was simply assumed that the resistivity depends solely on

the number of defects and not on their configuration.

2.3 Density Functional Theory

This theory has been developed in order to be able to solve the Schrödinger equa-

tion (Eq 2.2 shows the time-independent form which will be treated within this

section) for cells bigger than a few atoms and in a rather small amount of time.

Despite the many approximations that can be used, trying to solve directly the

Schrödinger equation remains too expensive from a computational point of view.

The problem is also not easily solved by increasing computational power because

it lies in the exponential scaling between time and number of electrons.

HΨ(x1, x2, ...) = EΨ(x1, x2, ...) (2.2)

In this equation x= (r, σ), where r is the coordinate and σ the spin. The Hamil-

tonian operator, H, can be written as a sum of three terms

H = T + Vee + Vext (2.3)
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where T is the kinetic energy of electrons, Vee is the electron-electron interaction

and Vext is the interaction with the external potential, which in the context of

material simulation and as a consequence in this thesis, is the interaction between

electrons and nuclei. It must be noted that two terms have been neglected fol-

lowing the Born-Oppenheimer approximation [23] which states that due to their

significantly heavier masses, the nuclei move much slower than the electrons. The

consequence is that the electrons will be considered to be moving in a field of still

nuclei and thus the kinetic energy of the nuclei is close to zero and their interaction

contributes with a constant to the Hamiltonian.

The only constraints needed to solve equation 2.2 are that Ψ must be anti-

symmetric and normalized. For every wavefunction Ψ that can be inserted in

equation 2.2 it is possible to calculate the average total energy E as

E[Ψ] =

∫
Ψ∗ĤΨdr ≡ 〈Ψ|Ĥ|Ψ〉 (2.4)

and by the variational principle (Eq 2.5) this will be greater than the ground state

energy E0.

E[Ψ] ≥ E0 (2.5)

Out of all the possible wavefunctions, the one which minimizes the total energy

will be taken, which is the ground state wavefunction. The ansatz proposed by

Hartree-Fock is an antisymmetric and normalized product of functions ψi each

depending on only one electron out of the N present in the system.

Ψ(x1, x2, ..., xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) · · · ψN(x1)

ψ1(x2) ψ2(x1) · · · ψN(x1)
...

...
...

ψ1(xN) ψ2(x1) · · · ψN(x1)

∣∣∣∣∣∣∣∣∣∣
(2.6)

Substituting the ansatz in the Schrödinger equation gives the Hartree-Fock equa-

tions,[
−1

2
∇2 + vext +

∫
ρ(r′)

|r − r′|
dr′
]

Φi(r) +

∫
vx(r, r′)Φi(r

′)dr′ = εiΦi(r) (2.7)∫
vx(r, r′)Φi(r

′)dr′ = −
N∑
j

Φj(r)Φ
∗
j(r
′)

|r − r′|
Φi(r

′)dr′ (2.8)
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where vx is the non local exchange potential.

This is, however, not the final step, but the first one in the direction of a more

precise answer through better approximations (correlated methods) that unfortu-

nately require huge computational power. The main problem, as it was mentioned

beforehand, lies in the scaling of the computational time, which follows the number

of electrons raised to the power of 5 to 7 [24]. Therefore applying this method to

systems of hundreds of electrons is clearly unreasonable. Hence DFT was devel-

oped and applied.

2.3.1 The Hohenberg Kohn (HK) theorems

Two theorems were proved and published by Hohenberg and Kohn in 1964 [25].

The first can be expressed as follows;

”The electron density determines the external potential (to within an additive

constant)”

This has important consequences for equation 2.3 because now the electron

density determines every term of this equation. Thus knowing the charge density

it becomes possible to determine the Hamiltonian and all the related properties.

The second theorem can be expressed as follows;

”For any positive definite trial density ρt, such that
∫
ρt(r)dr = N , then E[ρt] ≥

E0.”

This means that given the charge density at ground state it is possible to

determine the ground state energy. From the second theorem we can deduce that

if the charge density contains the correct number of electrons, then it is possible

to determine the ground state energy and density as the minimum of a functional

E[ρ]. This functional is universal (independent from the external potential of the

system) and, if known, would yield the exact ground density and energy.

Going back to the Schrödinger equation it can be seen that the energy func-

tional is a sum of three terms,

E[ρ] = T [ρ] + Vext[ρ] + Vee[ρ] (2.9)

which are the same as Eq 2.3, but it is now specified their functional dependence

on ρ. The interaction with the external potential is the easiest term to find, but

two more are missing and must be approximated. The better the approximation,

the better results this method yields.
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2.3.2 Kohn and Sham

In order to solve this problem, an interestingly simple solution was proposed by

Kohn and Sham. A new system, with the same electron density is defined, but

in this case no interaction among the electrons is considered and a new external

potential is introduced to make up for the error [26]. The kinetic energy of a non-

interacting system of electrons with the same ground state density as the original

case can be written as

Ts[ρ] = −1

2

N∑
i

〈Φi|∇2|Φi〉 (2.10)

ρ(r) =
N∑
i

|Φi|2 (2.11)

Out of the whole electron-electron interaction, a significant part will be made up

of the classical Coulomb interaction, which can be written as

VH [ρ] =
1

2

∫∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 (2.12)

where the H stands for Hartree, as this is also called the Hartree energy within

this context. Now the energy functional can be rewritten taking into account this

term and the self-interaction correction needed to correct the equation.

E[ρ] = Ts[ρ] + Vext[ρ] + VH [ρ] + Exc[ρ] (2.13)

The exchange-correlation functional Exc[ρ] is unknown and makes up for all the

errors arising from calculating the kinetic energy without interactions (here called

Ts) and by treating the electron-electron interaction classically (neglecting spin

and self-interaction, thus the only term VH). Therefore it is possible to write it as

a sum of two errors, as follows

Exc[ρ] = (T [ρ]− Ts[ρ]) + (Vee[ρ]− VH [ρ]) (2.14)

where T and Vee are the kinetic energy and the electron-electron interaction of

the interacting system. It must be noted that, despite this quantity being called

exchange-correlation functional it contains also terms related to kinetic energy and

is not only the sum of exchange and correlation terms as it was in the Hartree-Fock

equation.
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In light of this, it is now possible to rewrite the Hartree-Fock equation 2.7 and

derive the Kohn-Sham equation as follows.[
−1

2
∇2 + νext(r) +

∫
ρ(r′)

|r − r′|
dr′ + νxc(r)

]
φi(r) = εiφi(r) (2.15)

The exchange-correlation potential νxc replaces the non-local exchange potential

from the Hartree-Fock equation and it can be written as

νxc(r) =
δExc[ρ]

δρ
. (2.16)

The solution of the energy problem now becomes self-consistent: starting with a

reasonable guess for the density, it becomes possible to calculate all of the func-

tional quantities and construct new orbitals (Eq 2.15). From these a new density is

available (Eq 2.11) and can be compared to the starting one. This cycle is repeated

until convergence between the initial density and the calculated one is found.

It must be noted that the computational power needed to solve the Kohn-Sham

equation should scale with N3 but in reality it is possible to reduce the scaling

factor towards N1 by exploiting the locality of orbitals at least for certain simple

systems, such as insulators [24].

Only one problem is now left, that is the calculation of the exchange-correlation

energy. If this was known exactly, then the whole method would yield exact results.

Unfortunately this is not possible, thus approximations are needed and several

methods have been proposed.

The Local Density Approximation

A first attempt to calculate the exchange-correlation energy is the so called Local

Density Approximation (LDA) which is strongly interconnected to the Thomas-

Fermi gas model of the 1920s. This method is based on the idea that the exchange-

correlation energy can be computed considering only the local electronic density.

Therefore one easy choice is to apply the homogeneous electron gas (HEG) model

proposed by Fermi and Thomas and calculate Exc. By linearly decomposing the

exchange-correlation energy in its two terms as Exc = Ex + Ec, it becomes rather

easy to find an expression for the exchange term within the HEG model. This is,

in fact, for a non-interacting homogeneous electron gas

Ex[ρ] = 0.74

∫
ρ4/3(r)dr (2.17)
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Analytical results for the correlation density are unknown but for the high and low

density limit. For intermediate values can either be estimated by quantum Monte

Carlo simulations which yield accurate results [27] or by interpolating the values

obtained in such simulations.

Despite the many approximations, this model gives surprisingly good results.

This is, however, mostly due to a cancellation of errors in the exchange and corre-

lation density, which are generally underestimated and overestimated respectively,

giving in average a good result [24]. Better methods have been developed which

do not increase drastically the computing time.

The Generalized Gradient Approximation

A second approach to compute the exchange-correlation energy is to consider not

only the relation to the charge density but also to its derivative. If this was applied

directly to the charge density, several non-physical effects would arise. Thus a

functional form is adopted which forcibly ensures the normalization condition and

that the exchange hole is negative. This functional can be described with the

following equation.

Exc =

∫
ρ(r)εxc(ρ,∇ρ)dr (2.18)

The Perdew-Burke-Ernzerhof (PBE) GGA functional deserves a special mention.

Here all the parameters are fundamental constants, making it easier to derive, un-

derstand and improve [28]. The numerical results are only slightly better than the

Perdew-Wang 1991 (PW91) functional, but some limits of the previous work are

overcome in this one. Almost all of the simulations that have been run within this

thesis have made use of this exchange-correlation functional. This approximation

gives better results if compared to the LDA, but it has still been refined over the

time by accounting for the second derivative of the electron density (Meta-GGA

functionals) or by mixing several of these functionals in a parametric way (Hybrid

Exchange Functionals).

2.3.3 The Wavefunction

After determining a form for the exchange-correlation energy, with all of the pos-

sible approximations, it is now important to have a good representation of the
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wavefunction for each atom. Two requirements must be satisfied, that is to be

realistic and computationally inexpensive.

Norm-conserving pseudopotentials

One possibility is to express the wavefunction with plane waves as follows.

Φi(r) =
∑
K

ci,Ke
i(k+K)·r (2.19)

This approach is suitable for slowly varying wavefunctions. However, in the core

region of the atom the wavefunction is rapidly oscillating, thus requiring a huge

number of plane waves to have a convergent basis set. This is solved by considering

the atom to be divided in two parts. One is the core region, populated by core

electrons, which are considered to be frozen and unimportant with respect to the

interaction with the other atoms. The outer part is populated by valence electrons,

which are responsible for the bonding and the other properties of the atom. So

it is possible to describe with the plane waves only the valence electrons, giving

to the core region a smoothed potential needed to reach faster convergence. The

choice of the core radius, rc, impacts on the convergence (softness) and on the

accuracy of the pseudopotential in different situations (transferability).

To conserve the transferability, pseudo wavefunctions are usually chosen to be

norm-conserving, i.e. ∫ r

0

|Ψ̃(r)|2dr =

∫ r

0

|Ψ(r)|2dr (2.20)

for r < rc. In some cases, however, not even this requirement is enough to have a

computationally efficient basis set, so some corrections were done and Vanderbilt

[29] proposed a set of ultra-soft pseudopotentials which needed a very small basis

set. However, other methods have been developed with time, with more accurate

results.

Projector Augmented-Wave

This method mixes the previous pseudo-potential and the augmented wave (which

has not been treated here, but it can be found in [Martin R.M.]) methods. In the

valence region, the same approach that has been described for pseudopotential is
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used. In the inner zone, on the other hand, atomic orbitals are used to describe

the wavefunction.

Auxiliary (smooth) wavefunctions chosen to be easily expanded into plane

waves, are introduced by a linear transformation operator, T as

|Ψi〉 = T̂ |Ψ̃i〉 (2.21)

where Ψi represents the real wavefunction and Ψ̃i is the smooth one. The trans-

formation operator can be written as

T̂ = 1 +
∑
R

SR (2.22)

where SR is the difference between the smooth and the real wavefunction and it is

made so that it acts only inside the core radius rc. Outside it vanishes smoothly at

the boundary and leaves only the identity matrix (here written as 1) outside this

sphere, called usually augmentation sphere. R represents the site of the nuclei.

Inside this core region, using the frozen core approximation, it is possible to

expand the smooth wavefunction using auxiliary partial wave states |φ̃j〉, where

the index j accounts for the position (R) and the partial wave. The smooth partial

waves can also be written as

|φj〉 = (1 + SR)|φ̃j〉 (2.23)

and outside the augmentation sphere, since only the identity matrix remains, the

following is true:

|φj〉 = |φ̃j〉. (2.24)

It is now possible to introduce smooth projector functions |p̃〉 (related to the

expansion coefficients which couple the wavefunctions Ψi to the partial waves φj)

and rewrite the transformation operator as

T̃ = 1 +
∑
k

(|φk〉 − |φ̃k〉)〈p̃k|. (2.25)

The projector functions are required to satisfy orthogonality conditions inside the

augmentation sphere. Finally, it is possible to relate the real wavefunction with

the auxiliary as

|Ψi〉 = |Ψ̃i〉+
∑
j

(|φj〉 − |φ̃j〉)〈p̃j|Ψ̃i〉. (2.26)
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2.3.4 Vienna Ab-initio Simulation Package

Most of the DFT calculations within this thesis have been performed using the

Vienna Ab-initio Simulation Package (VASP). The potentials used are PBE with

the Projector Augmented Wave method. Simulations have been run for both iron

and tungsten, with rather similar input parameters. The cut-off energy for the

two materials has been set to 300 eV as suggested from the potential files used

and extensive convergence tests.

Given the periodic boundary conditions used by the program, it is important

to have a big enough cell to avoid image interaction effects, i.e. the defect in

the cell must not interact with itself in the next periodic cell. Cells of 128 and

250 atoms have been used for this purpose, for both iron and tungsten, whereas

bigger cells have been used for comparison and testing purposes. Also various

k-point grids have been tested but ultimately, due to symmetry problems when

the VASP output was interfaced with BoltzTraP, low-symmetry k-point grids have

been chosen. The convergence has been tested using 3x3x3 grids to 7x7x7 with

no symmetry (flag ISYM = 0 in the INCAR). The calculations have been run

with a number of k-points in the irreducible Brillouin zone between 100 and 200.

These were chosen taking the k-point grid of the crystallographic configuration

with the lowest symmetry and running the other calculations with the same grid.

Relaxation of the cells has been run with less dense k-point grids (usually 3x3x3

for 250 atoms and 5x5x5 for 128 atoms) and the resultant positions of the atoms

have been used as input for denser grids.

2.3.5 ABINIT

ABINIT has been used for more DFT calculations, but mainly for the Den-

sity Functional Perturbation Theory (DFPT, described in y.y) implemented in

the code. The initial objective of using this program as a comparison for the

VASP+BZTP calculations has met some problems since they are very computa-

tionally demanding and the number of configurations that could be investigated

was consequently limited. More effort will be placed in this direction for improving

this work.

ABINIT has shown remarkably good results in the calculations for the resistiv-

ity on the materials when using 12x12x12 k-point grids and equally spaced q-point
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grids. For tungsten and other test materials even less dense grids could have been

used with low errors, but these values have been set as standards given the good

average results. The energy cut-off has been set to 16 Ha ( 435 eV) for tungsten

and 32 Ha ( 870 eV) for iron. Tolerances of 10−24 have been set for the mean

squared residuals of the wavefunctions. The position of the nuclei in the defected

cells has been relaxed using VASP and transferred to ABINIT.

In this case GGA norm-conserving pseudopotentials have been used because

DFPT for GGA-PAW methods has not been implemented yet.

2.4 Electron transport theory

Starting from the 1900, three years after the discovery of the electron by Thom-

son, several models trying to explain the electrical and thermal conductivity have

been developed. As a deeper understanding of atomic structure as well as quan-

tum physics was reached, the models were modified to take into account the new

discoveries. Within this chapter some of the possible methods used to calculate

the resistivity will be reviewed. For a deeper understanding of the topic, however,

more comprehensive texts are recommended, such as [21] and [30].

2.4.1 Drude model

Just 3 years after the discovery of the electron, Drude tried to apply the successful

kinetic theory of gases to this new particle. The basic assumption is that the

electrons are seen as molecules free to move inside the box, undergoing collisions

among themselves. In this case the electrons are free to move inside the metal but

the collisions are assumed to happen not among themselves but between electrons

and ions (which at the time where unknown, but Drude assumed they were some

kind of neutral background entity making up most of the matter). The electrons

are assumed to be both independent and free, that means that other than the

collision event, no other interaction is assumed to exist with other electrons or

between electrons and ions. The collisions are instantaneous events which cause

the variation of the velocity of the electrons. The exit velocity is assumed to depend

only on the temperature of the ions and is completely independent of the incoming

one. This brings one more approximation, that is that a single collision is sufficient
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to bring the electrons to thermal equilibrium with the ions in the surroundings.

An average time between collisions, called relaxation time or mean free time, τ is

postulated and implies that the probability of an electron undergoing a collision

in a time dt is equal to dt/τ .

All of these are very strong assumptions and most of them have been proven

wrong, but within a certain limit they still hold. The ”electron gas”, free and

independent, is not a bad approximation for the electrons in a metal, usually

completely unbounded from the neutral background of ions and core electrons.

The idea of a collision between electrons and ions, as well as the relaxation time

approximation, are basic assumptions also of more modern models, such as the

Boltzmann theory. The difference is that the classical idea of an electron bouncing

off an ion has been completely abandoned after a better understanding of these

particles has been available. This model, despite the big amount of critics that can

be moved, has shown some good results in particular for some families of atoms,

such as alkali metals and noble metals [21].

The relation between the current density and the electric field can be expressed

through the use of the conductivity σ as

j = σE. (2.27)

This equation represents the first step towards the calculation of the conductivity

in the classical model. In the following equations the resistivity ρ may be used

instead of the conductivity but the two quantities are the reciprocal of one another

as

ρ =
1

σ
. (2.28)

The objective now is to rewrite σ as a function of known quantities through classical

mechanics. A number n of electrons is assumed to have velocity ~v and travel a

distance equal to vdt in a time dt in the direction of ~v. A total of n(vdt)A electrons

will pass through an area A and each electron has a charge equal to −e. Therefore

the total charge crossing A is −nevAdt and the current density is

~j = −ne~v. (2.29)

After a collision the electron is supposed to have a velocity ~v0 directed in a random

direction, so in the absence of electric fields the average velocity of all the electrons
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~v is assumed to be 0. However, if a field is present, the velocity of an electron at a

time t after a collision will be ~v0− e ~Et/m, where the second term accounts for the

acceleration given by the electric field. The average of this quantity, remembering

that the average of t is τ , will be

~vavg = −e
~Eτ

m
. (2.30)

The current density is thus simply

~j =

(
ne2τ

m

)
~E (2.31)

and straightforwardly the conductivity is

σ =
ne2τ

m
. (2.32)

It is then possible to extract the relaxation time τ , assuming that the resistivity ρ

is known from experiments, by inverting the previous formula as

τD =
m

ρne2
. (2.33)

The number of electrons contributing to the conduction n has not been treated

until now because it is a source of problems. The simplest possibility is to consider

the number of atoms per cubic centimetre and assume that each contributes with

Z conduction electrons to the total. The value of Z can be assumed to be the

number of valence electrons, but ambiguity remains for all of those elements having

more than one chemical valence. This problem was not faced directly but another

solution was adopted, as explained in section 2.4.3.

2.4.2 Boltzmann theory of transport

To describe the conduction a non-equilibrium distribution function gn(r, k, t) will

be used. This is defined so that gn(r, k, t)drdk/4π3 is the number of electrons in

the nth band at time t in the phase space volume drdk about the point r, k. At

equilibrium, g0
n(r, k, t) is the Fermi function but, as it was stated, here g will be

considered to be perturbed by an electric field (in a more complete treatment also

a temperature gradient should be considered, but it is of no interest in this case).
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The first step is to consider a semiclassical motion of the electron, having a

velocity vn(k) and subject to a forcefield F as follows,

vn(k) =
1

}
∂

εn(k)
(2.34)

F = −e[E(r, t) +
1

c
vn(k)×H(r, t)] (2.35)

where εn(k) represents the energy for a given band index n, depending on the wave

vector k, and H is the magnetic field, which will later be neglected. Given this,

it is possible to write a conservation equation of g. Considering an infinitesimal

time dt, it is straightforward that an electron at r, k at time t must have been at

r − v(k)dt, k − Fdt/} at time t− dt. Introducing also the possibility of collisions

(without specifying what kind), the conservation equation takes the form

gn(r, k, t) = gn(r − v(k)dt, k − Fdt

}
, t− dt)

+

[
∂gn(r, k, t)

∂t

]
out

dt+

[
∂gn(r, k, t)

∂t

]
in

dt (2.36)

where [...]out is the correction related to electrons which get scattered and fail to

arrive in r, k at time t and [...]in accounts for the electrons which managed to reach

that point only because of a previously unaccounted collision. From here on the

dependence on the band, time and position will be omitted for simplicity, leaving

only the wave vector k. 2.36 can be rewritten in differential form as

∂g(k)

∂t
+ v(k) · ∂g(k)

∂r
+
F

}
· ∂g(k)

∂k
=

(
∂g

∂t

)
coll

(2.37)

where the left part takes into account the motion of electrons and the right one

the collisions. The term F accounts for both electric and magnetic field, but the

latter will be neglected. The electric field will bring the system to a steady-state

situation, where the derivative of the function g with respect to time is 0. Therefore

the equation now is composed of only two terms, that is

v(k) · (−e)∂g(k)

∂εk
E =

(
∂g(k)

∂t

)
coll

(2.38)

where the right term can be rewritten using the relaxation time approximation,

that is
∂g(k)

∂t
=
g0(k)− g(k)

τk
. (2.39)
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The relaxation time τk is the average time between two collisions which will alter

the momentum k and/or the band index n of the electron. The nature of the

collision is left unknown and more appropriate models redefine this quantity in

a more precise way [21]. However, within this work and the programs used, this

approximation is acceptable.

The last effort requires to consider the steady-state as a small perturbation of

the equilibrium function, that is g(k) ≈ g0(k) where g0(k) is nothing else than the

Fermi function. This brings, finally, an expression for the distribution function

g(k) as

g(k) = g0(k)− τkv(k) · (−e)∂g
0(k)

∂εk
E. (2.40)

The distribution function g(k) can be used as well to write the current density of

a single band as

j = − e
Ω

∫
v(k)g(k)dk (2.41)

where Ω is the volume. Combining equations 2.27, 2.40 and 2.41, it is possible to

write the conductivity of a single band as

σ(n) =
e2

Ω

∫
τn,kvn(k)vn(k)

∂g0(k)

∂εk
dk (2.42)

and the sum of all the conductivities for each band will become the conductivity

tensor

σ =
∑
n

σ(n). (2.43)

It must be noted that within the Boltzmann theory τ has not been defined. With

the information at hand it is possible to calculate the quantity σ/τ but no more

than this. Within some approximation it is possible to state that the relaxation

time is independent of the band index n and the wave vector k, therefore stating

that it is constant. However, in this work this approximation has shown some

limitations, therefore the aforementioned Drude model has been used to estimate

τ .

2.4.3 BoltzTraP

Many DFT programs give, in the output, the energy bands. It is possible to make

use of this output to extrapolate even more properties of the material, such as
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σ/τ that was introduced in section 2.4.2. BoltzTraP [31] is one such code, able to

calculate from the energy bands other information (among others the Seebeck and

Hall coefficients, as well as the electronic contribution to the thermal conductivity,

and more). Within this work the interest was mainly the aforementioned σ/τ

which was later converted to a value of the resistivity simply as

ρ =
1

σ
τ
τD
. (2.44)

As it was discussed before, the quantity τD was taken using the Drude model.

It must be noticed that in this case the relaxation time will not be independent

of the temperature as it is commonly considered. A relation between τ and the

temperature is known to exist, but is usually disregarded for simplicity. In this

case, however, a constant τ would have given acceptable results only around the

room temperature, whereas a more realistic model was desired. Anyway, this is

not a source of errors, as it will be explained later on, because the objective of

this work is to compare the difference in resistivities of different crystallographic

configurations, which depend solely on the σ/τ given by the program. Also, the

density of conducting electrons was considered to be constant and fitted in order

to have the same resistivity of the experimental data at 150 ◦C. This procedure is

similar to that used in other works, such as [17, 19].

Since the code needs a huge number of k-points for correct computation of the

transport quantities, the band energies are interpolated using a Fourier expansion.

The term lattice points is used instead of k-points to express the extrapolated

points and the ratio of lattice-points/k-points can be chosen by the user. Star

functions are used in order to avoid to modify the space group symmetry. Between

two band energies the interpolating curve also minimizes a roughness function to

avoid oscillations that could have strong influence on the results. More about the

code can be found in [31] and in the manual present in the code itself. A VASP-to-

BoltzTraP program was already available and used for this work. A modification

was done to process also ferro-magnetic materials such as iron. The VASP output

file containing the eigenvalues for both spins was read and stored in two different

input files (named energiesup and energiesdn) to be used in BoltzTraP separately.

It is possible that additional modifications may be necessary as well as a deeper

understanding of the code.

Since the cells used within this work are mainly non-fully-symmetric it has
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been decided to use space group (1) for all the calculations. It is believed that

different symmetries could be used for each cell but several problems, related to

what has been explained in section 2.3.4, have lead to choose the space group (1)

for all of the configurations. The lattice-points/k-points ratio has ultimately been

chosen to be 5. In older simulations the results showed great variation depending

on the lattice-points/k-points ratio. Convergence was achieved with a ratio of

40 but the following results showed unphysical behaviour. When less symmetric

k-point grids were used in VASP, however, the dependence of the σ/τ with the

lattice-points/k-points ratio was completely lost and therefore a small ratio of 5

was used. The ratio, however, does not appear to impact significantly on the

computational power needed for the BoltzTraP calculations.

2.4.4 Density Functional Perturbation Theory

The method that has been described until now, that is to calculate the quantity

σ/τ through the Boltzmann equation and τ with the Drude model, is not fully

ab initio and uses a parameter, the density of conduction electrons, to fit the

experimental data. However, this method is very cost efficient and therefore has

been used extensively in this work. On the other hand fully ab initio methods

exist and are available but consume enormous amount of computational resources

and thus must be carefully used. The Density Functional Perturbation Theory

(DFPT, can also be called linear response theory) is one such method that has

also been used in this work. A complete treatment of the theory would require a lot

of time, space and mathematics, so a shorter, but hopefully exhaustive, treatment

will follow. A simple way to see it would be to say that the relaxation time τ

introduced in section 2.4.1 and 2.4.2 is here analytically calculated considering

only the electron-phonon interaction, which is the dominant effect on the electron

lifetime at intermediate temperatures [30].

The objective is to evaluate how the electron-phonon interaction will per-

turb the electronic Hamiltonian. Within the DFPT, the phonon spectra and the

electron-phonon interaction are evaluated using the first order variations caused

by the presence of a phonon with wave vector q in the one-electron wavefunctions,

the charge density and the effective potentials. So the objective is to evaluate the
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electron-phonon matrix element

gqνk+qj′,kj = 〈k + qj′|δqνVeff|kj〉 (2.45)

where qν is the mode of the phonon with which the electrons are interacting and

both ψkj and ψk+qj′ have the Fermi energy εF . The change in the potential can be

written as

δqνVeff =
∑
R,µ

ηqν(Rµ)

(MRωqν)1/2

δ+Veff

δRµ

(2.46)

where MR are the masses of the nuclei, ηqν(Rµ) are the eigenvectors of the qν

mode and ωqν is the phonon mode interacting with the electrons.

However, expression 2.45 must be corrected to account for the incompleteness

of the basis functions. The Fermi golden rule is here used to study the scattering

rate of electrons to a perturbed state ψ̃r(t) from an unperturbed one ψs(t) due

to phonons. From here on the method will only be discussed and the results

presented; the mathematical steps can be found in Ref [32].

The time-dependent Schrödinger equation is written for both the perturbed

and unperturbed state and the wavefunctions are evaluated using a variational

method as in the Linear Muffin Tin Orbital method as follows

ψs(t) =
∑
α

χαA
s
α(t). (2.47)

The two Schrödinger equations are expanded up to the linear term and after some

calculations an expression for the scattering rate is found through the Fermi golden

rule. It is now possible to rewrite the electron-phonon matrix element accounting

for the incomplete basis set as

gqνk+qj′,kj = 〈k + qj′|δqνVeff|kj〉+ 〈
∑
α

δqνχk−qα Ak+qj′

α |H − εkj|kj〉

+ 〈k + qj|H − εk+qj|
∑

δqνχkαA
kj
α 〉 (2.48)

and use it to find the phonon line width γqν using again the Fermi golden rule

γqν = 2πωqν
∑
kjj′

|gqνk+qj′,kj|
2δ(εkj − εF )δ(εk+qj′ − εF ). (2.49)

The electron-phonon spectral distribution function is written in terms of the

phonon line width as

α2F (ω) =
1

2πN(εF )

∑
qν

γqν
ωqν

δ(ω − ωqν) (2.50)
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where N(εF ) is the electronic density of states at the Fermi level. α2F (ω) is

important as it permits to evaluate the decrease in the velocity of the electrons

due to their interaction with phonons. It should depend on the wave vector k

but the average on the Fermi surface is usually enough to describe the system. A

transport spectral function can be calculated as α2
trF (ω) = α2

outF (ω) − α2
inF (ω)

where

α2
out(in)F (ω) =

1

N(εF )〈v2
x〉
∑
ν

∑
kjk′j′

|gk′−kνk′j′,kj|
2vx(k)vx(k

(′))

× δ(εkj − εF )δ(εk′j′ − εF )δ(ω − ωk′−kν). (2.51)

Here vx(k) is the Fermi velocity in direction x and 〈v2
x〉 is the squared average.

Finally the electrical resistivity can be written, in the lowest-order variational

approximation for the solution of the Boltzmann equation, as

ρ(T ) =
πΩcellkBT

N(εF )〈v2
x〉

∫ ∞
0

dω

ω

x2

sinh2 x
α2
trF (ω). (2.52)

The theory can be expanded to include also spin dependence as in Ref [20]
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Chapter 3

Results

In this chapter the results of the present work will be shown. There will be a brief

introduction regarding the DFT calculations followed by a more extended section

about the resistivity results and a final section regarding the review of a Monte

Carlo simulation.

The first part will be used only to cross-check the ab-initio calculations. Good

values for the cell parameters will be used to justify the use of pseudopotentials and

exchange-correlation functionals. The DFT results of the two codes used, VASP

and ABINIT, will be compared between themselves and with additional literature.

The second section will contain the results obtained through several steps of

the work and justification for the parameters used in the simulations. After the

convergence of the numerical values will have been ensured, a lot of data will

follow regarding the resistivity for different systems. Three materials have been

considered as a basis, that are aluminium, tungsten and iron. Defected cells are

then studied and compared to the bulk calculations, determining the differential

resistivity. Other configurations could be easily added if particular data are sought

or if certain hypothesis must be verified.

The final Monte Carlo section will contain a possible application of the data

that have been accumulated over the span of this work.
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3.1 Ab-initio calculations

The calculations have been run using two programs, VASP and ABINIT. The

details of the simulations and a brief explanation of the two programs can be

found in sections 2.3.4 and 2.3.5. A brief discussion about the results and the

problems found during operation will follow as well. It must be reminded that

ABINIT works with atomic units whereas VASP uses SI units, however all of the

results will be written following the latter convention in order to avoid confusion.

The relaxation of the cells using the two programs yielded similar results. The

only material showing some problems is iron, most probably because of its fer-

romagnetic behaviour. Three materials are shown here, iron, tungsten and alu-

minium, which are the three used for most of this work, however simulations can

be easily and quickly run for any other material.

The results can be considered acceptable compared to the experimental ones

a0 [Å] VASP ABINIT Experimental [33]

Al 4.0404 4.0495, 4.0542 4.0496

Fe 2.8320 2.8281, 2.8528 2.8665

W 3.1704 3.8780, 3.1600 3.1652

Table 3.1: Lattice parameters for selected elements

and other literature studies. It must be noted that there are two results given for

ABINIT simulations, related to two different archives used for the pseudopoten-

tials. The first one was in the same package of the program and was initially used

for the calculations. However, the result for tungsten is far off the acceptable mar-

gin of error for such calculations, so a new archive was added and used with better

outcome. The results for the magnetic moment M in units of Bohr magnetons µB

are also presented in table 3.2.

M [µB] VASP ABINIT(GGA pspnc) ABINIT(GGA paw) Experimental

Fe 2.20 2.83, 2.83 2.24 2.216 [34]

Table 3.2: Magnetisation of iron

The results obtained with ABINIT do not show a very satisfactory agreement with

the experiments and this can possibly affect further results on the conductivity of
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iron. The fourth column was added to show that, given a suitable basis it is

possible to yield better results. Unfortunately the use of PAW GGA is not yet

implemented in DFPT calculations, so the last basis could not be used. Better

results can definitely be obtained by using more apt input as it is shown in Ref

[20].
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Figure 3.1: The density of state of aluminium is presented in Fig. (a), followed

by tungsten (b) and iron (c). The red filled area is the DOS obtained with VASP

whereas the black lines show the results obtained with ABINIT.

Also the density of states (DOS) can be compared to have a more precise

understanding of the differences between the two programs. Figure 3.1 shows a
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pretty good agreement in tungsten and aluminium, whereas iron shows a significant

shift of the DOS from ABINIT. This shift is reduced when using the PAW GGA

in ABINIT as it is used in VASP.

3.2 Transport calculations

In the first part of this section the stability and the convergence of the numerical

calculations will be demonstrated, therefore the quantity taken into consideration

will be the raw σ/τ from the xxx.trace file output by BoltzTraP. This ensures that

no treatment of the data has been yet done. It could also be argued that this

preparatory work investigates the validity of the eigenvalues provided by VASP as

the σ/τ is calculated directly from these. Other methods have also been used and

will then be presented in this section to justify the use of 250 atom supercells. The

results will be shown for tungsten but the same simulations and tests have been

done also on iron, with similar findings.

Figure 3.2 shows the variation of σ/τ on the number of atoms for the most

dense k-point grid that was available, that is 7x7x7, with no symmetry. Three

configurations have been chosen as they permit to investigate properly the con-

vergence. All three of them show similar behaviour when increasing the number

of atoms and the variation does not exceed 10% from the 128 atoms configuration

to the 250 one. It would be useful in this regard to have an additional simulation

at 432 to further prove this point but at the moment the computational power

required exceeds the one at disposition. Effort will be placed to further investigate

this point.

On the 250 atoms configuration, different number of k-points have been in-

vestigated, ranging from 3x3x3 to 7x7x7, still with no symmetry. In the x-axis

of Figure 3.3 the number of k-points in the IBZ has been reported instead of the

k-point grid to have a better understanding of the number of k-points used. The

variation between the last two simulations is around 7%. It can also be seen that

for a very small number of k-points (14, corresponding to a 3x3x3 grid) the results

are not consistent with the other calculations as the σ/τ of the far away divacancy

configuration is greater than that of the single vacancy. This would imply that the

resistivity of a single vacancy is greater than that of a divacancy, defying logic and

all of the other simulations. From this it could possibly be argued that the eigen-



3.2. Transport calculations 33

50 100 150 200 250
Number of atoms

1

1.5

2

2.5

3

3.5

σ
 /

 τ
  
[1

/Ω
 m

 s
]

Bulk
Vacancy

Divacancy far

x 10
20

Figure 3.2: Convergence of σ/τ with respect to the number of atoms for a fixed

grid of 172 k-points in the IBZ

values calculated with such a low amount of k-points are not reliable for further

treatment.

Once the stability and the convergence of the chosen configuration has been

proven, other tests have been run in order to check the reliability of the calcu-

lations. It is expected, for example, that for a big enough cell in the far away

divacancy configuration there should be no interaction between the two vacancies.

Therefore the resistivity increase should be equal to a system with a single va-

cancy but with half the amount of atoms or to twice the resistivity increase due

to a single vacancy. Equation 3.1 shows the expected result for such a calculation,

that is that the divacancy far configuration is equal to two single vacancies and

the resistivity increase is the linear combination of two single vacancies.

∆ρdivac far(c) = ∆ρvac(2c) = 2∆ρvac(c) (3.1)

where c identifies the concentration at which the calculations are run, therefore in
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Figure 3.3: Convergence of σ/τ with respect to the number of k-points in the IBZ

this case c = 1/250

The results seem to confirm the expected behaviour when comparing 128, 250

and 432 atom supercells, whereas the 54 atoms supercells apparently have much

better results than expected. It is rather unreasonable to think that 54 atoms are

enough to show the correct predicted behaviour so it is probably a superposition

of different causes that bring unexpectedly good results. The fact that the cell is

not big enough can also be seen when comparing the charge density of the cells.

Despite not giving numerical results, the investigation of the charge density file

output by VASP can provide a visual help to clarify the problem at hand. In fact

it can be clearly seen that the charge density is well separated in the 250 atoms

case whereas for 54 and 128 shows an interaction between the two defects.

It is now possible to make a step forward and compare the bulk simulations to

the experimental results, for both ABINIT and BoltzTraP. It must be reminded

that for ABINIT no assumptions have been made, whereas for BoltzTraP the

density of transport electrons has been chosen to fit the experimental data at a
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Figure 3.4: Convergence of the average relative error of the difference for increasing

number of atoms

given temperature, as explained in section 2.4.3. Both ABINIT and BoltzTraP

reproduce extremely well both the aluminium and tungsten cases. For iron the

results obtained by ABINIT are not satisfactory, whereas with BoltzTraP there

is a better fit. It is evident that more work would be needed for the ABINIT

simulation for iron and the first step would be the use of a better pseudopotential

as more realistic results have already been obtained in Ref. [20]. Comparing the

BoltzTraP resistivity with the one in the cited work it becomes clear that the

spins are flipped. The origin of such difference remains unclear but, as it will be

seen in the upcoming graphs, it is always consistent for all of the crystallographic

configurations that have been studied. It cannot be ruled out that the majority

spin has an higher resistivity than the minority one because experiments have not

been able to answer this question but more work is needed to verify this result.

Within Verstraete’s work [20], given the results obtained, an hypothesis has been

advanced, that the two spin channels do not simply act as parallel conductors

but may interact with each other, therefore reducing the total resistivity to a
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(a) (b)

(c)

Figure 3.5: The charge density of the divacancy far for increasing number of

atoms is here presented. It can be noticed how for larger configurations the zone

of interaction between the two defects reduces.
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Figure 3.6: Comparison between the resistivity obtained through ABINIT (green

line) and BoltzTraP (red line) for aluminium

quantity that is roughly the average of the resistivity of the two spin channels.

Such hypothesis has been used within this thesis regarding the resistivity of the

various crystallographic configurations.

Given that the results from ABINIT do not have any fitting parameter, it is

evident that using such a tool to investigate the objective of the thesis would be

preferable. However, as it was stated before, cells bigger than 16 atoms have been

found difficult to investigate and therefore BoltzTraP was chosen over ABINIT to

study bigger cells. A comparison between the two programs has been made for

the simple case of a vacancy in a 16 atoms cell and shows an acceptable agreement

at least until room temperature between the two programs. This justifies the use

of the combination of VASP and BoltzTraP to investigate bigger cells. For future

works it is however advisable to investigate the possibility of using ABINIT for

bigger cells, at least for comparison purposes.

Figure 3.10 shows a quick summary of the results that have been obtained
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Figure 3.7: Comparison between the resistivity obtained through ABINIT (green

line) and BoltzTraP (red line) for tungsten
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Figure 3.8: Comparison between the resistivity obtained through ABINIT (green

line) and BoltzTraP (red line) for iron
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Figure 3.9: Comparison of the residual resistivity of a 16 atoms supercell vacancy

for ABINIT and BoltzTraP
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Figure 3.10: Residual resistivity of all the studied configurations for tungsten
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for tungsten. All of the most important configurations have been included but

it remains difficult to have a clear understanding of each of these. The following

figures will clarify the results and possibly give the chance to discuss them.
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Figure 3.11: Residual resistivity of all the main divacancies for tungsten

In Figure 3.11 several different divacancy configurations have been considered,

as shown in Figure 2.3, and the resistivity for each case is compared. One more

line has been added which is twice the resistivity of a single vacancy in the 250

atoms case. As it was said before, if no other effect was present it is believed

that the far away divacancy should have the same resistivity of twice the single

vacancy but it can be seen that there is a slight margin between the two lines.

The lack of agreement can possibly be attributed to numerical errors but also to a

variation of τ related to the lattice defects which is not taken into consideration in

this work. It can be seen that the lowest resistivity is achieved for the 1nn, then

it increases till the 3nn and then decreases again for the following configurations.

This trend is confirmed for other configurations that have been considered, that is

10nn and 18nn. These configurations are placed along the same direction of the

5nn at increasing distances. The furthest configuration is the far away divacancy
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and it is evident in Figure 3.12 how the resistivity is steadily converging towards

this value by increasing the distance of the second vacancy.
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Figure 3.12: Residual resistivity of the distant divacancies for tungsten

The results could be explained by considering that two very close vacancies

may interact with each other lowering the total effect on the resistivity. On the

other hand it can be seen the that highest resistivity variation does not appear

when the two vacancies are most distant from each other but at an intermediate

configuration, that is the 3nn. This may be due to a stronger perturbation of the

charge density in a small region of space which may increase the total resistivity

of the material. It can be noticed how the line representing twice the resistivity of

the single vacancy is smaller than the 3nn configuration and approximately equal

to the 2nn and 4nn configurations. These results have been confirmed also using

a slightly denser grid with a total of 146 k-points.

The same effect can be seen in Figures 3.13 and 3.14 for the trivacancy and

quadrivacancy. Figure 3.15 shows the position of the vacancies in the four configu-

rations. The same reasoning as before could be applied to this case. An interesting

question that arises is whether the first or the second configuration is the most



44 3. Results

0 200 400 600 800
Temperature [K]

0

0.5

1

1.5

2

2.5

3

R
es

id
u
al

 r
es

is
ti

v
it

y
 [

Ω
 m

]
Trivac
Trivac 3nn
3 x Vac

x 10
-7

Figure 3.13: Residual resistivity of the trivacancies for tungsten
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Figure 3.14: Residual resistivity of the quadrivacancies for tungsten
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(a) (b)

(c) (d)

Figure 3.15: The configuration for the trivacancies and quadrivacancies is here

presented. On top there are the two most close-packed configurations, at the

bottom the same clusters but in 3nn position.
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stable one or both can be present at the same time. This would be useful to de-

termine the resistivity variation due to the increase and decrease in population of

trivacancies and quadrivacancies. Compared to the assumptions made by Fu this

would mean that the ∆ρ associated with each defect is either overestimated or

underestimated. It cannot be ruled out, however, that if both defects are present

at the same time and in similar numbers, the average value could actually reflect

the real variation of the resistivity. A proper weighting of the defect population

should be done knowing the formation energies of these configurations and using

Boltzmann factors. The self-interstitials show a similarly interesting behaviour.
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Figure 3.16: Residual resistivity of the trivacancies for tungsten

Their position can be seen in Figure 3.17 and it is evident that they do not show a

complete superposition when increasing the number of defects. It can be supposed

that it is due to a saturation effect which reduces the impact of several defects

concentrated in a small zone. It is also possible to introduce the ∆ρ of a Frenkel

pair by summing the resistivity of a single vacancy with that of a single SIA. This
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(a) (b) (c)

Figure 3.17: The configuration for the different SIA clusters in tungsten is here

presented.

gives useful results because they can also be compared to early measurement for

the residual resistivity. In particular it is possible to compare the results to Ref.

[6] where an estimate of the residual resistivity of a Frenkel pair is given. The

result proposed in the cited work is ∆ρFP = 1.05 · 10−7Ωm/at% but this comes

from a simplified fitting of the data and possible variations due to errors in mea-

surement are considered, giving a result which is comprised between 7 · 10−8 and

1.6 · 10−7Ωm/at%. In this work the result obtained for the residual resistivity of

a Frenkel pair at 300 K is 1.4 · 10−7Ωm/at%. This result, combined with more

recent measurement of the threshold energy in the various directions could yield

interesting and quick improvements to the theory.

Configuration divac 1nn divac 2nn divac 3nn divac 4nn divac 5nn

Error 1.19% 2.90% -6.23% 5.14% 1.79%

Table 3.3: The average of the error made by using a linear superposition for

divacancies in tungsten

Configuration trivac trivac 3nn quadrivac quadrivac 3nn

Error 19.3% -12.5% 40.0% -31.3%

Table 3.4: The average of the error made by using a linear superposition for

trivacancies and quadrivacancies in tungsten



48 3. Results

Configuration diSIA triSIA

Error 1.97% 29.1%

Table 3.5: The average of the error made by using a linear superposition for self

interstitials in tungsten

In Tables 3.3, 3.4 and 3.5 is presented the error committed by considering the

resistivity as a linear superposition of defects compared to the resistivity that has

been calculated within this work.
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Figure 3.18: Residual resistivity of the divacancies for iron

For iron fewer configurations have been run due to time limitations on the work.

However, it has been decided to focus on those configurations which may yield the

most interesting results. Figure 3.18 and 3.19 show the obtained resistivities for

vacancies and interstitials. The dashed lines represent the majority and minority

spin, whereas the thicker solid line represents the average of the two spins and is the
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Figure 3.19: Residual resistivity of the SIAs for iron

one result that has been compared. It can be seen that the superposition is roughly

respected for both cases. For the divacancies the position of the second vacancy

with respect to the first does not appear to influence the resistivity. Similarly,

the two di-SIA configurations yield comparable results. It is then possible to

produce a table similar to the previous one, showing the error done by using

linear superposition instead of exactly calculated resistivities. The major missing

configuration is the tri-SIA which could be easily added to improve the current

work.

Configuration divac 1nn divac 2nn divac far 110 diSIA 110 Gao diSIA

Error 18.5% 10.2% 10.3% 6.30% 6.14%

Table 3.6: The average of the error made by using a linear superposition for all

the configurations in iron
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(a) (b) (c)

Figure 3.20: The configuration for the different SIA clusters in iron is here pre-

sented.

In this case too there is a very good agreement between the experimental and

the calculated values for the residual resistivity as in Ref [7] the value associated

with the residual resistivity of a Frenkel pair is ∆ρFP = 3± 0.5 · 10−7Ωm/at% and

the value obtained from the simulations is 2.79 · 10−7Ωm/at%.

3.3 Kinetic Monte Carlo

The results that have been obtained until now can be used to complement other

simulations done in the past or be the base for further research on the topic of

isochronal annealing in the future. In this case a new analysis of the data obtained

by Fu and co-workers [9] can be done and possibly lead to new conclusions. The

data regarding the number of defects at increasing temperatures were extracted

and two set of results were then computed and compared. The first set follows the

prescriptions from Fu and the total resistivity has been calculated as a function of

the number of defects, neglecting their structure, as

ρTOT = cv ·∆ρv + cSIA ·∆ρSIA (3.2)

where cx indicates the concentration of vacancies or self-interstitials and ∆ρx the

residual resistivity associated to that defect as calculated in this work. In the

second set the total resistivity was calculated considering the values computed

within this thesis where available and introducing a saturation effect where the
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Figure 3.21: In the two plots it is possible to see how the resistivity varies depend-

ing on the model used. The linear model is a representation of the results obtained

by Fu and coworkers [9] with actual values for the residual resistivity of vacancies

and SIAs. On top the total residual resistivity is presented and on the bottom the

derivative of the residual resistivity with respect to the temperature. The dashed

lines represents the experimental temperatures at which the peaks are observed.

The original data already present a shift which is kept in the non-linear model.
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results were not available. This leads to consider the resistivity of a tri-SIA as

the superposition of three self-interstitials multiplied by a factor of 0.7 due to the

saturation of the resistivity. For the SIA-clusters a factor of 0.6 has been used but

the lack of knowledge regarding the dimension of the clusters has provided a small

uncertainty over the results. The formula used can be written as

ρTOT = c1v ·∆ρ1v + c1SIA ·∆ρ1SIA + c2SIA ·∆ρ2SIA

+ c3SIA · 3∆ρ1SIA · 0.7 + cnSIA · n∆ρ1SIA · 0.6 (3.3)

where n is the average number of SIA in the cluster, calculated assuming that the

total number of vacancies and interstitials remains the same.

The temperature range between 130 and 220 K has been isolated as it is the

most interesting for this work. At lower temperatures mainly single vacancies and

single interstitials exist, therefore no difference can be observed between the two

models. At higher temperatures vacancy clusters begin to form but their number

remains low and does not influence appreciably the resistivity, whereas the SIAs

are connected into bigger clusters whose dimension is unknown. In between the

vacancies continue to exist as single defects, as they are not yet able to move,

whereas the interstitial begin the formation of small clusters and their behaviour

influences noticeably the total resistivity. The results can be seen in Fig. 3.21 and

show that a shift in the resistivity is evident when comparing the two cases. The

derivative, presented on the bottom of Fig 3.21, shows a taller peak around 152 K

and roughly the same absolute value around 200 K. This second peak would

probably vary if the composition of the SIA clusters was known. The relative

difference between the two results at 152 K is around 17%.
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Conclusions

The objective of the work was to determine the variation of the residual resistivity

of the defects depending on their configuration. In other works it was assumed

that clusters of defects behaved as the sum of the defects that composed them,

so a tri-SIA had the same residual resistivity as the sum of three SIAs. However,

the possibility to investigate the correctness of this assumption existed had to be

attempted. Therefore a combination of DFT simulations and electron transport

codes has been used in order to investigate the behaviour of the residual resistivity

for different defects.

Two methods were proposed, both relying on DFT calculations coupled with

electron transport codes based on the semi-classical Boltzmann theory. In the first

method ABINIT was used for both parts as it is able to perform both DFT and

DFPT calculations, necessary to investigate the resistivity. The second method

relies on DFT simulations performed with VASP and then coupled with Boltz-

TraP, which makes use of the eigenvalues output from VASP to calculate several

transport-related quantities.

ABINIT has shown great potential regarding the calculations of the transport

coefficient as the results obtained show a good agreement with the experimental

ones without the use of any fitting parameter. However, the program has shown

computational limits when bigger cells were used and the investigation of large

defected cells was thus stopped in favour of the use of VASP and BoltzTraP.

Small cells were still investigated in order to validate the results obtained through

the other method. VASP and BoltzTraP, on the other hand, needed a fitting
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parameter, the density of conduction electrons, in order to replicate correctly the

base experimental data. However, all the results that have been presented do not

rely on this parameter as the difference between the resistivities of two different

configurations depends solely on the initial σ/τ which is an output of the program.

The focus of the research was put on two materials of interest, iron and tung-

sten. Both of them were chosen because of their application (present and future)

in the nuclear industry, fission and fusion, and therefore are subject to an impor-

tant amount of radiation. Tungsten has also been used to test the whole method

before applying it to iron which, being ferromagnetic, is more complex. Some work

has also been done in order to process iron with BoltzTraP, which at first was not

possible.

Although the results were expected to be only qualitatively correct, a satis-

factory agreement has been found regarding the calculated values of the residual

resistivity of a Frenkel pair and the literature, hinting that they may be also quan-

titatively accurate.

The calculations have revealed that considering a pure linear superposition

for cluster of defects is not completely correct. It is evident that other effects

take place which change the residual resistivity of the clusters. Differences can

be noticed also depending on the relative position of the defects showing either a

saturation or a strengthening effect.

The results obtained with iron have been used to investigate how previous

works on the topic would be affected by the outcome of this thesis. It has been

shown that there would be a noticeable difference in the absolute values of the

residual resistivity but the general behaviour would be conserved. More could

be done, however, if all the information related to the referenced simulation was

known.

The objectives set at the beginning of the work have been met and they cleared

the path to a deeper understanding of the topic. The results can be considered

to be at least qualitatively correct and set a reference for future work. There are

several areas for improvement but in general it can be said that this has been a

good first step and has solved many of the problems encountered.

A quick progress could be done by expanding the already available results,

increasing the type and number of defects analysed and possibly extending the

same results to other materials. A program could be written to avoid the painful
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process of copy paste which is now necessary to treat each single set of results.

Also a guide should be added so to make it easier to learn how to use BoltzTraP

and couple it properly with VASP.

A second improvement, which would probably dramatically decrease the time

needed for such simulations, is related to the exploitation of the symmetries in

BoltzTraP. VASP is able to reduce the time and power needed for a calculation

by correctly exploiting the symmetry of the system at hand. However, it has been

impossible to similarly exploit the symmetry in BoltzTraP. The solution adopted

within this work was to run the VASP simulations with a very low symmetry

and let BoltzTraP run without using the symmetries of the system. This has had

an important impact on the amount of time and power needed by VASP to run

the simulations. It is evident that, if the symmetries could have been correctly

exploited, more work could be done, possibly even with bigger cells, clusters and

a denser k-point grid.

The possibility of using ABINIT to calculate the residual resistivity for bigger

cells should be investigated. The bulk calculations have provided very good results

and it is expected that the resistivity calculation of defected configurations would

be equally precise. 54 atoms cells would probably be enough to investigate single

defects, whereas bigger cells, 250 atoms were the standard in VASP and BoltzTraP,

would be needed to study clusters of defects. Otherwise VASP could be modified

in order to do DFPT calculations to avoid altogether the use of BoltzTraP.

A final possibility of improvement concerns the correctness of the models used.

The Drude model for the calculation of τ could possibly be replaced. It is expected

and predicted by certain models that τ may vary depending on the lattice and the

defects in it. However, it should be kept in mind that increasing the complexity

may not yield correct results as the Boltzmann theory at the base already has some

known flaws. It would also be of extreme interest to study analytically how the

majority and the minority spin channels interact in iron and other ferromagnetic

materials.



56 4. Conclusions



Bibliography

[1] LK Mansur et al. “Materials needs for fusion, Generation IV fission reactors

and spallation neutron sources–similarities and differences”. In: Journal of

Nuclear Materials 329 (2004), pp. 166–172.

[2] A Alamo et al. “Assessment of ODS-14% Cr ferritic alloy for high temper-

ature applications”. In: Journal of Nuclear Materials 329 (2004), pp. 333–

337.

[3] Frank Bergner et al. “Critical assessment of Cr-rich precipitates in neutron-

irradiated Fe–12at% Cr: Comparison of SANS and APT”. In: Journal of

Nuclear Materials 442.1 (2013), pp. 463–469.

[4] MK Miller, BD Wirth, and GR Odette. “Precipitation in neutron-irradiated

Fe–Cu and Fe–Cu–Mn model alloys: a comparison of APT and SANS data”.

In: Materials Science and Engineering: A 353.1 (2003), pp. 133–139.

[5] Andreas Ulbricht et al. “SANS response of VVER440-type weld material

after neutron irradiation, post-irradiation annealing and reirradiation”. In:

Philosophical Magazine 87.12 (2007), pp. 1855–1870.

[6] F Maury et al. “Frenkel pair creation and stage I recovery in W crystals

irradiated near threshold”. In: Radiation Effects 38.1-2 (1978), pp. 53–65.

[7] F. Maury et al. “Anisotropy of defect creation in electron-irradiated iron

crystals”. In: Phys. Rev. B 14 (12 Dec. 1976), pp. 5303–5313.

[8] T Jourdan et al. “Direct simulation of resistivity recovery experiments in

carbon-dopedα-iron”. In: Physica Scripta 2011.T145 (2011), p. 014049.

[9] Chu-Chun Fu et al. “Multiscale modelling of defect kinetics in irradiated

iron”. In: Nature materials 4.1 (2005), pp. 68–74.



58 BIBLIOGRAPHY

[10] Emmanuel Clouet and Alain Barbu. “Using cluster dynamics to model elec-

trical resistivity measurements in precipitating AlSc alloys”. In: Acta mate-

rialia 55.1 (2007), pp. 391–400.

[11] F Knider, J Hugel, and AV Postnikov. “Ab initio calculation of dc resistivity

in liquid Al, Na and Pb”. In: Journal of Physics: Condensed Matter 19.19

(2007), p. 196105.

[12] Pier Luigi Silvestrelli, Ali Alavi, and Michele Parrinello. “Electrical-conductivity

calculation in ab initio simulations of metals: Application to liquid sodium”.

In: Physical Review B 55.23 (1997), p. 15515.

[13] Monica Pozzo, Michael P Desjarlais, and Dario Alfè. “Electrical and thermal
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