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Abstract

This thesis was motivated primarily by the industry’s needs for efficient Monte
Carlo criticality solvers with advanced error estimation routines. Major effort
was devoted to the study of fission source convergence, since errors present
in the fission source directly affect the computed power or neutron flux dis-
tributions and other results that are collected over a number of criticality
cycles. For this reason, the statistical and systematic errors in the cumulative
fission source, i.e. the fission source combined over all simulated cycles, are
identified in the thesis as factors determining the accuracy of the computed
results. Hence, a good estimation of the errors in the cumulative fission source
is crucial for correct interpretation of results from Monte Carlo criticality cal-
culations.
This thesis presents two original methods for Monte Carlo reactor physics
calculations. A novel method is suggested for estimating the error in the
cumulative fission source in Monte Carlo criticality calculations by utilising
the fundamental-mode eigenvector of the fission matrix. While statistical
errors are present in the eigenvector, it appears that these are only weakly
correlated to the errors in the cumulative fission source. This ensures that
the suggested method gives error estimates that are distributed around the
real errors, which is also supported by results of numerical test calculations.
This method has been described in a journal manuscript that was accepted
for publication in Annals of Nuclear Energy.
Another, related, method is suggested for improving the efficiency of Monte
Carlo reactor physics criticality calculations. This is achieved by optimising
the number of neutron histories simulated per criticality cycle (the so-called
neutron batch size). This is possible as the chosen neutron batch size affects
both the rate of convergence and magnitude of bias in the fission source.
For instance, setting a small neutron batch size ensures a rapid simulation of
criticality cycles, allowing the fission source to converge fast to its stationary
state; however, at the same time, the small neutron batch size introduces
a relatively large systematic bias in the fission source. Hence, for a given
allocated computing time, there is an optimal neutron batch size that balances
these two effects. This optimisation problem is approached by deriving a
simplified formula for the scalar error in the cumulative fission source, taking
into account the neutron batch size, the dominance ratio of the system, the
error in the initial fission source and the total number of neutron histories
to be simulated. Knowledge of how the neutron batch size affects the error
in the cumulative fission source allows its optimal value to be found. This
is demonstrated on a number of numerical test calculations. This method
has been described in another journal manuscript that was submitted for
publication to Annals of Nuclear Energy.
The suggested methodologies allow for more efficient Monte Carlo reactor
physics calculations, giving results with errors that can be estimated more
reliably than with other existing methods. The suggested methods can easily
be implemented in established Monte Carlo criticality codes.
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Chapter 1

Introduction

1.1 Neutron transport problems

Neutron transport, or neutronics, is a branch of reactor physics and nuclear engi-
neering that studies how neutrons behave in a system; where behaviour means the
distribution and physical properties of neutrons. The study of neutron transport is
employed in various nuclear engineering applications. [37]
The distribution and properties of neutrons are commonly described by phase-
space density (or alternatively, angular flux), which is a mathematical quantity
specifying the number of neutrons at any point in time and space, with a certain
energy and movement direction. This is the fundamental quantity in the neutron
transport equation and its simplified variant, the neutron diffusion equation—the
mathematical models of neutron transport. [7]
In reactor physics, neutron transport is studied because the phase-space density
(or flux) is related to the power of the reactor, criticality of the system, and other
phenomena. [7] It is also relevant in other areas of nuclear engineering, like fuel and
waste storage, radiation shielding, and other applications. Transport calculations
may also be coupled to thermal hydraulic and fuel burn-up solvers.
Nuclear power plants, like many other types of power generating units, require
tools for design, analysis, and fuel planning. Neutron transport (and especially
criticality) calculations play an important part in both reactor design and analysis
and fuel cycle management, making it important to further develop the necessary
tools. The work presented in this thesis concentrates on and attempts to further
improve one of these tools—the Monte Carlo criticality method.

1.2 Characteristics of Monte Carlo criticality calculations

Most methods of solving the neutron transport equation make significant simplifi-
cations due to the sheer complexity of the mathematical model. The approach of
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2 CHAPTER 1. INTRODUCTION

statistical sampling employed in Monte Carlo calculations allows the quantities of
interest to be estimated without actually solving the transport equation. Individ-
ual neutrons are simulated by sampling events from known probability distributions
and the expected behaviour is found as an average. [4] Different physical phenom-
ena can be described more realistically and the least number of simplifications is
needed, making the Monte Carlo method potentially the most accurate approach.
However, due to its simulative nature, it is also the most computationally demand-
ing method.
The different physical phenomena and the geometry may be described in a very
detailed manner, but with today’s computers the number of simulated particles
cannot come close to the actual number of neutrons in the system. If a real system
may have, to the order of magnitude, 1015 or 1018 neutrons per unit volume in
unit time, then a longer Monte Carlo calculation may simulate some millions of
neutrons in the whole system per iteration cycle. A large number of cycles has to
be simulated to obtain good estimates for the averaged values. What is more, in
criticality calculations the fission source, where the neutrons are sampled from, is
also not known and has to be estimated iteratively during the calculation. If the
fission source itself is not estimated correctly enough, all other quantities become
erroneous.
The precision of Monte Carlo calculations is determined by the total number of
simulated neutrons and commonly described by variances of estimated quantities.
The time spent on the calculation is also largely proportional to the total number
of simulated particles, which is determined by the product of iterated cycles and
number of neutrons simulated per cycle (the neutron batch size). The ratio of
these two values, however, has two different implications on the accuracy of results.
Firstly, a large number of cycles may be needed to converge the fission source from
the initial guess to an accurate distribution. Secondly, simulating a small number
of neutrons per cycle introduces systematic errors in the fission source. These
are systematic problems affecting accuracy and neither of them is reflected in the
calculated variance estimates. [13]

1.3 Objective and structure of thesis

The first aim of this thesis is to specify a quantity that captures real calculation
errors introduced by different phenomena and find ways to estimate these errors. All
obtained results of Monte Carlo criticality calculations are combined over a number
of cycles, and are directly affected by the errors in the fission source. Thus, the
error in the cumulative fission source (the fission source combined over all simulated
cycles) is chosen to represent the error of the calculation. The second goal is to
find a simplified model for these errors and utilise it to optimise the calculations
for increased efficiency. The figure of merit is related to the modelled error and
available computational time and maximised by optimising the neutron batch size.
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The author of the thesis has prepared two publications, the first of which presents
a new error estimation method and the second proposes a way to improve the
efficiency of calculations by optimising the neutron batch size. The concepts intro-
duced in these papers are presented as the main part of the thesis.
Chapter 2 provides a background overview of the topic; it introduces the neutron
transport equation and its eigenvalue variant, summarises the basics of statistical
sampling, and describes the concepts of Monte Carlo criticality methods. This is
followed by a mathematical description of Monte Carlo eigenvalue calculations in
Chapter 3, where different aspects of fission source convergence and errors of calcu-
lations are analysed. Chapter 4 proposes a way to estimate errors in the cumulative
Monte Carlo fission source, based on the eigenvector of the fission matrix. In Chap-
ter 5, a simplified model is derived for the error in the cumulative source and used
to derive an optimal value for the neutron batch size; additionally, a methodol-
ogy is offered for implementation of the optimisation. The work is summarised in
Chapter 6.





Chapter 2

Monte Carlo methods in reactor
physics

“One Does not simply solve the neutron transport equation.”

The Boromir one-does-not-simply meme

2.1 Neutron transport equation

The aim of neutron transport theory is to describe how neutrons move in space and
interact with materials. It attempts to determine where neutrons are, what velocity
they have and which direction they are moving in. The quantity that captures all
of that information is called neutron phase-space density and denoted as N(r,v, t),
so that

N(r,v, t)drdv

is the expected number of particles located at r in volume dr moving with a velocity
in a direction specified by v in dv at time t. [7] Both r and v are three-dimensional
vectors, one specifying position and the other direction and speed.
This is a basic quantity containing the necessary information to analyse a nuclear
system. By knowing neutron phase-space density, one can determine the power
distribution in a nuclear reactor, calculate various reaction rates or evaluate some
other quantity of interest.
Neutron density n(r, t) in the system can be found as an integral quantity of the
phase-space density by integrating over velocity

n(r, t) =
∫
N(r,v, t)dv (2.1)

When describing neutron transport, the velocity vector is often decomposed into a
vector describing direction and a scalar term for velocity, or speed. The speed is
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6 CHAPTER 2. MONTE CARLO METHODS IN REACTOR PHYSICS

taken as v = |v| and the direction term is described as Ω = v/v. Often, instead of
using speed as a variable, it is replaced by the kinetic energy E = mv2/2. [7]
Now the following can be written

N(r,Ω, E, t)drdΩdE

as the number of neutrons at r in volume dr moving in the direction Ω in solid
angle dΩ with energy E in dE at time t.
Having these initial formalisms laid out, the formation of the neutron transport
equation can be started. As a balance equation, it simply considers the gains and
losses of particles. This balance can be understood so that the sum of changes due
to leakage, collisions, and sources is equal to the time rate of change in phase-space
particle density.
The equation can be derived in the simplest manner by assuming that the sub-
stantial derivative of phase-space density along the particle trajectory is equal to
changes due to collisions and sources. [7] This is expressed as

dN(r,v, t)
dt =

(
∂N

∂t

)
coll

+ q(r,v, t) (2.2)

where q is the source term. Following that, it can be shown that

dN
dt = ∂N

∂t
+ v∂N

∂r + F
m
· ∂N
∂v (2.3)

The last term in this equation describes effects caused by gravity, which can be
considered negligible and disregarded in neutron transport. [7]
Considering this result and denoting ∂N/∂r = ∇N , the time rate of change in
phase-space density N becomes

∂N(r,v, t)
∂t

= −v∇N(r,v, t) +
(
∂N

∂t

)
coll

+ q(r,v, t) (2.4)

which is a mathematical representation of the previously stated balance of gains
and losses. This is a general form of the neutron transport equation. [7]
In order to describe the changes due to collisions, some additional definitions are
called for. The collisions or interactions with the surrounding medium are assumed
to happen instantaneously at some point in space. Particles are assumed to be
streaming along until a point of collision, after which they are either absorbed or
scattered in a new direction at a new velocity.
Firstly, the probability for a particle to have an interaction at a location r per unit
distance travelled at velocity v is defined as the macroscopic cross section Σ(r,v).
It is also described as the inverse of the mean free path mfp and related to the
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microscopic cross section1 σ by the number density NB of the surrounding medium
as

Σ(r,v) = NB(r)σ(v) = mfp−1 (2.5)

Transport theory is used to describe how particles moving through a medium un-
dergo collisions and scatterings. In order to describe these interaction processes,
where the incident particle is absorbed and secondary particles are emitted, a scat-
tering probability function f(r,v′ → v) is defined, so that

f(r,v′ → v)dv

gives the probability that an incident particle travelling at velocity v′ causes the
emission of any particles at r with velocity v in dv.
Following that, the quantity c(r,v) is defined as the mean number of secondary
particles emitted after an incident particle collides at r, travelling at v. The previous
three definitions can then be combined into a collision kernel, which is defined as

Σ(r,v′ → v) = Σ(r,v)c(r,v)f(r,v′ → v) (2.6)

This kernel can be viewed as the probability that an incident particle travelling at
v′ will have a collision per unit distance which results in the emission of a particle
with velocity v. Now, by definition

Σ(r,v) =
∫

Σ(r,v′ → v)dv′ (2.7)

Next it can be noted that the products

vΣ(r,v)
vΣ(r,v)N(r,v, t)

describe collision frequency and reaction rate density, respectively. It can be rea-
soned that the loss rate by collisions for particles with velocity v is then described by
vΣ(r,v)N(r,v, t) and the production of secondary particles travelling at v caused
by particles with velocities v′ is given by v′Σ(r,v′ → v)N(r,v′, t)dv′. This results
in the following expression for the collision term(

∂N

∂t

)
coll

=
∫
v′Σ(r,v′ → v)N(r,v′, t)dv′ − vΣ(r,v)N(r,v, t) (2.8)

so that the general form of the transport equation becomes [7]

∂N

∂t
+ v∇N + vΣN =

∫
v′Σ(r,v′ → v)N(r,v′, t)dv′ + q (2.9)

1The microscopic cross section is a quantity describing probabilities of interaction events as
effective collision areas
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where N = N(r,v, t) and q = q(r,v, t).
Due to the frequent use of the product vN in reaction rates, it is common to define
the angular, or phase-space, neutron flux as

Φ(r,v, t) = vN(r,v, t) (2.10)

and the velocity integrated, or scalar, flux as

φ(r, t) =
∫

Φ(r,v, t)dv =
∫
vN(r,v, t)dv (2.11)

The transport equation can then be written in terms of angular flux

1
v

∂Φ
∂t

+ Ω∇Φ + ΣΦ =
∫
4π

∞∫
0

Σ(r,Ω′, E′ → Ω, E)Φ(r,Ω′, E′, t)dΩ′dE′ + q (2.12)

It is common to separate the collision kernel into two components, one describing
fission events and the other scatterings. This is done so that

Σ(r,Ω′, E′ → Ω, E) = Σf (r,Ω′, E′ → Ω, E) + Σsc(r,Ω′, E′ → Ω, E) (2.13)

where the index f denotes fission and sc scattering.
In general it is considered that as a good assumption fission neutrons can be treated
as being emitted isotropically in the laboratory reference system. Having this in
mind, the related scattering probability is described as

ff (r,Ω′, E′ → Ω, E)dΩdE = 1
4πν(r, E′ → E)dΩdE (2.14)

where ν(r, E′ → E) is referred to as the fission neutron energy spectrum, i.e. the
probability that a fission induced by a neutron at r with energy E′ will produce
a neutron with energy E in dE. This spectrum is further separated into two
components as

ν(r, E′ → E) = χ(r, E′ → E)ν(r, E′) (2.15)

where ν(r, E′) =
∫
ν(r, E′ → E)dE is the average number of neutrons produced by

a fission caused by a neutron with energy E′ at r. The term χ(r, E′ → E) is the
normalized fission spectrum. It has been established that the dependence of χ on
incident energy can be ignored. This means χ(r, E′ → E) = χ(r, E), which can be
considered as the distribution of energies for produced fission neutrons. [7]
Based on this, the fission term in the collision kernel becomes

Σf (r,Ω′, E′ → Ω, E) = χ(r, E)
4π ν(r, E′)Σf (r, E′) (2.16)
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This enables the transport equation to be written as

1
v

∂Φ
∂t

+ Ω∇Φ + ΣΦ =
∫
4π

∞∫
0

Σsc(r,Ω′, E′ → Ω, E)Φ(r,Ω′, E′, t)dΩ′dE′+

+χ(r, E)
4π

∫
4π

∞∫
0

ν(r, E′)Σf (r, E′)Φ(r,Ω′, E′, t)dΩ′dE′ + q (2.17)

which is then complemented by appropriate initial and boundary conditions.
In a case when the equation does not contain a source term, i.e. q = 0, the
equation is considered to be homogeneous and linear. The linearity here means
that any linear combination of some arbitrary solutions Φ1 and Φ2 of the transport
equation is also a valid solution. [7]

2.1.1 k-eigenvalue equation
The criticality of nuclear systems is studied with eigenvalue equations. Firstly, a
system is considered sub-critical if the fission reactions cannot sustain a neutron
population without an extraneous source and the population disappears over time.
If the neutron population keeps growing over time, the system is supercritical, and
if it remains steady with no source present, it can be considered critical.
One major type of eigenvalue equations is formed by introducing auxiliary eigenval-
ues into the steady state homogeneous transport equation. This is commonly done
by modifying the term ν(r, E′) so that it reads ν(r, E′)/k. In effect, this means that
the number of produced fission neutrons is divided by a factor, commonly known as
the effective multiplication factor keff. The steady state (∂Φ/∂t = 0) k-eigenvalue
equation can then be written as

Ω∇Φ + ΣΦ =
∫
4π

∞∫
0

Σ′scΦ′dΩ′dE′ + 1
k

∫
4π

∞∫
0

χ

4πνΣ′fΦ′dΩ′dE′ (2.18)

where the quantities with primes are Φ′ = Φ(r,Ω′, E′), Σ′sc = Σsc(r,Ω′, E′ → Ω, E)
and νΣ′f = ν(r, E′)Σf (r, E′). [7]
The terms in this equation can be combined into two operators. Firstly, the trans-
port operator is formed as [33]

TΦ(r,Ω, E) = Ω∇Φ + ΣΦ−
∫
4π

∞∫
0

Σ′scΦ′dΩ′dE′ (2.19)

and secondly, the fission source as [3]

s(r) =
∫
4π

∞∫
0

νΣ′fΦ′dΩ′dE′ (2.20)
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Using these two operators, the k-eigenvalue equation can be written as

kjTΦj(r,Ω, E) = χ(E)
4π sj(r) (2.21)

where kj are the eigenvalues and Φj (with the corresponding sj) the eigenfunctions
of the steady-state transport equation and χ(E) is the energy spectrum of emitted
fission neutrons. As a simplification, χ(E) is assumed to be independent of the
energy of the neutrons causing fission; and fission neutron emission is assumed to
be isotropic. [3]
The eigenvalue spectrum is commonly ordered descendingly, starting with the high-
est modulus eigenvalue being denoted by k0, so that

k0 > |k1| > |k2| > . . .

The highest modulus eigenvalue corresponds to the fundamental mode eigenfunc-
tion Φ0 and is equated with the effective multiplication factor, i.e. keff = k0.
Considering the nature of eigenfunctions, only the fundamental mode solution is
positive throughout the system, which means that only Φ0 is related to a physically
meaningful angular neutron flux. [7]
The k-eigenvalue is related to criticality so that keff = 1 implies that the system is
critical, keff < 1 shows sub-criticality, and keff > 1 means the system is supercritical.

2.1.2 Solving the transport equation
The neutron transport equation is essentially an exact description of transport pro-
cesses as long as the cross sections are described sufficiently well. The solution for
neutron phase space density or angular neutron flux would provide all the informa-
tion that could be required. However, in the general case, this equation does not
have an analytic solution.
The transport equation contains seven independent variables: position (x, y, z in
r), direction (θ, ϕ in Ω), energy (E), and time (t). In addition to that, the cross
sections are dependent on materials and particle energies. All of this combined with
the nature of this integro-differential equation makes it very difficult to solve. [7]
Possible approaches to solving the equation could be divided into three categories.
The first way would be to simplify the transport equation itself to an extent al-
lowing it to be applied to realistic problems. This group includes approximations
like diffusion theory or PN equations. The second type of approach would be to
only consider problems that are possible to be analysed analytically. This group
contains problems with either very simple geometry or strong simplifications in en-
ergy or angular dependence. The third approach would be to solve the transport
equation numerically, either by deterministic or stochastic methods. This group en-
ables higher complexity in both the mathematical representation of the transport
equation and the system being studied. [7]
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The last of these groups includes solving the equation by stochastic or statistical
sampling, also known as the Monte Carlo method. The fundamentals of the Monte
Carlo method and its application to criticality problems are presented in the next
sections.

2.2 Basics of statistical sampling

2.2.1 Stochastic quantities
A random variable X is a variable that obtains a value x (a realisation) by random
selection from a set of possible values. A discrete random variable may obtain a
value xi from a finite set of values {x1, x2, . . . , xn} with a probability pi = P (X =
xi). A continuous random variable may obtain a value x from an infinite set of
values with probabilities described by a probability distribution function. [20] The
cumulative distribution function (cdf) is defined as the probability of a continuous
random variable X obtaining a value that is smaller than or equal to x

FX(x) = P (X ≤ x) =
x∫

−∞

fX(ξ)dξ (2.22)

The probability density function (pdf) is expressed as

fX(x) = dFX(x)
dx (2.23)

and is characterised by the following identity
∞∫
−∞

fX(x)dx = 1 (2.24)

For discrete random variables an analogous identity is given as
n∑
i=1

pi = 1 (2.25)

The expected value of a continuous random variable X is defined as

E [X] =
∞∫
−∞

xfX(x)dx (2.26)

whereas the equivalent quantity for a discrete random variable X is [20]

E [X] =
n∑
i=1

pixi (2.27)
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which is an average of all possible values weighted by their probabilities.
To measure how spread out a set of values is, a quantity known as variance is used.
The variance of a random variable X is defined as

Var [X] = E
[
(X − E [X])2

]
= E

[
X2]− (E [X])2 (2.28)

where the last equality can be verified by properties of the expected value. [20]
Following that, the standard deviation is defined as

σX =
√

Var [X] (2.29)

which characterises the dispersion of realisations from the expected value.
To analyse how two different random variables, say X and Y , are related, the
covariance is defined as

Cov [X,Y ] = E [(X − E [X]) (Y − E [Y ])] = E [XY ]− E [X] E [Y ] (2.30)

Based on this, another measure, the correlation coefficient is defined as

ρXY = Cov [X,Y ]
σXσY

(2.31)

which is a coefficient in the range [−1, 1]. Correlation is used to measure dependence
between two random variables. However, it has to be noted that dependence implies
correlation but correlation does not always mean dependence.

2.2.2 Sampling methods
A Monte Carlo procedure can be viewed in a simple manner by assuming an un-
known random variable Y that is estimated by a mathematical model g using
samples of an input random variable X, so that [8]

Y = g(X) (2.32)

Here the distribution function is known for X but unknown for Y , and the model g
is complicated enough to prevent the direct calculation of the expected value of Y .
In order to estimate Y , some n values are sampled for X and corresponding values
of g(X) are calculated. This produces n samples for Y as yi = g(xi).
Sampling is the act of drawing a random variable from a distribution function
describing some phenomenon. There is a large variety of sampling methods and
algorithms to achieve this, the description of which is not in the scope of this work.
Sampling relies on random number generators (RNG) for which there is also a wide
range of algorithms. The purpose of an RNG is to provide random (or seemingly
random) values from a certain probability distribution. [20]
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The expected value of the random variable Y is then estimated based on the sampled
values by taking their mean, or ensemble average, value

ȳ = 〈yn〉 = 1
n

n∑
i=1

yi (2.33)

and the assumption E[Y ] ∼= ȳ.
The variance of the mean is commonly estimated by the sample variance

Var [ ȳ ] ∼= σ2
S = 1

n(n− 1)

n∑
i=1

(yi − ȳ)2 = 1
n− 1

(
y2 − ȳ2

)
(2.34)

which is a good estimate if the samples are not correlated or the correlation is weak.
[22] However, since this assumption is not always correct, it is important to note
that this estimate does not always capture the real error, even if the number of
samples is increased. [13] The real variance would be, according to the definition

σ2
R = E

[
Y 2]− (E [Y ])2 (2.35)

Different ways have been suggested [17, 22, 31, 33, 36] to evaluate the so-called
variance bias σ2

S − σ2
R, but the problem is nevertheless present.

Commonly, the efficiency of a Monte Carlo calculation is described by the figure of
merit, defined as

FOM = 1
σ2t

(2.36)

where t is the computational time spent on the calculation and σ2 ∼= σ2
S is the

estimated variance of the quantity of interest.

2.3 Monte Carlo criticality calculations

The idea of using statistical sampling to solve neutron transport problems was
introduced in the correspondence of J. von Neumann and R. D. Richtmyer as

“... a method of solving neutron diffusion problems in which data are
chosen at random to represent a number of neutrons in a chain-reacting
system. The history of these neutrons and their progeny is determined
by detailed calculations of the motions and collisions of these neutrons,
randomly chosen variables being introduced at certain points in such a
way as to represent the occurrence of various processes with the correct
probabilities. If the history is followed far enough, the chain reaction
thus represented may be regarded as a representative sample of a chain
reaction in the system in question. The result may be analyzed statisti-
cally to obtain various average quantities of interest for comparison with
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experiments or for design problems. [—] It is not necessary to restrict
neutron energies to a single value or even to a finite number of values
and one can study the distribution of neutrons or of collisions of any
specified type not only with respect to space variables but with respect
to other variables, such as neutron velocity, direction of motion, time.”
[28]

The Monte Carlo method solves neutron transport problems by simulating individ-
ual particles and recording aspects of their behaviour. The average behaviour of
particles in the system is then found based on the average behaviour of simulated
particles. What sets the Monte Carlo method apart from other ways of solving the
neutron transport equation, is that the quantities it actually solves for may be very
different. Monte Carlo calculations only provide information for specified quantities
being estimated, or tallied, not necessarily the quantities generally present in the
transport equation. [4]
By the Monte Carlo method a stochastic process (such as neutron interactions)
can be theoretically mimicked. The individual statistical parts of the process are
simulated consecutively, while the probability distributions describing these events
are sampled stochastically. Sampling is based on random numbers, which is the
inspiration for the name “Monte Carlo”. [4] Sampling of various quantities is based
on known physical phenomena and corresponding probability distribution functions.
The principles and techniques of sampling these different quantities are not in the
scope of this work and will not be discussed here.
Typically, a Monte Carlo criticality problem is specified by defining the geometry of
the system, all involved materials, quantities to be tallied, and some free parame-
ters. The free parameters are the number of active and inactive cycles, the neutron
batch size, and the initial fission source distribution. This information is then fed
into a Monte Carlo solver, or code, which will iterate a number of generations, or
cycles. In every cycle, a number of neutrons, specified as the batch size, is simu-
lated. The inactive cycles are used to converge the guessed initial fission source to
a stationary distribution by the Monte Carlo power method. Every active cycle is
similarly iterated to obtain estimates for the tallies by sampling neutrons from the
fission source distribution, obtained in the preceding cycle.

2.3.1 Non-analog Monte Carlo
Neutron transport is one of the phenomena that can be modelled analogously to
the actual process in a natural way. In principle the simplest Monte Carlo neutron
transport model is the analog model. In this model natural probabilities of events
are used and particles are followed, or tracked, from event to event to accumulate
information for tallies. [4]
The so-called analog Monte Carlo neutron transport model is effective when sim-
ulated particles contribute significantly to quantities being estimated. However, in
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some cases large numbers of particles are simulated that do not partake in accumu-
lating data for specific tallies, increasing their variance. Fortunately, it is possible
to use different probability models for neutron transport, which result in the same
estimates as the analog model but with lower variance. [21]
In non-analog Monte Carlo algorithms, particles are assigned different importances
based on how much they contribute to quantities being tallied. This is done to
ensure that the computational effort is spent on simulating particles that are rel-
evant to the results. Any biasing of processes has to be compensated for in order
to make sure the results are still correct. If a particle’s importance is increased
by some factor, its weight has to be decreased accordingly. As estimates are ob-
tained by averaging, this weighting ensures identical results with analog Monte
Carlo algorithms. [4]
To illustrate the concept of non-analog Monte Carlo, one can imagine a situation
where a quantity is being estimated in a region that only few particles enter. If
a particle in this region is then split into, for example, 10 identical particles, each
of them contributes to the tally with their contribution weighted by 1/10. Results
obtained by analog and non-analog algorithms are equal, however, the non-analog
approach provides more statistical samples for the estimate, meaning a lower vari-
ance and higher precision. Several so-called variance reduction techniques exist
which utilize this principle. [21]

2.3.2 Variance reduction

If one recalls the definition of the figure of merit, as in Eq. (2.36), it becomes
understandable how the efficiency of the calculation can be increased by decreasing
the variance of estimated quantities. This is true as long as any action taken
to decrease variance does not increase the computational time proportionally (or
more).
Various variance reduction techniques have been devised that attempt to improve
the efficiency and precision of Monte Carlo calculations by decreasing variance. In
essence the different techniques can be divided into four categories, described below.
[12]
The first type is the truncation methods, which are the simplest variance reduction
schemes. Variance is decreased by truncating certain regions of phase-space, which
are considered insignificant for the estimation of results. Examples include geometry
truncation (parts of geometry are not modelled), time cut-off, and energy cut-off.
[12]
The second group consists of population control methods, which utilise particle
splitting and a procedure called Russian roulette to control sampling intensity in
various parts of phase space. Like in the example given about the non-analog
methods, weighting factors are used to specify different importances. Different
population control methods are, for example, geometry splitting, energy splitting,
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weight cut-off, and weight windows. [21]
The third category consists of modified sampling methods, which are based on
changing the statistical sampling in order to increase the number of tallies recorded
per particle. Weighting factors are used to un-bias the results, as with previ-
ous methods. Available modified sampling methods are quite different from one
another. Some examples are exponential transform (or path length stretching),
implicit capture, forced collisions, and source biasing. [12]
The last group of variance reduction schemes is partially deterministic methods.
These methods partially bypass the normal random walk process by incorporating
some deterministic schemes. These are usually the most complex variance reduction
methods. This category includes schemes using deterministic transport estimates
and methods like correlated sampling. [21]
The big question with variance reduction techniques is always the choice of the
correct method. It is not always known which method gives the best results and
whether results will actually improve or not. It is also important to remember that
a decrease in the estimated variance means higher precision but not necessarily
higher accuracy. [13]



Chapter 3

Error analysis of Monte Carlo
calculations

Kalos: “But in estimating ratios my procedure introduces no bias.”

Gelbard: “That is where I disagree. I disagree because any estimate
you make eventually is based on a normalized eigenvector.”

Kalos: “But the normalization drops out.”

Gelbard: “Why does it drop out?”
Excerpt from [14]

This chapter presents a mathematical description of Monte Carlo criticality calcu-
lations. The described notation is then used to identify different aspects of source
convergence to explain the problems approached in the thesis. This is followed by
error analysis which will be used as a base for work presented later.

3.1 Mathematical description of Monte Carlo criticality
calculations

The steady-state homogeneous neutron transport k-eigenvalue, or criticality, equa-
tion in operator notation was presented in Eq. (2.21) as

kjTΦj(r,Ω, E) = χ(E)
4π sj(r)

where

sj(r) =
∫
4π

∞∫
0

νΣ′fΦj(r,Ω′, E′)dΩ′dE′

17
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In order to find an eigenvalue equation given only by the fission source, firstly, a
Green’s function is defined as [3]

TG(r0,Ω0, E0 → r,Ω, E) = δ(r− r0)δ(Ω−Ω0)δ(E − E0) (3.1)

where δ is the Dirac’s delta function and index 0 denotes the initial point in phase-
space. Then the angular flux can be expressed as

Φj(r,Ω, E) = 1
kj

∫
V

∫
4π

∞∫
0

χ0

4π sj(r0)G0dr0dΩ0dE0 (3.2)

where G0 = G(r0,Ω0, E0 → r,Ω, E) and χ0 = χ(E0). For this flux, the fission
source can be written as [3]

sj(r) = 1
kj

∫
V

dr0sj(r0)
∫
4π

∞∫
0

dΩ′dE′νΣ′f
∫
4π

∞∫
0

dΩ0dE0
χ0

4πG0 (3.3)

Finally, the fission kernel is defined as

F (r0 → r) =
∫
4π

∞∫
0

dΩ′dE′νΣ′f
∫
4π

∞∫
0

dΩ0dE0
χ0

4πG0 (3.4)

which results in the following [3]

kjsj(r) =
∫
V

dr0F (r0 → r)sj(r0) (3.5)

By defining an integral operator H for the right hand side, the eigenvalue equation
can be written as

kjsj(r) = Hsj(r) (3.6)

Monte Carlo calculations solve the criticality equation (3.6) by sampling neutrons
from the fission sources and simulating their transport. In each of n iteration cycles
a batch of m neutrons are sampled, resulting in a total of mn samples, or neutron
histories.
A cycle in the eigenvalue calculation can formally be described as [18]

s(i+1) = 1
k(i)Hs

(i) + ε(i) (3.7)

where s(i) and s(i+1) are fission sources in consecutive cycles and ε(i) is the stochastic
error component resulting from sampling a finite number of histories per cycle. The
eigenvalue, k(i), can be estimated as an integral quantity of the fission source

k(i) =
∫
V

drHs(i)(r)∫
V

dr s(i)(r)
(3.8)
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Fission sources are normalized to the batch size m, i.e.∫
V

dr s(i)(r) = m (3.9)

The estimates of quantities are then calculated as averages of obtained cycle-wise
values. For any quantity x, the estimate of n cycles is calculated as〈

x(n)
〉

= 1
n

n∑
i=1

x(i) (3.10)

where x(i) is the ith cycle estimate of x.

3.2 Aspects of fission source convergence

It is characteristic for Monte Carlo calculations that the combined results contain
errors of statistical sampling of the order O(1/

√
mn), with mn being the total

number of neutron histories simulated over the cycles. [20] For any Monte Carlo
process it is assumed that E[ε(i)] = 0. [18] This means that statistical errors are
decreased by increasing the number of samples, and if there were no systematic
errors in the computational scheme, overall errors would be decreased accordingly.
The process of solving the eigenvalue equation, as given in Eq. (3.7), is described as
an iterative process, very much like the power method. If the iterations are followed
from the first to the nth cycle, the fission source can be written as

s(n) = Hns(0)

n∏
j=1

k(j−1)
+

n∑
j=1

Hn−jε(j−1)

n∏
l=j

k(l)
(3.11)

Keeping in mind Eq. (3.6), any fission source distribution can be expressed as a
sum of eigenfunctions, using some arbitrary weighting factors (aj-s and c)

s(n) = Hn
∑
j

ajsj + c ε(n) =
∑
j

ajk
n
j sj + c ε(n) (3.12)

To proceed, the eigenvalues are ordered descendingly by the modulus, starting with
the highest value (k0 > |k1| > |k2| > . . .). The equation above can then be divided
by kn0 to obtain

s(n)

kn0
= a0s0 +

(
k1

k0

)n
a1s1 +

(
k2

k0

)n
a2s2 + . . .+ c ε(n) (3.13)

Based on the ordering of eigenvalues, it can be seen that the iterations converge to
a multiple of the fundamental mode eigenvector plus the remaining statistical error
(which decays as

√
mn increases), and

1 > |k1/k0| > |k2/k0| > . . .
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It becomes apparent that convergence of such a calculation is governed by k1/k0,
also known as the dominance ratio. More precisely, as Eq (3.13) shows, the con-
vergence rate is related to (k1/k0)n, which shows a dependence on the number of
cycles.
It has also been shown that convergence of the Monte Carlo fission source to a
multiple of the correct eigenvector is, in fact, governed by the dominance ratio.
[34, 35] This fact plays an important role in source convergence in systems with
dominance ratios close to one.
What is more, it has been long known that the results of Monte Carlo eigenvalue
calculations also contain systematic errors. [13, 14] The magnitude of these errors,
known as biases, have been shown to be of the order O(1/m). [1, 6, 11, 18, 38] By
definition, the bias in the Monte Carlo estimate of the fundamental mode eigenvec-
tor is [18]

∆s0 = s∗0 − s0 =
〈

1
m
s(i)
〉
− s0 (3.14)

where s0 is the correct fundamental mode eigenvector of Eq. (3.18) and s∗0 is the
biased estimate, both normalised to identity. The definition of bias is based on
the assumption that the calculation has converged and the statistical errors have
become negligible. An example of a biased eigenvector can be seen in Fig. 3.1, where
it has been calculated with different batch sizes. Following suit, the eigenvalue bias
is defined as

∆k0 = k∗0 − k0 =
〈
k(i)
〉
− k0 (3.15)

where asterisk denotes a biased quantity, like above. [18]
It has been shown how to quantify the eigenvalue bias based on the real and es-
timated variances. [1] The Brissenden–Garlick relation gives the eigenvalue bias
as

∆k0 = − n

2k0

(
σ2
R − σ2

S

)
(3.16)

but the problem of calculating the source bias has remained open. Nevertheless,
more can be learnt about it by analysing cycle-wise error propagation, as presented
in the next section.
Considering the existence of the discussed biases, it is natural that relatively larger
batch sizes are preferred. [2] However, it must be kept in mind that the product
of the batch size and number of cycles determines the total number of histories
simulated, which is a finite value limited by available computational time. This
means a large batch size limits the number of cycles that are simulated, meaning the
error originating from the initial fission source may not decrease enough, corrupting
the calculation results. It follows that for any Monte Carlo criticality calculation,
there is an optimal neutron batch size to balance these two effects.
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Figure 3.1: Two fission source distributions computed for the same system with different
batch sizes. The very low batch size has caused a significant bias in the fission source.
The studied system is a 10 m long fuel rod surrounded by water, with void boundary
conditions set in axial and reflective in radial direction.

3.3 Errors in the Monte Carlo fission source

The analysis of Monte Carlo eigenvalue calculations is often simplified by using
discrete phase-space notation. [15, 16, 18] This is a notation, where the system is
divided into spatial regions, also known as cells. If these cells are infinitesimally
small, the discrete model is equivalent to the continuous. [3] This approach makes
it possible to describe the calculation using simpler notation.
Assuming the aforementioned discretisation, the operator in the eigenvalue equation
can be described as a matrix, here called the fission matrix. [5] Following suit, the
fission source in the system is represented as a vector. In this fission source vector,
each element specifies the number of fission neutrons in the corresponding box of
the discretised phase-space. [18]
Elements of the fission matrix can be expressed as [5]

Hi,j =

∫
r∈Zi

dr
∫

r0∈Zj

dr0F (r0 → r)s0(r0)∫
r0∈Zj

dr0 s0(r0)
(3.17)

The (i, j)th element of H represents the number of neutron births in space zone i,
caused by a fission neutron born in space zone j. Some of the Monte Carlo codes
have a built-in capability to calculate the fission matrix during standard Monte
Carlo calculations (e.g. TRIPOLI-4 [27] or KENO V.a [30]).
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In the described notation, the eigenvalue equation (3.6) is transformed into

Hsj = kjsj (3.18)

where H is the fission matrix and sj is the vector analog of sj(r). The cycles
simulated to solve this equation can then be modelled as

s(i+1) = Hs(i)

k(i) + ε(i) (3.19)

which is the discrete space analog of Eq. (3.7) with s(i) as the fission source vector.
An integral operator is defined as a row vector τ = (1, 1, . . . , 1) so that

τs(i) =
∫
V

dr s(i)(r) = m (3.20)

Based on this, the eigenvalue is calculated as

k(i) = τHs(i)

τs(i) = τHs(i)

m
(3.21)

which is the discrete space equivalent of Eq. (3.8).
The fission source distribution is one of the fundamental quantities in Monte Carlo
calculations. Like the eigenvalue, other quantities can be calculated from it. This
is why the mathematical description is centered around the fission source and the
errors in it will be studied further. The fission source error in cycle i is introduced
as

e(i) = s(i) −m s0 (3.22)

In order to analyse such error vectors, Eq. (3.22) is substituted into (3.19) to pro-
duce

e(i+1) =
mH

(
m s0 + e(i))

τH
(
m s0 + e(i)

) −m s0 + ε(i) (3.23)

This can be rearranged into

e(i+1) = 1

1 + τHe(i)

mτHs0

[
H
(
m s0 + e(i))
τHs0

]
−m s0 + ε(i) (3.24)

Based on the identity 1
1 + x

= 1− x+ x2 − x3 + . . ., it is expanded in series as

e(i+1) =
∞∑
j=0

(
− τHe(i)

k0mτs0

)j[H
(
m s0 + e(i))
k0τs0

]
−m s0 + ε(i) (3.25)
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The fundamental mode eigenvector is normalised to one as τs0 = 1. The first terms
of the expansion are written as

e(i+1) = m s0 + He(i)

k0
− s0τHe(i)

k0
− He(i)τHe(i)

k2
0m

+ s0τHe(i)τHe(i)

k2
0m

+

+O(m−2)−m s0 + ε(i) (3.26)

Next, an operator—the noise propagation matrix—is formed by combining some of
the terms in the expansion, so that

A = I− s0τ

k0
H (3.27)

where I is the identity matrix. Keeping in mind the knowledge that biases are of
the order O(1/m), the terms of the order O(1/m2) and smaller are disregarded.
[1, 18] This yields

e(i+1) ∼= Ae(i) − τH
k0m

e(i)Ae(i) + ε(i) (3.28)

A more widely used error propagation equation (as seen in the works of Ueki, Sut-
ton, Nease, and others [25, 32, 33]) is obtained when a simpler, linear approximation
is taken

ẽ(i+1) ∼= Aẽ(i) + ε(i) (3.29)

Returning to the bias, it can be analysed by looking at the ensemble average value
of Eq. (3.28). After sufficiently many cycles n it can be assumed that the process
is stationary, noted by 〈e(n)〉 ∼= 〈e(n−1)〉. [18] This way Eq. (3.28) yields

〈
e(n)

〉
= − (I−A)−1

k0m
A
〈
e(n)e(n)T

〉
HTτT (3.30)

which shows that the iteration converges to a non-zero value—the bias. [18]
In addition to the error vector specified in Eq. (3.22), the relative error in one cycle
is defined as the error normalised to one neutron

ε(i) = e(i)

m
= s(i)

m
− s0 (3.31)

To make these errors more easily quantifiable, any scalar relative error is defined
as the norm of the respective relative error vector

ε = ‖ε‖ (3.32)
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Figure 3.2: Changes of relative error in the cumulative fission source over the number
of histories in two example calculations with a batch size of 100 neutrons. The studied
system is a 4 m long fuel rod surrounded by water, with void boundary conditions set in
axial and reflective in radial direction.
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Figure 3.3: Comparison of errors in calculations with different neutron batch sizes.
Batches of 50, 500, 5 000, and 50 000 neutrons were used; all calculations were repeated
40 times and results averaged. Calculations were made on the same system as in Fig. 3.2.
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If the relative errors are averaged over n cycles, the relative error in the fission
source that is combined over the cycles can be found as

ε̄ =
〈
ε(n)

〉
= 1
n

n∑
i=1

ε(i) = 1
mn

n∑
i=1

e(i) (3.33)

It can also be seen that by definition the relative error in the cumulative fission
source is equal to the eigenvector bias when the calculation has become stationary.
In other words, the relative error decays into the bias in conditions matching its
definition (i.e. no other errors are remaining).
Direct calculation of these errors is presented in Ch. 4, where it can be seen that
this kind of relative error estimate captures the presence of fission source bias and
errors coming from the initial source. This is also illustrated in Figs. 3.2 and 3.3.
The first figure shows changes in the relative error of the cumulative fission source
in two individual Monte Carlo calculations and the second shows the decrease of
the relative error in averaged results of repeated calculations with different batch
sizes. Both the decrease of the initial error and reaching the bias can be seen.

3.4 Notes about the noise propagation matrix and fission
matrix

It has been shown that the highest modulus eigenvalue of the noise propagation
matrix (NPM) corresponds to the dominance ratio of the system, however, in some-
what different mathematical notation than used in this work. [23, 26]
It can be verified that the vector notation used in this work is equivalent to the
notation used by Ueki et al. [23, 26, 32] This is done in order to make sure that
the eigenvalues of the noise propagation matrix correspond to kj/k0 ratios of the
fission matrix (or the transport equation).
If Eq. (3.19) is multiplied by k(i)s(i)T from the right, it can be rearranged as

k(i)s(i+1)s(i)T = Hs(i)s(i)T + k(i)ε(i)s(i)T (3.34)

Next, the mean of this equation is taken

H
〈
s(n)s(n)T

〉
=
〈
k(n)s(n+1)s(n)T

〉
−
〈
k(n)ε(n)s(n)T

〉
(3.35)

Assuming
〈
ε(n)e(n)T〉 = 0, it is equivalent to [25]

H
〈
s(n)s(n)T

〉
=
〈
k(n)

〉〈
s(n+1)s(n)T

〉
(3.36)

from this, the fission matrix is expressed as

H = k̄L′1L′
−1
0 (3.37)
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where k̄ = 〈k(n)〉 and the source correlation matrices L′0 and L′1 are defined as

L′0 =
〈
s(n)s(n)T

〉
L′1 =

〈
s(n+1)s(n)T

〉 (3.38)

using notation consistent with [23]. Interestingly, this can be used to show

L′1L′
−1
0 sj = kj

k̄
sj (3.39)

From the definition of the NPM

A = k̄

k0
(I− s0τ ) L′1L′

−1
0 (3.40)

Assuming no biasing, i.e. k̄ = k0

A = (I− s0τ ) L′1L′
−1
0 (3.41)

which is equivalent to the result in [32]

A =
(
L′1 − ssT)L′−1

0 (3.42)

where s = ms0. This is enough to ensure that the noise propagation matrix is equiv-
alent in both notations. The equations above also offer a derivation for the NPM
that is not affected by the simplifications made in Eq.(3.29), which has hitherto
been used for this purpose.
What is more, Eq. (3.37) offers a different kind of expression for the fission matrix,
which can be evaluated very similarly to the NPM as suggested by Sutton et al.
[32] It has been shown that the NPM method is not sensitive to mesh sizing, [32]
unlike the fission matrix. [24] The fission matrix in Eq. (3.37) can be expected
to be affected by biased fission sources, however, it is possibly less influenced by
spatial meshing than the traditional way of evaluating the fission matrix. [9, 10]
In addition to that, Eq. (3.39) shows that the dominance ratio, or higher mode
eigenpairs, can also be calculated from the source correlation matrices.



Chapter 4

Estimation of errors in the
cumulative fission source

This chapter describes a way of estimating the scalar error in the cumulative Monte
Carlo fission source. It is known that the fission matrix can be estimated accurately
even with a small batch size if the spatial zones are sufficiently small. This suggests
that it may be possible to estimate the errors in the cumulative source based on the
fundamental mode eigenvector of the fission matrix. This method was published in
Paper 1.

4.1 Fission matrix eigenvector method

It has been shown that the fission matrix becomes less sensitive to errors in the
fission source as the mesh zones are decreased. [9] Hence, the errors in the fission
source become irrelevant for sampling the fission matrix when the zones are small
enough. This means that the fission matrix and its fundamental-mode eigenvector
can be correctly evaluated during a Monte Carlo criticality calculation even if the
fission source is biased.
What is more, it has been observed that fission matrix based criticality calcula-
tions converge faster than standard Monte Carlo criticality calculations, i.e. the
eigenvector of the matrix converges faster than the cumulative fission source. [5, 9]
These qualities of the fission matrix eigenvector can be utilised in estimating the
error in the cumulative fission source.
The relative error ε̄ in the cumulative fission source is defined as

ε̄ = sc − s0 (4.1)

where sc is the cumulative fission source and s0 the correct fundamental mode
eigenvector of the system, both normalised to one (i.e. τsc = τs0 = 1). The
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relative scalar error is then

ε̄ = ‖sc − s0‖1 =
∑
i

|ε̄i| (4.2)

where the one-norm is defined as

‖x‖1 =
∑
i

|xi|.

The fundamental-mode source s0 is unknown and the correct value of ε̄ cannot be
computed. However, it is proposed that its value can be estimated as

ε̂ = ‖sc − q‖1 (4.3)

where q is the eigenvector of the fission matrix H that was sampled over the same
cycles as the cumulative fission source sc (also normalised to one as τq = 1).
The fission matrix H can be expected to contain random errors of the order
O(1/

√
nm) that must also be present in its eigenvector q. The errors in q are

denoted by the vector δ, so that

δ = q − s0 (4.4)

Then, Eq. (4.3) can be written as

ε̂ = ‖ε̄− δ‖1 (4.5)

or in another way
ε̂ =

∑
i

|ε̄i − δi| (4.6)

Here it has to be noted that ε̄ contains statistical errors, the bias, and the partly
decayed errors coming from the initial fission source.
Since both q and s0 are normalised to unity, it can be written that∑

i

|qi| =
∑
i

|s0 i| (4.7)

which is equivalent to ∑
i

(|qi| − |s0 i|) = 0 (4.8)

Since all elements in q and s0 are non-negative, the absolute value signs in Eq. (4.8)
can be removed, ∑

i

(qi − s0 i) = 0 (4.9)
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which is equivalent to ∑
i

δi = 0 (4.10)

Hence, the vector δ must contain both positive and negative elements so that their
sum would equal zero. This quality of δ suggests that the expected value of ε̂ equals

E(ε̂) =
∑
i

|ε̄i| = ε̄ (4.11)

assuming that δ and ε̄ are not correlated. Hence, if this condition is satisfied then
the error estimate ε̂ given by Eq. (4.3) is normally distributed around ε̄. It is,
however, not apparent whether this condition is satisfied or not.

4.2 Test calculations

4.2.1 Test model
Numerical test calculations were performed on a fuel pin cell with parameters sum-
marised in Table 4.1. Reflective boundary conditions were applied to radial surfaces
and void boundary conditions to axial faces. This model is based on a common
PWR fuel pin cell, with the pin length increased to 10 m in order to achieve a
high dominance ratio. All numerical calculations were performed by an in-house
non-analog continuous-energy 3D Monte Carlo criticality code using the JEFF3.1
point-wise neutron cross-section library.

Table 4.1: Specifications of the test model.

Fuel UO2
Cladding material Zr
Moderator light water
Radius of fuel pellets 0.41 cm
Outer radius of cladding 0.475 cm
Rod pitch 1.26 cm
Length of the fuel rod 1000 cm
235U enrichment 3.1 wt%
Fuel density 10 g/cm3

Moderator (water) density 0.7 g/cm3

An analytical fundamental mode fission source is not known and is thus estimated
by a reference calculation. Parameters of the reference calculation are summarised
in Table 4.2. The reference distribution of the fission source, sref , was evaluated
using a fine uniform mesh with 100 axial zones, and combined over all active cycles.
As the test model is axially symmetrical, the accuracy of sref has further been
improved by symmetrising it. During the reference calculation, the dominance
ratio of the test model was evaluated to be 0.9982 from the sampled fission matrix.
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Table 4.2: Reference calculation.

Neutron batch size 50 000
Number of active cycles 2 000 000
Number of inactive cycles 2000
Initial fission source flat

Table 4.3 specifies the test calculations (A-D). While the neutron batch size varied
in calculations A-D, all calculations simulated 109 neutron histories. The initial
fission source was randomly sampled from a uniform distribution in the first cycle
of each calculation. In each calculation, the fission matrix was sampled over all
cycles; no cycles were skipped.

Table 4.3: Parameters of test cases A-D.

Calculation A B C D
Neutron batch size 50 500 5000 50 000
Number of neutron histories 1 billion

For the purpose of the test calculations, the axial dimension of all zones are set to
10 cm; hence, the fission matrix is evaluated on a spatial mesh with 100 zones. This
mesh appears sufficient for eliminating the bias in the fission matrix (that could
possibly arise from the biased fission source). This is demonstrated in Fig. 4.1 which
compares the eigenvector of the fission matrix to the cumulative fission source biased
by the batch size of 50 neutrons; the fission matrix was sampled by the actual biased
fission source. While the fission source is strongly biased, the eigenvector of the
fission matrix is close to the reference solution in Fig. 4.1.
In calculations A-D, the real relative error ε in the cumulative fission source distri-
bution sc is evaluated as

ε = ‖s̃c − s̃ref‖1 . (4.12)

The estimation ε̂ of the relative error in a cumulative fission source is computed
according to Eq. (4.3).

4.2.2 Results

The values of ε̂ and ε obtained from all the test cases are compared in Tables 4.4–
4.7. In each calculation, the values of ε̂ and ε are calculated at several stages,
always after simulating 106, 107, 108 and 109 neutron histories. To associate a
certain value of ε̂ or ε to a certain stage, we add a superscript in square brackets
to ε̂ and ε, denoting the number of simulated neutron histories; e.g., the values of
ε̂[109] and ε[109] are computed after simulating 109 neutron histories.
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Figure 4.1: Comparison of the reference solution, the eigenvector of a fission matrix
sampled by a biased fission source, and the biased fission source obtained with the batch
size m = 50.

Results from calculation A (with the batch size of 50 neutrons) are summarised in
Table 4.4. As the bias in the fission source is large due to the small neutron batch
size (as depicted in Fig. 3.1), ε[107], ε[108] and ε[109] remain about equally large,
close to 20%. This is correctly captured by the corresponding values of ε̂[107], ε̂[108]

and ε̂[109]. The value of ε̂[106] is less than half of that of ε[106]; in this case, the
relatively large random errors in the eigenvector of fission matrix (that was sampled
by only 106 neutron histories) decreased the estimated error.

Table 4.4: Comparison of ε and ε̂ in calculation A (with the batch size of 50 neutrons)
[%].

h (# of neutron histories) ε[h] ε̂[h]

106 36.7 14.9
107 18.3 18.4
108 18.1 18.2
109 20.2 18.6

Results from calculation B (with the batch size of 500 neutrons) are summarised
in Table 4.5. Here, values of ε̂ also correspond well to ε, with the exception of the
value of ε̂[108] that underestimated the real error several times.
Results from calculation C (with the batch size of 5000 neutrons) are summarised
in Table 4.6. This case shows that ε̂ may overestimate the real error several times
as well; note the value of ε̂[106] and ε̂[107]. The small bias in the cumulative fission
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Table 4.5: Comparison of ε and ε̂ in calculation B (with the batch size of 500 neutrons)
[%].

h (# of neutron histories) ε[h] ε̂[h]

106 24.0 19.8
107 12.4 8.21
108 3.78 1.10
109 4.53 3.63

source combined over 109 neutron histories was correctly estimated.

Table 4.6: Comparison of ε and ε̂ in calculation C (with the batch size of 5000 neutrons)
[%].

h (# of neutron histories) ε[h] ε̂[h]

106 17.7 41.0
107 8.23 18.3
108 8.41 6.44
109 1.17 1.25

Results from calculation D (with the batch size of 50 000 neutrons) are summarised
in Table 4.7. In this case, ε̂ estimated the real error in the cumulative fission source
in all stages of the calculation with a good accuracy.

Table 4.7: Comparison of ε and ε̂ in calculation D (with the batch size of 50 000
neutrons) [%].

h (# of neutron histories) ε[h] ε̂[h]

106 37.9 28.2
107 26.1 25.1
108 4.51 4.29
109 1.15 1.25

It should be noted that the above results depend on the initial seed of the RNG;
as such, ε̂ is a random variable. Repeating the identical calculation with another
seed would produce different results (both ε̂ and ε). Nevertheless, the above results
suggest clearly that ε̂ can be used in estimating the order of magnitude of the error
in the cumulative fission source.
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4.3 Conclusions

The fact that the fission matrix can be well sampled even by a biased or not fully
converged Monte Carlo fission source can be utilised for various purposes. In this
chapter, the possibility of using the fundamental-mode eigenvector of the fission
matrix for estimating the error in the cumulative fission source was analysed. The
work also attempted to establish if the random errors, that are naturally present in
the eigenvector, hinder the estimation of the error in the cumulative fission source.
It can be concluded that the estimation of the error in the cumulative fission source
obtained from the eigenvector of the fission matrix is distributed around the real
error, assuming that the random errors in the eigenvector and the cumulative fis-
sion source are not correlated. However, the validity of this assumption is not
completely apparent. Nevertheless, the numerical test calculations confirmed the
error estimates were distributed around the real errors, which suggests the errors
are either not correlated or the correlation is weak. The error estimations correctly
captured the presence of the source bias, as well as the source errors coming from
the initial fission source.





Chapter 5

Simplified error model and
STORM

“Everything that can be optimised, should be optimised,
and what cannot be optimised, should be made optimisable.”

Prof. Mati Valdma

Efficiency of the calculation can be improved by maximising the figure of merit. In
this work, the figure of merit is based on a simplified estimate of the error in the
cumulative fission source (the fission source combined over all simulated cycles). An
equation is derived that relates this error to the neutron batch size, total number
of histories, dominance ratio of the system, and the relative error committed by
guessing the initial fission source. Knowing how the figure of merit is affected by
the choice of batch size allows its value to be optimised. This work was presented
in Paper 2.

5.1 Derivation of simplified error model

First of all, the error vector is decomposed into three components

e(i) = e(i)
A + e(i)

B + e(i)
R (5.1)

where the first term describes the decay of the error coming from the initial fission
source, the second term includes the bias, and the third term is the stochastic error
component.
Based on earlier definitions, the scalar relative error in cycle i is expressed as

ε(i) = ‖ε(i)‖ = ‖ε(i)
A + ε(i)

B + ε(i)
R ‖ (5.2)

By properties of norms, the value on the right hand side has an upper bound of

‖ε(i)
A + ε(i)

B + ε(i)
R ‖ ≤ ‖ε

(i)
A ‖+ ‖ε(i)

B ‖+ ‖ε(i)
R ‖ (5.3)
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so that
ε(i) ≤ ε(i)

A + ε
(i)
B + ε

(i)
R (5.4)

which implies
ε̄ ≤ ε̄A + ε̄B + ε̄R (5.5)

for the relative error in the cumulative fission source.
Eq. (5.1) was specified so that the e(i)

B component describes the bias; thus, when
the calculation has become stationary, it can be expressed as

ε̄B = ∆s0 =
〈

e(n)

m

〉
(5.6)

Based on that and Eq. (3.30), it is continued as

ε̄B = − 1
m

(I−A)−1 A
〈

e(n)e(n)T

m

〉
HTτT

k0
(5.7)

It is possible to show that this component is in fact of the order O(1/m), as it
would be expected from the bias.
As the fundamental mode eigenvalue of the noise propagation matrix is equivalent
to the dominance ratio of the system, it is known that the spectral radius of the
noise propagation matrix is less than one, allowing the inverse to be written as a
Neumann series

(I−A)−1 =
∞∑
j=0

Aj (5.8)

From the definition of cycle-wise error it follows that

A
〈

e(n)

m

〉
= As∗0

and 〈
e(n)T

〉
HTτT = m∆k0

The norm can then be expressed as

‖ε̄B‖ ≤
∣∣∣∣− 1
m

∣∣∣∣
∥∥∥∥∥∥
∞∑
j=1

Ajs∗0

∥∥∥∥∥∥
∣∣∣∣m∆k0

k0

∣∣∣∣ (5.9)

It has been proven that ∆k0 ∈ O(1/m), thus m∆k0 is not dependent on m [1].
For an unbiased source, the product Ajs∗0 is a zero vector by definition; however,
in case of a biased source it contains non-zero elements. It can be expanded as a
weighted sum of eigenvectors (keeping in mind As0 = 0)

Ajs∗0 = 0 + a1

(
k1

k0

)j
s1 + a2

(
k2

k0

)j
s2 + . . . ≈ a1

(
k1

k0

)j
s1 (5.10)
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where a-s are coefficients not dependent on m. From this the norm of the power
series is approximated as∥∥∥∥∥∥

∞∑
j=1

Ajs∗0

∥∥∥∥∥∥ ≤
∞∑
j=1

∥∥Ajs∗0
∥∥ ≈ |a1|

k1

k0

(
1− k1

k0

)−1
‖s1‖ (5.11)

which shows that the sum converges to a value of the order O(1) in m and the bias
component ε̄B ∈ O(1/m).
Now the bound on the scalar relative error introduced by the bias can be written
as

ε̄B ≤
1
m
B (5.12)

where B is a constant dependent both on the system and the chosen norm type.
The ε̄R component in Eq. (5.5) is the statistical error resulting from sampling of
a finite number of histories. As was discussed earlier, this error is of the order
O(1/

√
mn), and like for the component describing the bias, the bound of this

component can similary be written as

ε̄R ≤
1√
mn

R (5.13)

where R is another system and norm dependent constant.
To proceed, Eq. (3.28), the error propagation equation, is simplified into

e(i) = Ae(i−1) +O
(
m−1)+ ε(i−1) (5.14)

to overcome its non-linearity. Despite the simplification, The equation accounts for
both the decrease of the error coming from the initial fission source and presence
of the source bias.
This equation can be re-written as

e(i) = Aie(0) +O
(
m−1)+

i∑
j=1

Ai−jε(j−1) (5.15)

yielding a decomposed relative error vector

ε(i) = Aiε(0) + ε(i)
B + ε(i)

R (5.16)

Next, the initial fission source error vector is denoted as ε0 = ε(0). From the
previous it follows that

ε
(i)
A = Aiε0 (5.17)

According to properties of norms, this component of the scalar relative error is
bounded by

ε
(i)
A = ‖Aiε0‖ ≤ ‖Ai‖‖ε0‖ = ε0‖Ai‖ (5.18)
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Since the noise propagation operator is a square matrix, it is known that

lim
j→∞

‖Aj‖1/j = ρ(A) =
∣∣∣∣k1

k0

∣∣∣∣ (5.19)

where ρ stands for spectral radius. From this an approximation is obtained that
improves quickly, cycle by cycle

‖Aj‖ ≈
(
k1

k0

)j
(5.20)

Finally, a bound for the ε(i)
A term in Eq. (5.4) is obtained as

ε
(i)
A ≤ ε0‖Ai‖ ∼= ε0

(
k1

k0

)i
(5.21)

which results in

ε̄A =
〈
ε

(n)
A

〉
≤ 1
n

n∑
i=1

(
k1

k0

)i
ε0 (5.22)

The scalar ε0 is the relative error committed by guessing the initial fission source.
This quantity is also norm dependent like the constants B and R.
From Eqs. (5.5), (5.12), (5.13), and (5.22) a bound for the scalar relative error in
the cumulative fission source is obtained as

ε̄ ≤ 1
n

n∑
i=1

(
k1

k0

)i
ε0 + B

m
+ R√

mn
(5.23)

This equation should be taken as a strong simplification, since the whole system
is described solely by the dominance ratio. Nevertheless, finding a simple model
was the authors’ intention. Considering the availability of methods for on-the-fly
dominance ratio estimation [19, 32], the model is certainly applicable.

5.2 STORM for batch size optimisation

In the following, a methodology is described for Monte Carlo ciritcality calculations
with optimised values of neutron batch size. The method is dubbed STORM—the
Stochastic rapidly convergent criticality method.
Firstly, the total number of simulated neutron histories h and the neutron batch
size m are chosen to be the independent parameters, so that the total number of
cycles n becomes

n = h

m
(5.24)
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Based on the bound derived in Eq. (5.23), the equation used to model the changes
in errors is written as

ε̂ = mε0

h

h/m∑
i=1

(
k1

k0

)i
+ B

m
+ R√

h
(5.25)

For larger values of n, this equation can be further simplified by treating the finite
sum as infinite, so that

ε̂ = mε0

h

(
1− k1

k0

)−1
+ B

m
+ R√

h
(5.26)

which is a good approximation for the intended application of this equation, where
the value of n will be relatively large.
The efficiency of the calculation is described by the figure of merit, which is defined
as

FOM = 1
ε̂2h

(5.27)

where the standard deviation has been replaced with the relative error in the cu-
mulative source and the computational time assumed proportional to the number
of histories.
The figure of merit can be maximised by minimising the denominator in the equa-
tion above. The optimum condition is then written as

∂(ε̂2h)
∂m

= 2hε̂
[
ε0

h

(
1− k1

k0

)−1
− B

m2

]
= 0 (5.28)

This equation can be rearranged into an expression for the neutron batch size

m =

√
h
B

ε0

(
1− k1

k0

)
(5.29)

which satisfies the optimum condition. The division in the term B/ε0 compensates
for scaling introduced by taking the norm of an error vector. The constant B
describes how a certain system is affected by source biasing and is not calculable
in general. It can be expected that the maximum relative error caused by the
bias is one when a single neutron history is simulated per cycle; thus, for practical
applications a simplification is made and B is assumed equal to one to obtain an
equation for the optimal neutron batch size.

mopt =

√
h

ε0

(
1− k1

k0

)
(5.30)
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given the total number of simulated neutron histories, dominance ratio of the sys-
tem, and relative error in the initial fission source. This equation enables one to
determine a value for the neutron batch size that balances its effects on the speed
of source convergence and biasing of results.
In order to apply Eq. (5.30), the dominance ratio and the error in the initial fission
source are needed. Fortunately, both quantities can be estimated with reasonable
accuracy and effort during the initial stage of the Monte Carlo criticality calculation.
Here it is suggested to evaluate these parameters during the simulation of a small
fraction f (e.g. 1%) of the specified total number of neutron histories.
The dominance ratio can be evaluated by a number of methods, such as the NPM
method [32], the CMFD based method [19], the CMPM [25] or even from the fission
matrix. The error in the initial fission source can be estimated by the eigenvector
of the fission matrix as

ε̃0 = ‖s
(0)/m0 − q‖1

2 (5.31)

where s(0) is the initial fission source, m0 is the neutron batch size chosen for the
first n0 cycles, and q is the eigenvector calculated from the fission matrix that was
sampled during the initial cycles (normalised to one). If the fission matrix is not
available, a very rough approximation can, instead, be taken as

ε̃0 ∼=
‖s(0) − sc/n0‖1

2m0
(5.32)

where sc is the cumulative fission source combined over n0 cycles. The factor 2 in
Eqs. (5.31) and (5.32) scales the maximum possible value of ε̃0 to one.
The estimation of dominance ratio is improved by simulating more cycles [24]; and
since the bias is of no concern in these initial cycles, it is recommended to set a
small value for m0, for example so that n0 = m2

0. This results in m0 = 3
√
h0, where

h0 is the number of histories used in the estimation stage. This will also ensure
that the cumulative fission source is sufficiently different from the initial source to
estimate its error if Eq. (5.32) is used.
Additionally, the sufficiency of the number of cycles can be assessed after an esti-
mate is obtained, with a criterion adopted from [24]

(k1/k0)n ≤ δ (5.33)

where δ is a specified tolerance. This was suggested for the Coarse Mesh Projection
method, but can be expected to be suitable for other noise propagation matrix
based methods as well.
If the CMFD based method is used, it is advised to actually run the CMFD cycles
of OpenMC [29] as the few last cycles (e.g. 10 or m0/2) of the first stage. Since the
batch size is very low, the CMFD solver makes the calculation of these cycles rather
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slow; what is more, it is necessary for the calculation to have already converged to
some extent to obtain accurate estimates of the dominance ratio.
After the initial stage, the estimated values of ε̃0 and the dominance ratio are used
in Eq. (5.30) to evaluate the optimal neutron batch size that is then used in the
following cycles. An exemplary implementation is offered in Algorithm 1.

Algorithm 1 Conceptual implementation of STORM
1: input: h, f , s(0)

2: m0 ← d 3
√
fh e

3: n0 ← m2
0

4: sc ← 0
5: i← 1
6: while i ≤ n0 do . Initial cycles
7: s(i) ← Run MC cycle
8: sc ← sc + s(i)

9: i← i+ 1
10: end while
11: k1/k0 ← Estimate dominance ratio
12: ε̃0 ← ‖sc/n0 − s(0)‖1/2m0
13: m← d

√
h(1− k1/k0)/ε̃0 e

14: n← dh/me
15: while i ≤ n do . Main cycles
16: Run MC cycle
17: i← i+ 1
18: end while
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5.3 Test calculations

5.3.1 Numerical test model

Numerical test calculations were performed on a model of a common PWR fuel pin
cell with parameters specified in Table 5.1. Reflective boundary conditions were
applied on radial faces and void boundary conditions on axial faces. This model
shares some features of a large core, e.g. a large dominance ratio.

Table 5.1: Specifications of the pin cell model.

Fuel UO2
Cladding material Zr
Moderator light water
Radius of fuel pellets 0.41 cm
Outer radius of cladding 0.475 cm
Rod pitch 1.26 cm
Length of the fuel rod 400 cm
235U enrichment 3.1 wt%
Fuel density 10 g/cm3

Moderator (water) density 0.7 g/cm3

All numerical calculations were performed by an in-house non-analogue continuous-
energy 3D Monte Carlo criticality code using the JEFF3.1 point-wise neutron cross-
section library.

5.3.2 Reference calculation

The correct fission source distribution for the test system is not known and is
estimated by a reference calculation specified in Table 5.2. As the test model is
symmetrical, the source distribution sr combined over the active cycles has been
additionally symmetrised. The dominance ratio was estimated at 0.989 during the
reference calculation by the NPM method [32] with a 10 cell axial mesh.

Table 5.2: Specifications of the reference calculation.

Number of histories per cycle 50,000
Number of active cycles 1,000,000
Number of inactive cycles 10,000
Initial fission source flat

The reference solution is used in evaluating the error in the cumulative fission
source in the test calculations. The scalar error in the cumulative fission source is
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computed as
εc = ‖sc/h− sr/hr‖1

2 (5.34)

where sc and sr are the fission sources combined over the cycles of test and reference
calculations, respectively, and hr is the total number of neutron histories simulated
in the reference calculation. The factor in the denominator of Eq. (5.34) ensures
the maximal possible value of εc to be one.
It should be noted that while the simplified model of the scalar error in the cumu-
lative fission source captures the dependence of the error on the neutron batch size
and other parameters, its direct comparison to the error computed by Eq. (5.34) is
not trivial. This is not a problem for the presented optimisation methodology; it is
merely an inconvenience when comparing the simplified model to results from test
calculations, as the values do not necessarily have to match.

5.3.3 Demonstration of the simplified error model
The purpose of the calculations presented in this section is to demonstrate the
usability of the simplified model of the scalar error in the cumulative fission source,
given by Eq. (5.25). In this test, the simplified model is supplied with the dominance
ratio estimated by the reference calculation; the constants B and R are assumed
equal to one.
Four calculations, A–D, specified in Table 5.3, were repeated 40 times with various
seeds for the random number generator. All calculations were started with a point
source placed at one end of the pin, ensuring a large error in the initial fission
source. Thus, the model assumes the maximum value ε0 = 1.

Table 5.3: Specifications of calculations A–D.

Test calculation A B C D
Neutron histories per cycle 50 500 5000 50,000
Total number of histories 100 million

In Fig. 5.1, the scalar errors in calculations A–D, computed by Eq. (5.34), are
compared to the simplified model, given by Eq. (5.25). The results demonstrate
that the simplified model correctly captures the dependence of the error on the
neutron batch size and the total number of simulated neutron histories.
Fig. 5.1 also shows that performance of the calculation (given here by the error
in the cumulative fission source) depends strongly on the neutron batch size; for
a specific allocated computing cost (in terms of the total number of simulated
neutron histories) the calculation performs best with a specific neutron batch size.
For instance, when 107 neutron histories are to be simulated, the results achieved by
simulating 500 neutron histories per cycle are significantly better than with other
chosen values.
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Figure 5.1: Top: scalar errors in calculations A–D computed by Eq. (5.34). Bottom:
Scalar errors predicted by the simplified model, as in Eq. (5.25) for m = 50, 500, 5000
and 50,000.

5.3.4 Performance of calculations with optimal neutron batch
size

Point source as initial fission source

In this section, the performance of Monte Carlo criticality calculations with the
optimal neutron batch size estimated by Eq. (5.30) are demonstrated. In order
to separate the effects of simplifications made in deriving Eq. (5.30) from the ef-
fects of errors present in the estimated parameters in Eq. (5.30), the dominance
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ratio computed by the reference calculation is used. Such an accurate estimate
of the dominance ratio would not be available in standard calculations; therefore,
Sec. 5.3.5 includes numerical tests where the dominance ratio is computed in the
beginning of the calculation, using a relatively small number of neutron histories,
as suggested in Sec. 5.2.

Table 5.4: Specifications of calculations E–G.

Test calculation E F G
Total number of histories 108 107 106

Optimal neutron batch size 1050 333 105

Table 5.4 shows the optimal neutron batch size calculated by Eq. (5.30) for three
values of allocated computing cost (108, 107 and 106 simulated neutron histories);
the three cases are marked as E, F, and G. For this, the dominance ratio was set
to 0.989, and the relative error in the initial fission source was set to the maximum
value ε0 = 1 (the same initial source was used as in Sec. 5.3.3).
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Figure 5.2: Results of calculations E–G. Neutron batch size optimisation is compared
in calculations of different length.

Monte Carlo criticality calculations for cases E, F, and G were repeated 40 times
with different seeds, and the resulting errors were averaged. Fig. 5.2 compares the
performance of these cases, and demonstrates the effectiveness of the optimal neu-
tron batch size computed by Eq. (5.30) for various cases. For instance, when 106

neutron histories were simulated, the calculation with the neutron batch size opti-
mised for 106 neutron histories (case G) performed better than the calculation with
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the neutron batch size optimised for 108 neutron histories (case E). Nevertheless,
we can see that case F (optimised for 107 neutron histories) performed similarly to
case G when 106 neutron histories were simulated, which suggests that the opti-
mal value of the neutron batch size does not necessarily have to be computed very
accurately in order to achieve good performance. This simplifies the application of
the methodology since the input parameters, such as the dominance ratio or the
error in the initial fission source, may be estimated less accurately in the beginning
of the calculation.
In this section, case E (with the neutron batch size optimised for 108 histories)
is also compared to two additional calculations where the neutron batch size was
set to suboptimal values of 10,000 (case H) and 100 (case I). Calculations H and
I were also repeated 40 times and averaged. Fig. 5.3 shows that calculation E
(optimal) achieved orders of magnitude smaller errors than calculations H and I
after simulating 108 neutron histories.
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Figure 5.3: Results of test calculations E, H, and I. Results given by the optimal neutron
batch size (1050) are compared to results obtained by using unoptimised parameters.

Flat source as initial fission source

All test calculations presented so far used point sources as initial fission source
guesses to ensure large initial errors. This choice was made in favour of a more
effective presentation of results and does not mean the methodology is limited to
such cases. The proposed batch size optimisation is equally effective when flat
initial sources are used.
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An additional test case, J, was specified to test the batch size optimisation with
flat initial sources. It is compared to test case E, thus, the total number of histories
was taken as 108 and calculations were repeated 40 times. Reference dominance
ratio was assumed and the error in the initial source was assumed to be ε0 = 0.2.
This resulted in the optimal value of 2 350 for the batch size.
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Figure 5.4: Results of calculations E and J. Neutron batch size optimisation is compared
in calculations with different initial fission sources.

Fig. 5.4 presents results from test calculations E and J, where different initial sources
were compared. It can be seen that a better initial source guess causes the errors
to be smaller in the beginning of the calculation. However, after simulating all of
the neutron histories, the erroros caused by the point source have decayed to an
equally low value. No other batch size was found to produce smaller errors.

5.3.5 Demonstration of STORM

The purpose of this section is to test the neutron batch size optimisation method-
ology for Monte Carlo criticality calculations, or STORM, as suggested in Sec. 5.2,
assuming no knowledge of the correct dominance ratio or the error in the initial
fission source. Therefore, as suggested in Sec. 5.2, the calculation is split into two
stages; the dominance ratio and the error in the initial fission source are estimated
in the short first stage, while the neutron batch size is corrected to the optimal
value for the second stage.
The total allocated computational cost was set to 108 neutron histories for this
test. As suggested in Sec. 5.2, 1% of the computing cost (106 neutron histories)
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was allocated to the first stage of the calculation. According to suggestions in
Sec. 5.2, the neutron batch size for the first stage was set to 3

√
106 = 100.

During the first STORM stage, the dominance ratio was estimated at 0.9876 by the
NPM method; in order to keep the method general and not optimised for a specific
test model, a 3× 3× 3 spatial mesh was used. The error in the initial fission source
was estimated at 0.9941. Based on these values, the optimal neutron batch size
was evaluated at 1120, and the batch size was changed to this value for the second
stage of the calculation. The value of the dominance ratio estimated during the first
step of this calculation does not differ much from the value computed during the
reference calculation; hence, the optimal value of the neutron batch size calculated
here (1120) does not differ much from the test case E (1050).

102 103 104 105 106 107 108

10−2

10−1

100

E

K

1%

Number of simulated neutron histories

S
ca
la
r
re
la
ti
ve

er
ro
r
in

cu
m
u
la
ti
ve

so
u
rc
e

E (m = 1050)

K (STORM)

Figure 5.5: Results of calculations by STORM (K) and optimised by reference parame-
ters (E).

The two-stage STORM calculation was repeated 40 times, and results were av-
eraged, as in all previous calculations. Fig. 5.5 compares the performance of the
STORM calculation (marked as case K) to the test case E (that used the neutron
batch size optimised for 108 neutron histories). As can be seen, both calculations
perform equally well when 108 neutron histories are simulated. Naturally, the two-
stage STORM calculation converged faster during the first stage, as the neutron
batch size was forced to be small; however, this did not change the final results.
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5.4 Conclusions

In this chapter, a simplified equation was derived to model the scalar relative error
in the cumulative source. The model relates the error to the chosen total number of
neutron histories, neutron batch size, dominance ratio of the system, and error in
the initial fission source. Numerical test calculations showed that even though the
equation is strongly simplified, it describes the changes sufficiently well, providing
information that enables the optimisation of neutron batch size.
From the simplified error model, an equation was derived to determine an optimal
neutron batch size which maximises the efficiency of calculations. This is achieved
by balancing the effects of source convergence speed and biasing of results. In
order to apply this result, a methodology was suggested for neutron batch size op-
timisation. Subsequent test calculations demonstrated that the calculated optimal
batch size ensures the best possible results and that the methodology is usable in
practical applications. The method is general in nature and implementable in any
power method based Monte Carlo code that comes equipped with a dominance
ratio estimation procedure.
It should be noted that the optimal neutron batch size may also be affected by the
use of parallelised calculations; for example, the master-slave parallel-computing
scheme performs better with a larger neutron batch size. However, the derived opti-
misation methodology does not consider the efficiency of various parallel-computing
schemes and differences in computer architectures.





Chapter 6

Summary

The thesis at hand concentrates on Monte Carlo criticality calculations—a method
of solving the steady-state homogeneous k-eigenvalue neutron transport equation.
The introductory part of the text introduces the mentioned equation and discusses
what it is commonly used for. Following that, solving the transport equation by
the stochastic sampling (Monte Carlo) method is explained to the extent necessary
for understanding the presented work.
The main objective of the presented research was to improve the efficiency of Monte
Carlo criticality calculations. It is known that the choice of the number of neutron
histories that are simulated in each cycle of the calculation (the neutron batch size)
affects the overall efficiency. On one hand, a small neutron batch size allows the
calculation to converge faster from the guessed initial fission source to a stationary
source distribution; on the other hand, a systematic error, inversely proportional
to the batch size, is always present in the results.
In this work, it is suggested that the general calculation error can be characterised
by the error in the cumulative fission source, i.e. the fission source combined over all
simulated cycles. This choice was made because Monte Carlo calculations combine
the results of all cycles to estimate quantities of interest and errors in the fission
source can affect all other possible results. The work establishes that these errors
describe both the decrease of errors introduced by the starting fission source and
the fission source bias. Additionally, if this error is combined with the allocated
computational time (in terms of the total number of simulated neutron histories)
the efficiency of the calculation can be described.
Existing theory about source convergence and error propagation in Monte Carlo
criticality calculations is summarised and a mathematical notation is adopted for
further analysis of errors. A mathematical treatment of the relative error in the
cumulative fission source is given.
Following that, a method for direct estimation of errors in the cumulative Monte
Carlo fission source is suggested. The method proposes to utilise two qualities of the
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fission matrix. Firstly, it is known that the fission matrix can be sampled correctly
even if the fission source contains a large bias, as long as the spatial mesh cells are
sufficiently small. Secondly, it has been observed that the eigenvector of the fission
matrix (which is equivalent to the fission source distribution) converges faster than
the cumulative fission source. The proposed method suggests to use the eigenvector
of the fission matrix to estimate errors in the cumulative fission source. Results of
numerical test calculations support the efficacy of the method.
The fission matrix eigenvector method gives important results in error estimation
of Monte Carlo criticality calculations. The traditional variance estimates fail to
capture errors caused by systematic biases and errors caused by the starting fission
source that remain in the results. The suggested error estimation method allows
one to estimate the order of magnitude of real errors, including those caused by
the two aforementioned phenomena. This is important for the credibility of results,
since all calculated values, including the power distribution or the multiplication
factor, are affected by errors in the fission source distribution.
Undoubtedly, the method has its shortcomings. As it was said, the mesh used for
sampling the fission matrix has to be sufficiently fine; however, it is not known how
to determine this sufficiency in the general case. This is a topic that needs further
study for any fission matrix based method to be applied. Sec. 3.4 may offer possible
ideas for this problem. What is more, the fission matrix eigenvector method for
error estimation needs further testing in calculations to confirm its validity and to
verify if its results are distributed normally around real errors.
The described direct estimation of errors does not provide analytic information that
would allow for any optimisation. For this reason, a simplified model is derived to
describe the relative error in the cumulative fission source. This model relates
the error to the chosen neutron batch size, the total number of simulated neutron
histories, the dominance ratio of the system, and the relative error in the initial
fission source. The model is tested by numerical calculations and shown to be
sufficient for describing the changes in errors over the simulated cycles.
The simplified error model is further applied in finding an expression for the optimal
value of the neutron batch size for certain allocated computing time (in the form of
the total number of simulated neutron histories). An equation is derived giving the
optimal batch size as a function of the total number of simulated neutron histories,
the dominance ratio, and the error in the initial source. The optimum condition is
verified by numerical test calculations.
As the dominance ratio and the error in the initial source are unknown in general,
a new method is proposed, dubbed STORM—the Stochastic rapidly convergent
criticality method. The developed methodology suggests a two-stage calculation,
where the first stage uses a small fraction of the total number of neutron histories
to estimate the dominance ratio and the error in the initial source; these estimates
are then used to set the optimal neutron batch size for the second stage to ensure
maximum efficiency of the calculation. The method is tested and proven in practical
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applications by numerical test calculations.
First of all, the analysis demonstrates that the choice of neutron batch size has
significant effects on the performance of calculations. As the neutron batch size
is commonly not optimised, the calculations either reach biased solutions or they
converge slowly and errors originating from the initial source remain in results. The
developed methodology ensures that for a certain allocated computational time,
the best possible results are obtained, thanks to the optimal choice of neutron
batch size. This is an important result for longer, computationally more expensive
simulations.
The formulation of STORM has its shortcomings, too. The error model is strongly
simplified and may perform worse than expected in some cases. What is more,
in deriving the optimal neutron batch size, an additional simplification was made
in one constant, which may require further study and improvement. The correct
implementation of STORM is dependent on the appropriate setup of the initial
stage and the dominance ratio estimation method to be used, which will require
some testing.
Both methods developed in this work, the fission matrix eigenvector method for
error estimation and STORM, are rather general in nature and implementable in
any power method based Monte Carlo criticality code. The fission matrix eigen-
vector method requires the fission matrix to be sampled, and STORM is applicable
with any dominance ratio estimation method. Both required features are available
in a variety of existing codes, making it possible to apply the developed methods
in practical applications.
The thesis met its objective in developing a method that improves the efficiency of
Monte Carlo criticality calculations. Neutron batch size optimisation and STORM
have great potential in improving the effectiveness of the computational time spent
on Monte Carlo calculations; and the fission matrix eigenvector error estimation
method allows the monitoring of real calculation errors. It is the hope of the author
that both methods would be studied further and considered for implementation in
Monte Carlo criticality codes.
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Estimation of errors in the cumulative Monte Carlo fission source
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Abstract

We study the feasibility of estimating the error in the cumulative fission source in Monte Carlo criticality calculations by
utilising the fundamental-mode eigenvector of the fission matrix. The cumulative fission source, representing the source
combined over active cycles, contains errors of both statistical and systematic nature. Knowledge of the error in the
cumulative fission source is crucial as it determines the accuracy of computed neutron flux and power distributions.

While statistical errors are present in the eigenvector of the fission matrix, it appears that these are not (or they
are only weakly) correlated to the errors in the cumulative fission source. This ensures the suggested methodology gives
error estimates that are distributed around the real errors, which is also supported by results of our numerical test
calculations.

Keywords: Monte Carlo, criticality, fission source, cumulative, convergence, error, bias

1. Introduction

Conventional Monte Carlo criticality calculations sim-
ulate subsequent neutron generations in so-called cycles.
The fission source is expected to converge to the steady-
state during a certain number of inactive cycles in which
no results are being collected. Results of interest are then
combined over a number of active cycles. While the fis-
sion source is supposed to be converged during the ac-
tive cycles, there is no diagnostics methodology that could
guarantee that with certainty, although progress has been
made in this field (Ueki and Brown, 2003). Hence, the fis-
sion source may be sampled during the active cycles from
a distribution that is far from steady-state; moreover, the
fission source may also contain a bias not decaying over
the cycles at all (Brissenden and Garlick, 1986). Conse-
quently, the fission source introduces errors into the results
sampled over the active cycles (such as the neutron flux
and power distributions). We could accept this fact if we
had the knowledge of the error in the cumulative fission
source (i.e., the error in the fission source that was com-
bined over the active cycles).

The purpose of this paper is to investigate the feasibil-
ity of estimating the error in the cumulative fission source.
The estimate should reflect not only the error due to the
convergence problems; it should also reflect the bias and
random errors. We investigate the possibility of achieving
this goal via utilising the fundamental-mode eigenvector
of the fission matrix. The fission matrix has been already
used in a number of unrelated methods (Carter and Mc-
Cormick, 1969; Kadotani et al., 1991; Kitada and Takeda,

∗Corresponding author.
Email address: kaurt@kth.se (Kaur Tuttelberg)

2001; Dufek and Gudowski, 2009; Brown et al., 2013a,b),
and a number of established Monte Carlo criticality codes
offer the fission matrix as an optional result. Naturally, the
fission matrix contains random errors that are also present
in its eigenvector; in this paper, we analyse whether these
errors allow using the eigenvector for estimating the error
in the cumulative fission source.

The paper is organised as follows. Aspects of con-
vergence of the Monte Carlo fission source are briefly de-
scribed in Section 2. The methodology of estimating the
error in the cumulative fission source is suggested in Sec-
tion 3. Results of the numerical test calculations are given
in Section 4. Our conclusions are summarised in Section 5.

2. Aspects of source convergence

The eigenvalue (criticality) equation for the fission source
can be written as

ks(r) = Hs(r), (1)

where k is the eigenvalue, s(r) is the concentration of fis-
sion neutrons at r, and

Hs(r) ≡
∫

V

d3r′ f(r ′ → r)s(r ′),

where f(r ′ → r) d3r is an expected number of first gen-
eration fission neutrons produced in the volume element
d3r at r, resulting from a fission neutron born at r ′. An-
gular dependence is not considered since fission neutrons
are emitted isotropically. The Monte Carlo fission source
is represented by a batch of m neutrons with specific po-
sitions, energies, and statistical weights.
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Eq. (1) has many eigen-pair solutions, sj and kj , but
only the fundamental-mode solution (corresponding to the
largest eigenvalue) has a physical meaning. The respec-
tive modes are commonly ordered according to the abso-
lute value of their eigenvalue, from the largest (associated
with the fundamental mode j = 0) to the smallest. To
simplify the notation in the following text, we denote the
fundamental-mode fission source as z; z ≡ s0.

To obtain the fundamental-mode solution, Monte Carlo
criticality codes apply the power iteration on the fission
source; this iteration can be formally described as

s(i+1) =
1

k(i)
Hs(i) + ε(i) (2)

k(i) =

∫
V

d3r Hs(r)

m
(3)

where the steps i = 0, 1, . . . are commonly referred to
as “cycles”, ε(i)(r) is the random error component result-
ing from sampling a finite number of neutron histories in
cycle i. The initial fission source s(0) must be guessed.
The above iteration assumes that the Monte Carlo fission
source is always normalised to m; i.e.,

∫

V

d3r s(r) = m.

In classical Monte Carlo criticality calculations, a num-
ber of inactive cycles must be performed just to decay the
error present in s(0), while results of interest are sampled
over the subsequent active cycles.

As with any Monte Carlo simulation, the random error
component ε(i)(r) is of the order O(1/

√
m). Moreover, we

can assume that (Gelbard and Gu, 1994)

E[ε(i)] = 0.

The random noise in the fission source can thus be reduced
by simulating more neutron histories, at the expense of a
larger computing time. The random noise in the fission
source ε(i) is, however, not a relevant problem as long as
the results are combined over a sufficiently large number
of active cycles n. The random noise in the cumulative
fission source

s(n)
c =

n∑

i=ix+1

s(i), (4)

being of the order O(1/
√
mn), can then be neglected. In

Eq. (4), ix denotes the number of inactive cycles.
Gelbard and Prael (1974) showed that the random er-

rors propagate over the cycles of Monte Carlo criticality
calculations, which results in the presence of a bias in the
fission source of the order O(1/m). Thus, the converged
Monte Carlo fission source is never sampled from the cor-
rect fundamental mode z, but from a biased fundamental
mode that we denote as zm. This bias is indeed reflected
in the cumulative fission source. We show an example of
a biased cumulative fission source in Section 4.

Ueki et al. (2003) have shown that convergence of the
Monte Carlo fission source s(i) to zm is governed by the
dominance ratio k1/k0 at the rate of O((k1/k0)i). This
is also a well known fact in deterministic calculations (al-
though the solution is not biased there). This has an im-
portant consequence to systems with dominance ratio close
to unity; if the initial fission source contains a large error
then many cycles are necessary to decay this error. There
is a risk then that active cycles (and hence the cumulative
fission source) will be corrupted.

3. Estimating the error in the cumulative Monte
Carlo fission source

In discrete phase-space notation, the eigenvalue (criti-
cality) equation for the fission source can be written as

Hs = ks (5)

where H is commonly referred to as the fission matrix
(Carter and McCormick, 1969). The fission matrix H is
the space-discretised operator H; The (i, j)th element of H
represents the probability that a fission neutron born in
space zone j causes a subsequent birth of a fission neutron
in space zone i,

H[i, j] =

∫
Zi

d3r
∫
Zj

d3r′f(r′→r)z(r′)

∫
Zj

d3r′ z(r′, E′)
. (6)

The fundamental mode eigenvalue of H equals keff , and the
corresponding eigenvector h equals the discretised funda-
mental mode fission source z(r).

A number of Monte Carlo codes, e.g. TRIPOLI-4 (OE-
CD/NEA, 2008) and KENO V.a (RSICC, 2006), can op-
tionally calculate the fission matrix during standard Monte
Carlo calculations. Dufek and Gudowski (2009) showed
that the fission matrix becomes less sensitive to errors in
the fission source as the mesh zones get smaller. Hence, the
errors in the fission source become irrelevant for sampling
the fission matrix when the zones are sufficiently small.
This means that the fission matrix and its fundamental-
mode eigenvector can be correctly evaluated during a Monte
Carlo criticality calculation even with a biased fission source.
We suggest utilising this quality of the eigenvector of the
fission matrix in estimating the error in the cumulative
fission source.

We define the relative scalar error ε in the cumulative
fission source s

(n)
c discretised over a space mesh as

ε =
∥∥∥s̃(n)

c − z̃
∥∥∥

1
, (7)

where ∼ denotes a normalisation operator defined for any
vector x as

x̃ =
x

‖x‖1
.
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and the one-norm is defined as

‖x‖1 =
∑

i

|xi|.

In Eq. (7), z is the fundamental-mode source discretised
over the same mesh as the cumulative fission source.

The fundamental-mode source z in Eq. (7) is unknown;
hence, the correct value of ε cannot be computed. We
suggest to estimate its value as

ε̂ =
∥∥∥s̃(n)

c − h̃(n)
∥∥∥

1
, (8)

where h(n) is the eigenvector of the fission matrix H(n)

that was sampled over the same cycles as the cumulative

fission source s
(n)
c .

Naturally, the fission matrix H(n) contains random er-
rors of the order O(1/

√
nm) that must also be present in

its eigenvector h(n). We denote the random errors in h̃(n)

by the vector δ(n),

δ(n) = h̃(n) − z̃; (9)

while we denote the errors in s̃
(n)
c by the vector γ(n),

γ(n) = s̃(n)
c − z̃,

so that
ε =

∑

i

∣∣∣γ(n)
i

∣∣∣ .

Then we can write Eq. (8) as

ε̂ =
∥∥∥γ(n) − δ(n)

∥∥∥
1
, (10)

that can also be written as

ε̂ =
∑

i

∣∣∣γ(n)
i − δ(n)

i

∣∣∣ , (11)

Note that γ(n) contains not only statistical errors, but
also the bias and the partly decayed errors coming from
the initial fission source.

Since both h̃(n) and z̃ are normalised to unity, we can
write ∑

i

∣∣∣h̃(n)
i

∣∣∣ =
∑

i

|z̃i| , (12)

Since all elements in h̃(n) and z̃ are non-negative, the ab-
solute value signs can be removed,

∑

i

(
h̃

(n)
i − z̃i

)
= 0, (13)

which is equivalent to

∑

i

δ
(n)
i = 0. (14)

Hence, the vector δ(n) must contain both positive and neg-
ative elements so that their sum would equal zero. This
quality of δ(n) suggests that the expected value of ε̂ equals

E(ε̂) =
∑

i

∣∣∣γ(n)
i

∣∣∣ = ε, (15)

assuming that δ(n) and γ(n) are not correlated. Hence, if
this condition is satisfied then the error estimate ε̂ given
by Eq. (8) is normally distributed around ε. It is, how-
ever, not apparent whether this condition is satisfied. The
purpose in the numerical calculations in Section 4 is to
analyse this.

4. Numerical test calculations

4.1. Numerical test model

The numerical test model represents a fuel pin cell with
parameters summarised in Table 1. Reflective boundary
conditions were applied to all radial faces; non-reflective
void boundary conditions were applied to the axial faces.
This model is based on a common PWR fuel pin cell; only
the pin length was increased to 10 m in order to achieve
the dominance ratio of a large core.

Table 1: Specifications of the pin cell model.

Fuel UO2

Cladding material Zr
Moderator light water
Radius of fuel pellets 0.41 cm
Outer radius of cladding 0.475 cm
Rod pitch 1.26 cm
Length of the fuel rod 1000 cm
235U enrichment 3.1 wt%
Fuel density 10 g/cm3

Moderator (water) density 0.7 g/cm3

Based on the fission matrix computed during the ref-
erence calculation (see Sec. 4.2), we have evaluated the
dominance ratio of the test model at 0.9982, which en-
sures that convergence of the fission source is similar to
that in large reactor cores and loosely-coupled systems.

All numerical calculations were performed by an in-
house non-analogue continuous-energy 3D Monte Carlo
criticality code using the JEFF3.1 point-wise neutron cross-
section library.

4.2. Reference calculation

The fundamental-mode of the fission source is not avail-
able in an analytical form for the numerical test model;
hence the need for a reference calculation. Parameters of
the reference calculation are summarised in Table 2. The
reference distribution of the fission source, sref , was eval-
uated via a sufficiently fine uniform mesh with 100 axial
zones, and combined over all active cycles. As the test

3

PAPER 1 61



model is axially symmetrical, we have further improved
the accuracy of sref by averaging its elements in symmet-
rical positions.

Table 2: Parameters of the reference calculation.

Neutron batch size 50,000
Number of active cycles 2,000,000
Number of inactive cycles 2000
Initial fission source flat

Fig. 1 depicts the reference solution together with an
example of a biased cumulative fission source obtained via
a criticality calculation with a batch size of only 10 neu-
trons. While the bias in the reference solution is negligible
(due to the large neutron batch size), the biased fission
source shows the typical flattening of its distribution.

0 1 2 3 4 5 6 7 8 9 10

Axial distance [m]

0

0.5

1

1.5

F
is
si
on

so
u
rc
e
in
te
n
si
ty

(r
el
at
iv
e)

Reference, m = 50 000, h = 1011

Biased source, m = 10, h = 109

Figure 1: The reference fission source and an example of a biased
fission source (b denotes the neutron batch size, and h denotes the
total number of neutron histories simulated in active cycles).

4.3. Estimating the error in the cumulative source

Table 3 specifies the test calculations (A-D). While the
neutron batch size varied in calculations A-D, all calcula-
tions simulated 109 neutron histories. The initial fission
source was randomly sampled from a uniform distribution
in the first cycle of each calculation. In each calculation,
the fission matrix was sampled over all cycles; no cycles
were skipped.

Table 3: Parameters of calculations A-D.

Calculation A B C D

Neutron batch size 50 500 5000 50,000
Number of neut. hist. 109 109 109 109

For the purpose of the test calculations, we set the axial
dimension of all zones to 10 cm; hence, we evaluate the
fission matrix via a spatial mesh with 100 zones. This mesh
appears sufficient for eliminating the bias in the fission
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Eigenvector, m = 50, h = 109

Cumulative source, m = 50, h = 109

Figure 2: Comparison of the reference solution and the eigenvector
of a fission matrix sampled by a biased fission source.

matrix (that could possibly arise from the biased fission
source). This is demonstrated in Fig. 2 that compares the
eigenvector of the fission matrix to the cumulative fission
source biased by the batch size of 50 neutrons; the fission
matrix was sampled by the actual biased fission source.
While the fission source is heavily biased, the eigenvector
of the fission matrix is close to the reference solution in
Fig. 2.

In calculations A-D, the real relative error ε in the cu-
mulative fission source distribution sc is evaluated as

ε = ‖s̃c − s̃ref‖1 . (16)

The estimation ε̂ of the relative error in a cumulative fis-
sion source is computed according to Eq. (8).

The values of ε̂ and ε obtained from all the test cases
are compared in Tables 4-7. In each calculation, the values
of ε̂ and ε are calculated at several stages, always after
simulating 106, 107, 108 and 109 neutron histories. To
associate a certain value of ε̂ or ε to a certain stage, we add
a superscript in square brackets to ε̂ and ε, denoting the
number of simulated neutron histories; e.g., the values of
ε̂[109] and ε[109] are computed after simulating 109 neutron
histories.

Results from calculation A (with the batch size of 50
neutrons) are summarised in Table 4. As the bias in the
fission source is large due to the small neutron batch size
(as depicted in Fig. 1), ε[107], ε[108] and ε[109] remain about
equally large, close to 20%. This is correctly captured by
the corresponding values of ε̂[107], ε̂[108] and ε̂[109]. The
value of ε̂[106] is less than half of that of ε[106]; in this
case, the relatively large random errors in the eigenvector
of fission matrix (that was sampled by only 106 neutron
histories) decreased the estimated error.

Results from calculation B (with the batch size of 500
neutrons) are summarised in Table 5. Here, values of ε̂
also correspond well to ε, with the exception of the value
of ε̂[108] that underestimated the real error several times.

Results from calculation C (with the batch size of 5000
neutrons) are summarised in Table 6. This case shows

4
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Table 4: Comparison of ε and ε̂ in calculation A (with the batch size
of 50 neutrons) [%].

h (# of neutron histories) ε[h] ε̂[h]

106 36.7 14.9
107 18.3 18.4
108 18.1 18.2
109 20.2 18.6

Table 5: Comparison of ε and ε̂ in calculation B (with the batch size
of 500 neutrons) [%].

h (# of neutron histories) ε[h] ε̂[h]

106 24.0 19.8
107 12.4 8.21
108 3.78 1.10
109 4.53 3.63

that ε̂ may overestimate the real error several times as
well; note the value of ε̂[106] and ε̂[107]. The small bias in
the cumulative fission source combined over 109 neutron
histories was correctly estimated.

Table 6: Comparison of ε and ε̂ in calculation C (with the batch size
of 5000 neutrons) [%].

h (# of neutron histories) ε[h] ε̂[h]

106 17.7 41.0
107 8.23 18.3
108 8.41 6.44
109 1.17 1.25

Results from calculation D (with the batch size of 50,000
neutrons) are summarised in Table 7. In this case, ε̂ esti-
mated the real error in the cumulative fission source in all
stages of the calculation with a good accuracy.

We wish to stress that the above results depend on
the initial seed value in the RNG; as such, ε̂ is a random
variable. Repeating the identical calculation with another
seed would produce different results (both ε̂ and ε). Nev-
ertheless, the above results suggest clearly that ε̂ can be
used in estimating the order of magnitude of the error in
the cumulative fission source.

5. Conclusions

The fact that the fission matrix can be well sampled
even by a biased or not converged Monte Carlo fission
source can be utilised for various purposes. In this paper,
we have analysed the possibility of using the fundamental-
mode eigenvector of the fission matrix for estimating the
error in the cumulative fission source. The question we
attempted to answer was whether the random errors, that
are naturally present in the eigenvector, allow us to obtain

Table 7: Comparison of ε and ε̂ in calculation D (with the batch size
of 50,000 neutrons) [%].

h (# of neutron histories) ε[h] ε̂[h]

106 37.9 28.2
107 26.1 25.1
108 4.51 4.29
109 1.15 1.25

a useful estimation of the error in the cumulative fission
source.

We can conclude that the estimation of the error in
the cumulative fission source obtained via the eigenvector
of the fission matrix is distributed around the real error,
assuming that the random errors in the eigenvector and
the cumulative fission source are not correlated. Validity
of this assumption is, however, not apparent. Neverthe-
less, our numerical test calculations confirmed the error
estimates were distributed around the real errors, which
suggests the errors are either not correlated or the corre-
lation is weak. The error estimations correctly captured
the presence of the source bias as well as the source errors
coming from the initial fission source.

The future research may consider testing of the sug-
gested methodology using better statistics on a variety
of systems, including radially heterogeneous, full-core sys-
tems. Further attention may also be devoted to analysing
the impact of the space mesh quality on the results.
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Abstract

We present a methodology that improves the efficiency of conventional Monte Carlo criticality calculations by optimising
the number of neutron histories simulated per criticality cycle (the so-called neutron batch size). The chosen neutron
batch size affects both the rate of convergence (in computing time) and magnitude of bias in the fission source. Setting
a small neutron batch size ensures a rapid simulation of criticality cycles, allowing the fission source to converge fast to
its stationary state; however, at the same time, the small neutron batch size introduces a large systematic bias in the
fission source. It follows that for a given allocated computing time, there is an optimal neutron batch size that balances
these two effects.

We approach this problem by studying the error in the cumulative fission source, i.e. the fission source combined
over all simulated cycles, as all results are commonly combined over the simulated cycles. We have derived a simplified
formula for the error in the cumulative fission source, taking into account the neutron batch size, the dominance ratio of
the system, the error in the initial fission source and the allocated computing time (in the form of the total number of
simulated neutron histories). Knowing how the neutron batch size affects the error in the cumulative fission source allows
us to find its optimal value. We demonstrate the benefits of the method on a number of numerical test calculations.

Keywords: Monte Carlo criticality, source convergence, source bias, error propagation, dominance ratio, optimisation

1. Introduction

Monte Carlo criticality calculations require the user to
set a number of free parameters, namely the number of ac-
tive and inactive cycles, neutron batch size, and the initial
fission source. The efficiency of calculations is affected by
the choice of these parameters, most of all by the neutron
batch size. Generally, a large neutron batch size is pre-
ferred in order to decrease the systematic biases (Brown,
2009; Gast, 1969; Gast and Candelore, 1974). However, a
large neutron batch size limits the number of cycles that
can be simulated in allocated computational time, hence,
the error originating from the initial fission source may
not decrease sufficiently, corrupting the accumulated re-
sults. Thus, the selection of neutron batch size represents
an optimisation problem.

The errors in the fission source, including the source
bias and the error originating from the initial fission source,
directly affect all possible results of Monte Carlo critical-
ity calculations that are collected over a number of cycles.
Hence, for the purpose of this paper, we find it reason-
able to define the general error of the calculation, that we
need in evaluating the computing efficiency (the figure of
merit), as the error in the cumulative fission source.

In this paper, we present a simplified model for the er-
ror in the cumulative fission source. The model estimates

∗Corresponding author
Email address: kaurt@kth.se (Kaur Tuttelberg)

the error based on the neutron batch size, the chosen total
number of neutron histories to be simulated, the domi-
nance ratio of the system, and the estimated error in the
initial fission source. Using this model, we can determine
the optimal neutron batch size to achieve the maximum
figure of merit.

The existing source convergence theory is summarised
in Sec. 2 and the simplified error model is derived in Sec. 3.
Following that, the optimal batch size is derived in Sec. 4.
Sec. 5 contains the description and results of numerical
test calculations. Our conclusions are presented in Sec. 6.

2. Governing equations

Monte Carlo criticality calculations solve the steady-
state k-eigenvalue neutron transport equation. This equa-
tion, in operator notation, can be written as

Hsj = kjsj (1)

where kj and sj constitute the eigenpairs of H, an operator
comprising the terms of an angle and energy integrated
transport equation.

Eq. (1) presents an eigenvalue equation translated into
discretised phase-space (Gelbard, 1992; Gelbard and Gu,
1994; Gelbard and Prael, 1974). In this notation, the sys-
tem is divided into spatial regions. Such a notation is only
adopted to simplify the mathematical framework needed
to carry out the theoretical analysis.
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As a part of this discretisation, the operator in the
eigenvalue equation is described as a matrix, known as the
fission matrix (Brown et al., 2013; Carter and McCormick,
1969). In a similar manner, the fission source distribution
is represented as a vector where each element specifies the
number of fission neutrons in the corresponding discrete
space cell.

In the laid out notation, a cycle in the eigenvalue cal-
culation can be described as (Gelbard and Prael, 1974)

s(i+1) =
Hs(i)

k(i)
+ ε(i) (2)

where s(i) and s(i+1) are fission source vectors in consec-
utive cycles and ε(i) is the stochastic error component re-
sulting from sampling a finite number of histories per cycle.
The eigenvalue, k(i), is estimated as an integral quantity
of the fission source

k(i) =
τHs(i)

m
(3)

where m is the number of neutrons sampled in the cycle—
the neutron batch size—and the vector τ = (1, 1, . . . , 1) is
an integral operator in the same dimension as the number
of discretisation cells. A normalisation is imposed on the
fission source in each cycle, ensuring that τs(i) = m.

Estimates for quantities of interest are averaged over
the cycles. For any quantity x the mean, or ensemble
average, 〈x(n)〉 over n cycles is defined as

〈
x(n)

〉
=

1

n

n∑

i=1

x(i) (4)

where x(i) is the ith cycle estimate of x.
Eq. (2) presents an iterative process, very much like

the power method. Eigenvalue powering converges to the
fundamental mode eigenpair; and in this light, it is com-
mon to order the eigenvalues descendingly by the mod-
ulus, starting from the highest (k0 > |k1| > . . .). The
convergence of the power method is governed by the ra-
tio k1/k0—the dominance ratio (Goult et al., 1975). It
has been reasoned that the dominance ratio also charac-
terises the convergence of Monte Carlo criticality calcula-
tions (Ueki et al., 2003, 2004).

As it is characteristic for Monte Carlo calculations, the
errors of statistical sampling in combined results are of
the order O(1/

√
mn), with mn being the total number of

neutron histories simulated over n cycles. These errors are
always decreased by increasing the number of simulated
histories and are not dependent on the choice of neutron
batch size. For any Monte Carlo process it is assumed that
E[ε(i)] = 0 (Gelbard and Prael, 1974).

It has been long known that the results of Monte Carlo
eigenvalue calculations contain systematic errors. The mag-
nitude of these errors, known as biases, have been shown to
be inversely proportional to the neutron batch size (Bris-
senden and Garlick, 1986; Dubi and Elperin, 1985; Enosh

et al., 1990; Zolotukhin and Maiorov, 1983). By definition,
the bias in the Monte Carlo estimate of the fundamental
mode eigenvector is (Gelbard and Prael, 1974)

∆s0 = s∗0 − s0 =

〈
1

m
s(n)

〉
− s0 (5)

where s0 is the correct fundamental mode eigenvector of
Eq. (1) and s∗0 is the biased estimate, both normalised to
unity. The definition of bias is based on the assumption
that the calculation has converged and the statistical er-
rors have become negligible. Following suit, the eigenvalue
bias is defined as

∆k0 = k∗0 − k0 =
〈
k(n)

〉
− k0 (6)

where asterisk denotes a biased quantity, like above.
Brissenden and Garlick (1986) have shown how to quan-

tify the bias in the eigenvalue; however, calculating the
bias in the fission source has remained an unsolved prob-
lem. Nevertheless, we can learn more about it by analysing
cycle-wise error propagation.

The fission source error in cycle i is introduced as

e(i) = s(i) −m s0. (7)

In order to analyse such error vectors, Eq. (7) is substi-
tuted into (2) and the latter expanded in series as

e(i+1) =
∞∑

j=0

(
− τHe(i)

k0mτs0

)j[
H
(
m s0 + e(i)

)

k0τs0

]

−m s0 + ε(i).

(8)

As the biases are of the order O(1/m), the terms of a
smaller order in m can be disregarded (Brissenden and
Garlick, 1986; Gelbard and Prael, 1974). After normalis-
ing the fundamental mode eigenvector to unity, τs0 = 1,
Eq. (8) can be simplified to

e(i+1) ∼= Ae(i) − τH

k0m
e(i)Ae(i) + ε(i). (9)

The operator A—the noise propagation matrix—in Eq. (9)
is a result of combining terms in the expansion of the error
vector,

A =
I− s0τ

k0
H (10)

where I is the identity matrix (Gelbard and Prael, 1974).
It has been shown that the highest modulus eigenvalue
of the noise propagation matrix corresponds to the dom-
inance ratio of the system (Nease, 2008; Nease and Ueki,
2009).

Gelbard (1992) showed that after a large enough num-
ber of cycles, when the process is stationary, noted by
〈e(n)〉 ∼= 〈e(n−1)〉, Eq. (9) yields

〈
e(n)

〉
= − (I−A)

−1

k0m
A
〈
e(n)e(n)T

〉
HTτT. (11)
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This shows that the iteration converges to a non-zero value—
the bias.

In addition to the error vector specified in Eq. (7), we
define the relative error in one cycle as the error normalised
to one neutron history

ε(i) =
e(i)

m
=

s(i)

m
− s0 . (12)

For any relative error vector ε, we define its magnitude as
its norm

ε = ‖ε‖. (13)

We define the error ε̄ in the cumulative fission source
(the source combined over all cycles) as the relative error
ε(i) averaged over n cycles,

ε̄ =
〈
ε(n)

〉
=

1

n

n∑

i=1

ε(i) =
1

mn

n∑

i=1

e(i). (14)

For a stationary process, the relative error in the cumu-
lative fission source is equal to the bias ∆s0; hence, the
relative error decays into the bias in conditions matching
its definition (i.e. no significant contribution from other
sources of error). A method for direct estimation of the
error in the cumulative fission source was proposed by
Tuttelberg and Dufek (2014); however, such an approach
does not provide analytical information needed for neutron
batch size optimisation.

3. Simplified model of the error in the cumulative
fission source

First of all, we choose to decompose the error vector
into three components

e(i) = e
(i)
A + e

(i)
B + e

(i)
R (15)

where the first term, e
(i)
A , describes the decay of the error

coming from the initial fission source; the second term,

e
(i)
B , includes the bias; and the third term, e

(i)
R , is the

stochastic error component.
We express the scalar relative error in cycle i as

ε(i) = ‖ε(i)‖ = ‖ε(i)A + ε
(i)
B + ε

(i)
R ‖. (16)

By properties of norms, the value on the right hand side
has an upper bound of

‖ε(i)A + ε
(i)
B + ε

(i)
R ‖ ≤ ‖ε

(i)
A ‖+ ‖ε(i)B ‖+ ‖ε(i)R ‖ (17)

so that
ε(i) ≤ ε(i)A + ε

(i)
B + ε

(i)
R (18)

which implies
ε̄ ≤ ε̄A + ε̄B + ε̄R . (19)

We specified Eq. (15) so that the e
(i)
B component de-

scribes the bias; thus, when the calculation has become
stationary, we can write

ε̄B = ∆s0 =

〈
e(n)

m

〉
. (20)

Based on that and Eq. (11), we can continue by writing

ε̄B = − 1

m
(I−A)

−1
A

〈
e(n)e(n)T

m

〉
HTτT

k0
. (21)

It is possible to show that this component is in fact of the
order O(1/m), as we would expect from the bias.

As the fundamental mode eigenvalue of the noise prop-
agation matrix is equivalent to the dominance ratio of the
system, we know that the spectral radius of the matrix is
less than one, allowing us to write the inverse as a Neu-
mann series

(I−A)
−1

=
∞∑

j=0

Aj . (22)

From the definition of cycle-wise error it follows that

A

〈
e(n)

m

〉
= As∗0

and 〈
e(n)T

〉
HTτT = m∆k0 .

The norm is then expressed as

‖ε̄B‖ ≤
∣∣∣∣−

1

m

∣∣∣∣

∥∥∥∥∥∥

∞∑

j=1

Ajs∗0

∥∥∥∥∥∥

∣∣∣∣
m∆k0
k0

∣∣∣∣ . (23)

Brissenden and Garlick (1986) proved that ∆k0 ∈ O(1/m),
thus m∆k0 is not dependent on m.

For an unbiased source, the product Ajs∗0 is a zero
vector by definition; however, in case of a biased source it
contains non-zero elements. We expand it as a weighted
sum of eigenvectors (keeping in mind As0 = 0)

Ajs∗0 = 0 + a1

(
k1
k0

)j

s1 + a2

(
k2
k0

)j

s2 + . . .

≈ a1
(
k1
k0

)j

s1

(24)

where a-s are coefficients not dependent on m. From this
we approximate the norm of the power series as

∥∥∥∥∥∥

∞∑

j=1

Ajs∗0

∥∥∥∥∥∥
≤
∞∑

j=1

∥∥Ajs∗0
∥∥ ≈ |a1|

k1
k0

(
1− k1

k0

)−1
‖s1‖

(25)
which shows that the sum converges to a value of the order
O(1) in m; and the bias component ε̄B ∈ O(1/m).
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Now we can write the bound on the scalar relative error
introduced by the bias as

ε̄B ≤
1

m
B (26)

where B is a constant dependent both on the system and
the chosen norm type. Similarly, we write the bound for
the ε̄R component as

ε̄R ≤
1√
mn

R (27)

where R is another system and norm dependent constant.
To proceed, we simplify Eq. (9), the error propagation

equation, into

e(i) = Ae(i−1) +O
(
m−1

)
+ ε(i−1) (28)

to overcome its non-linearity. This equation can be re-
written as

e(i) = Aie(0) +O
(
m−1

)
+

i∑

j=1

Ai−jε(j−1) (29)

yielding a decomposed relative error vector

ε(i) = Aiε(0) + ε
(i)
B + ε

(i)
R . (30)

We denote ε0 = ε(0) and write

ε
(i)
A = Aiε0 . (31)

According to properties of norms, this component of the
scalar relative error is bounded by

ε
(i)
A = ‖Aiε0‖ ≤ ‖Ai‖‖ε0‖ = ε0‖Ai‖ . (32)

Since the noise propagation operator is a square ma-
trix, we know that

lim
j→∞

‖Aj‖1/j = ρ(A) =

∣∣∣∣
k1
k0

∣∣∣∣ (33)

where ρ stands for spectral radius. From this we obtain
an approximation that improves quickly, cycle by cycle

‖Aj‖ ≈
(
k1
k0

)j

. (34)

Finally, we obtain a bound for the ε
(i)
A term in Eq. (18)

as

ε
(i)
A ≤ ε0‖Ai‖ ∼= ε0

(
k1
k0

)i

(35)

which results in

ε̄A =
〈
ε
(n)
A

〉
≤ 1

n

n∑

i=1

(
k1
k0

)i
ε0 . (36)

The scalar ε0 is the relative error committed by guessing
the initial fission source. This quantity is also norm de-
pendent like the constants B and R.

From Eqs. (19), (26), (27), and (36) we obtain a bound
for the scalar relative error in the cumulative fission source
as

ε̄ ≤ 1

n

n∑

i=1

(
k1
k0

)i
ε0 +

B

m
+

R√
mn

. (37)

This equation is presented as a strong simplification,
where the whole system is described solely by the domi-
nance ratio. Nevertheless, finding a simple model was the
authors’ intention. Considering the availability of methods
for on-the-fly dominance ratio estimation (Herman et al.,
2013; Sutton et al., 2011), the model is certainly applica-
ble.

4. Derivation of optimal neutron batch size

We choose the total number of simulated neutron his-
tories h and neutron batch size m to be independent pa-
rameters; hence, the total number of cycles n is

n =
h

m
. (38)

Based on the bound derived in Eq. (37), the equation
we use to model the changes in errors is written as

ε̂ =
mε0
h

h/m∑

i=1

(
k1
k0

)i

+
B

m
+

R√
h
. (39)

For larger values of n, this equation can be further simpli-
fied by treating the finite sum as infinite, so that

ε̂ =
mε0
h

(
1− k1

k0

)−1
+
B

m
+

R√
h

(40)

which is a good approximation for the intended application
of this equation, where the value of n will be relatively
large.

The efficiency of the calculation is described by the
figure of merit, which we will define as

FOM =
1

ε̂2h
(41)

where we have replaced the standard deviation with the
relative error in the cumulative source and assumed the
computational time proportional to the number of histo-
ries.

The figure of merit can be maximised by minimising
the denominator in the equation above. The optimum
condition is then written as

∂(ε̂2h)

∂m
= 2hε̂

[
ε0
h

(
1− k1

k0

)−1
− B

m2

]
= 0 . (42)

This equation can be rearranged into an expression for the
neutron batch size

m =

√
h
B

ε0

(
1− k1

k0

)
(43)
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which satisfies the optimum condition. The division in the
term B/ε0 compensates for scaling introduced by taking
the norm of an error vector. The constant B describes
how a certain system is affected by source biasing and is
not calculable in general. We can expect that the maxi-
mum relative error caused by the bias is one when a single
neutron history is simulated per cycle; thus, for practical
applications we make a simplification and assume B = 1
to obtain an equation for the optimal neutron batch size.

mopt =

√
h

ε0

(
1− k1

k0

)
(44)

given the total number of simulated neutron histories, dom-
inance ratio of the system, and relative error in the initial
fission source. This equation enables one to determine a
value for the neutron batch size that balances its effects
on the speed of source convergence and biasing of results.

In order to apply Eq. (44), the dominance ratio and
the error in the initial fission source are needed. Fortu-
nately, both quantities can be estimated with reasonable
accuracy and effort during an initial stage of the Monte
Carlo criticality calculation. We suggest to evaluate these
parameters during the simulation of a small fraction (e.g.
1%) of the specified total number of neutron histories.

The dominance ratio can be evaluated by a number of
methods, such as the NPM method (Sutton et al., 2011)
or the CMFD based method (Herman et al., 2013). The
error in the initial fission source can be estimated by the
eigenvector of the fission matrix as (Tuttelberg and Dufek,
2014)

ε̃0 =
‖s(0) − q‖1

2m0
(45)

where s(0) is the initial fission source, m0 is the neutron
batch size chosen for the first n0 cycles, and q is the eigen-
vector calculated from the fission matrix that was sampled
during the initial cycles (normalised to the batch size m0).
If the fission matrix is not available, a very rough approx-
imation can, instead, be taken as

ε̃0 ∼=
‖s(0) − sc/n0‖1

2m0
(46)

where sc is the cumulative fission source combined over
n0 cycles. The factor 2 in Eqs. (45) and (46) scales the
maximum possible value of ε̃0 to one.

The estimation of dominance ratio is improved by sim-
ulating more cycles (Nease et al., 2008); and since the bias
is of no concern in these initial cycles, we recommend to set
a small value for m0, for example so that n0 = m2

0. This
results in m0 = 3

√
h0, where h0 is the number of histories

used in the estimation stage.
After the initial stage, the estimated values of ε̃0 and

the dominance ratio are used in Eq. (44) to evaluate the
optimal neutron batch size that is then used in the follow-
ing cycles.

5. Numerical test calculations

5.1. Numerical test model

Numerical test calculations were performed on a model
of a common PWR fuel pin cell with parameters specified
in Tab. 1. Reflective boundary conditions were applied on
radial faces and void boundary conditions on axial faces.
This model shares some features of a large core, e.g. a
large dominance ratio.

Table 1: Specifications of the pin cell model.

Fuel UO2

Cladding material Zr
Moderator light water
Radius of fuel pellets 0.41 cm
Outer radius of cladding 0.475 cm
Rod pitch 1.26 cm
Length of the fuel rod 400 cm
235U enrichment 3.1 wt%
Fuel density 10 g/cm3

Moderator (water) density 0.7 g/cm3

All numerical calculations were performed by an in-
house non-analogue continuous-energy 3D Monte Carlo
criticality code using the JEFF3.1 point-wise neutron cross-
section library.

5.2. Reference calculation

The correct fission source distribution for the test sys-
tem is not known exactly; hence, we estimate it by a ref-
erence calculation specified in Tab. 2. As the test model is
symmetrical, we have additionally symmetrised the source
distribution sr combined over the active cycles. The dom-
inance ratio was estimated at 0.989 during the reference
calculation by the NPM method (Sutton et al., 2011) with
a 10 cell axial mesh.

Table 2: Specifications of the reference calculation.

Number of histories per cycle 50,000
Number of active cycles 1,000,000
Number of inactive cycles 10,000
Initial fission source flat

The reference solution is used in evaluating the error in
the cumulative fission source in the test calculations. The
scalar error in the cumulative fission source is computed
as

εc =
‖sc/h− sr/hr‖1

2
(47)

where sc and sr are the fission sources combined over the
cycles of test and reference calculations, respectively, and
hr is the total number of neutron histories simulated in
the reference calculation. The factor in the denominator
of Eq. (47) ensures the maximal possible value of εc to be
one.
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Note that while the simplified model of the scalar error
in the cumulative fission source captures the dependence of
the error on the neutron batch size and other parameters,
its direct comparison to the error computed by Eq. (47) is
not trivial. This is not a problem for the presented opti-
misation methodology; it is merely an inconvenience when
comparing the simplified model to results from test calcu-
lations, as the values do not necessarily have to match.

5.3. Demonstration of the simplified error model

The purpose of the calculations presented in this sec-
tion is to demonstrate the usability of the simplified model
of the scalar error in the cumulative fission source, given
by Eq. (39). In this test, the simplified model is supplied
with the dominance ratio estimated by the reference cal-
culation; the constants B and R are assumed equal to one.

Four calculations, A–D, specified in Tab. 3, were re-
peated 40 times with various seeds for the random num-
ber generator. All calculations were started with a point
source placed at one end of the pin, ensuring a large error
in the initial fission source. Thus, the model assumes the
maximum value ε0 = 1.

Table 3: Specifications of calculations A–D.

Test calculation A B C D

Neutron histories per cycle 50 500 5000 50,000
Total number of histories 100 million

In Fig. 1, the scalar errors in calculations A–D, com-
puted by Eq. (47), are compared to the simplified model,
given by Eq. (39). The results demonstrate that the simpli-
fied model correctly captures the dependence of the error
on the neutron batch size and the total number of simu-
lated neutron histories.

Fig. 1 also shows that performance of the calculation
(given here by the error in the cumulative fission source)
depends strongly on the neutron batch size; for a specific
allocated computing cost (in terms of the total number of
simulated neutron histories) the calculation performs best
with a specific neutron batch size. For instance, when 107

neutron histories are to be simulated, the results achieved
by simulating 500 neutron histories per cycle are signifi-
cantly better than with other chosen values.

5.4. Performance of calculations with optimal neutron batch
size

In this section, we demonstrate the performance of
Monte Carlo criticality calculations with the optimal neu-
tron batch size estimated by Eq. (44). We wish to separate
the effects of simplifications made in deriving Eq. (44) from
the effects of errors present in the estimated parameters in
Eq. (44); therefore, we use the dominance ratio computed
by the reference calculation. Such an accurate estimate
of the dominance ratio would not be available in standard
calculations; therefore, Sec. 5.5 includes numerical tests
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Figure 1: Top: scalar errors in calculations A–D computed by
Eq. (47). Bottom: Scalar errors predicted by the simplified model,
as in Eq. (39) for m = 50, 500, 5000 and 50,000.

where the dominance ratio is computed in the beginning
of the calculation, using a relatively small number of neu-
tron histories, as suggested in Sec. 4.

Tab. 4 shows the optimal neutron batch size calculated
by Eq. (44) for three values of allocated computing cost
(108, 107 and 106 simulated neutron histories); the three
cases are marked as E, F, and G. For this, the dominance
ratio was set to 0.989, and the relative error in the initial
fission source was set to the maximum value ε0 = 1 (the
same initial source was used as in Sec. 5.3).

Table 4: Specifications of calculations E–G.

Test calculation E F G

Total number of histories 108 107 106

Optimal neutron batch size 1050 333 105

Monte Carlo criticality calculations for cases E, F, and
G were repeated 40 times with different seeds, and the re-
sulting errors were averaged. Fig. 2 compares the perfor-
mance of these cases, and demonstrates the effectiveness
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Figure 2: Results of calculations E–G.

of the optimal neutron batch size computed by Eq. (44)
for various cases. For instance, when 106 neutron histo-
ries were simulated, the calculation with the neutron batch
size optimised for 106 neutron histories (case G) performed
better than the calculation with the neutron batch size op-
timised for 108 neutron histories (case E). Nevertheless, we
can see that case F (optimised for 107 neutron histories)
performed similarly to case G when 106 neutron histo-
ries were simulated, which suggests that the optimal value
of the neutron batch size does not necessarily have to be
computed very accurately in order to achieve good perfor-
mance. This simplifies the application of our methodology
since the input parameters, such as the dominance ratio
or the error in the initial fission source, may be estimated
less accurately in the beginning of the calculation.

In this section, we also compare case E (with the neu-
tron batch size optimised for 108 histories) to two addi-
tional calculations where the neutron batch size was set
to suboptimal values of 10,000 (case H) and 100 (case I).
Calculations H and I were also repeated 40 times and av-
eraged. Fig. 3 shows that calculation E (optimal) achieved
orders of magnitude smaller errors than calculations H and
I after simulating 108 neutron histories (for which case E
was optimised).

5.5. Practical application of the optimisation methodology

The purpose of this section is to test the neutron batch
size optimisation methodology for Monte Carlo criticality
calculations, as suggested in Sec. 4, assuming no knowledge
of the correct dominance ratio or the error in the initial
fission source. Therefore, as suggested in Sec. 4, the cal-
culation is split into two stages; the dominance ratio and
the error in the initial fission source are estimated in the
short first stage, while the neutron batch size is corrected
to the optimal value for the second stage.

The total allocated computational cost was set to 108

neutron histories for this test. As suggested in Sec. 4, we
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Figure 3: Results of calculations E, H, and I.

allocated 1% of the computing cost (106 neutron histories)
to the first stage of the calculation. According to sugges-
tions in Sec. 4, the neutron batch size for the first stage
was set to

3
√

106 = 100.
During the first stage, the dominance ratio was esti-

mated at 0.9876 by the NPM method; in order to keep the
method general and not optimised for a specific test model,
a 3× 3× 3 spatial mesh was used. The error in the initial
fission source was estimated at 0.9941. Based on these val-
ues, the optimal neutron batch size was evaluated at 1120,
and the batch size was changed to this value for the second
stage of the calculation. The value of the dominance ratio
estimated during the first step of this calculation does not
differ much from the value computed during the reference
calculation; hence, the optimal value of the neutron batch
size calculated here (1120) does not differ much from the
test case E (1050).
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Figure 4: Results of calculations J (two-stage) and E.
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The two-stage calculation was repeated 40 times, and
results were averaged, as in all previous calculations. Fig. 4
compares the performance of this two-stage calculation
(marked as case J) to the test case E (that used the neu-
tron batch size optimised for 108 neutron histories). As
can be seen, both calculations perform equally well when
108 neutron histories are simulated. Naturally, the two-
stage calculation converged faster during the first stage,
as the neutron batch size was forced to be small; however,
this did not change the final results.

6. Conclusions

The results of numerical test calculations showed that
the simplified model of the scalar error in the cumula-
tive fission source captures well both the convergence rate
and the presence of source bias. Also, the neutron batch
size optimisation methodology, that was derived from the
simplified error model, performed well in practical appli-
cations, ensuring maximal efficiency. The optimisation
method is general in nature and implementable in any
power method based Monte Carlo code that comes equipped
with a dominance ratio estimation procedure.

It should be noted that the optimal neutron batch size
may also be affected by the use of parallelised calculations;
for instance, the master-slave parallel-computing scheme
performs better with a larger neutron batch size. Nev-
ertheless, the optimisation methodology derived in this
paper does not consider the efficiency of various parallel-
computing schemes on different computer architectures.
This problem may be considered in future work.
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