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Noise Applications in Light Water Reactors with Traveling Perturbations.
VICTOR DYKIN
Division of Nuclear Engineering
Department of Applied Physics
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ABSTRACT

Neutron noise induced by perturbations traveling with the coolant of light water re-
actors (LWRs) is investigated. Different methods to simulate the effect of propagating
perturbations are considered. The studies are performed in both open- and closed-loop
systems and summarized in three chapters.

In the first chapter, the space-dependence of the neutron noise due to propagating
perturbations calculated in one-group theory and one dimension in a pressurized water
reactor (PWR) is investigated. A full analytical solution, obtained by the use of Green’s
function technique, is analyzed for different frequencies and different system sizes. An
interesting new interference effect between the point-kinetic and space-dependent com-
ponents of the induced noise is discovered and interpreted in physical terms. A similar
investigation is performed in two-group theory for four reactor systems with different
neutron spectra. The goal is to investigate the dependence of the properties of the in-
duced neutron noise on the neutron spectrum. The presence of the fluctuations of several
cross sections is also analyzed and resulted in qualitatively and quantitatively new char-
acteristics of the induced noise. Further, a simple numerical Monte Carlo-based model
to simulate the boiling process in a boiling water reactor (BWR) heated channel, is con-
structed. The output of the model is then used to estimate the local component of the
neutron noise induced by density fluctuations in the coolant numerically convoluting it
with proper transfer functions.

In the second chapter, a four-heated channel reduced order model (ROM), accounting
for the first three neutronic modes, is constructed to study both global and regional insta-
bilities. Some additional modifications compared with the earlier-developed models are
performed to improve the consistency of the model. It is shown that the ROM is capable
to reproduce the main features of core-wide instabilities. Moreover, it is proven that the
inclusion of both azimuthal modes brings some importance for the correct identification
of stability boundaries. The ROM is also extended to simulate the effect of local instabili-
ties, such as the Forsmark-1 instability event of 1996/1997. A good qualitative agreement
with real measurements is found.

In the last chapter, a number of the applications of the noise diagnostics based on the
foregoing calculations are discussed. The case when the neutronic response of the reac-
tor is affected by a non-white driving force (propagating perturbation) is studied. It is
also investigated how the accuracy of the determination of the so-called decay ratio (DR)
of the system, based on the assumption of a white noise driving force, deteriorates with
deviations from the white noise character of the driving force. Furthermore, the earlier
developed ROM is applied to analyze what stability indicators other than the DR can
be used to describe the stability of the system. As a candidate, the coupling reactivity
coefficients are chosen and their dependence on the DR is investigated. It is shown that
such a dependence deviates form the conventional one, presumably caused by the inher-
ent inertia of the system. Finally, two techniques, one based on the break-frequency of
auto power spectral density (APSD) of the neutron noise and another on the transit times



of propagating void fluctuations are discussed for reconstructing the axial void profile
from the Monte-Carlo simulated neutron noise. It is shown that both methods provide
promising results.

Keywords: propagating density perturbation, Green’s function technique, space-dependent
neutron noise, reduced order models, global and regional instabilities, density wave os-
cillations, BWR stability, decay ratio, non-white driving force, Monte Carlo, void fraction,
local component, cross-correlation function, transit times.
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Chapter 1
INTRODUCTION

A clever person solves problem. A wise person avoids it.
— Albert Einstein

Over the past few decades, the analysis of random process signals has become a
commonly-used tool to unfold hidden information about the properties of complex sys-
tems in various fields of physics. Such a technique is often referred to as “noise analysis”
where the term “noise” is usually equivalent to the term “fluctuation”. One of the main
advantages of the noise analysis technique compared with many other methods is its
non-intrusive nature with no need of having a direct access to the system components in
order to extract the necessary information. The application of this method is especially
interesting for systems such as nuclear reactors, primarily to study the fluctuations of the
neutron population inside the reactor core where the access is limited due to the high
level of radiation. As a matter of fact, noise analysis is often used to indirectly monitor
the state of the core, to detect changes in the state of the system, to identify failures and
anomalous reactor behaviour [1]. Moreover, noise diagnostics is also beneficial from an
economical point-of-view since it provides a unique opportunity for the online monitor-
ing of the operational parameters of the reactor core, i.e. reactivity coefficients, two-phase
properties etc.

The neutron fluctuations in power reactor systems originate from the fluctuations in
the system properties, such as temperature, pressure, void, movement (vibrations) of the
reactor components etc. These changes manifest themselves in corresponding changes
of the nuclear cross-sections that govern the space-time development of the neutron flux.
Usually, these fluctuations in the system parameters (i.e. the cross-sections), are repre-
sented by small, stationary fluctuations around a mean value. If the feedback effect of the
induced neutron fluctuations back to the original physical parameters can be neglected,
then the system is called an “open loop system”. For small enough fluctuations, higher
order quantities can be neglected, and the system will be described by equations that
are linear in the searched quantities. In that case the system response, i.e. the neutron
fluctuations, can be described as the effect of the noise source (cross-section fluctuations)
acting through the system transfer function which corresponds to the unperturbed sys-
tem. The solution is then given in the frequency domain by a spatial convolution of these
two quantities [1]. By measuring the neutron noise with either a given perturbation or a
known transfer function, the parameters of the other can be determined by inversion of
the convolution integral. In some cases, the perturbation can be measured directly and
in others the transfer function can be calculated analytically or numerically. Both cases,
i.e. diagnosing either the perturbation or the transfer function, are accounted for in the
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Chapter 1. INTRODUCTION

reactor noise diagnostics.
An interesting example of noise calculations in open-loop systems is considered in

Chapter 2 of this thesis. As for the neutron noise source, the so-called propagating per-
turbation (i.e. the perturbation traveling with the coolant), defined in a simple analytical
form, is chosen. It should be pointed out that most of the previous investigations of
the neutron noise given rise by propagating perturbations (“propagating noise”) were
made only in the point-kinetic approximation which is valid either for very small cores
or slowly changing perturbations [2–4]. At that time, the properties of its characteristic
sink structure observed in the frequency domain were of the main interest. However, as
reported elsewhere [3,4], the sink structure has never been observed in real neutron noise
measurements. One possible reason for this, in addition to many others, is the deviation
of the shape of the static flux from a pure sine function. Another reason might be the
increasing contribution of the space-dependent component of the neutron noise (espe-
cially for commercial reactors which are large enough), which due to its smooth spatial
behaviour diminishes the sink-structure. Thus, to investigate the latter one as well as the
limitations of the point-kinetic model, in the present study, the space-dependence of the
propagating noise in one-group theory and in a pressurized water reactor (PWR) together
with its frequency dependence were analyzed. It turned out that the propagating noise
has a very interesting behaviour in that it shows a remarkable interference between the
point kinetic and the pure space-dependent components, which may be either in-phase
or out-of-phase, depending on the position in the core, on the frequency and on the reac-
tor size (tightly or loosely coupled system). The space-dependence of the neutron noise
induced by propagating perturbations has also become interesting in connection with
one of the planned Generation-IV reactors: the molten salt reactor (MSR). In such a reac-
tor the molten salt fuel propagates in the solid moderator core, hence it is envisaged that
the fluctuations of the fuel burn-up, poison etc. will represent a strong propagating per-
turbation. Thus, the calculations of the neutron noise in the traditional commercial light
water reactors (LWRs) induced by propagating temperature fluctuations of the coolant
might also be helpful to identify the new features of an MSR [5, 6].

In a real reactor, the nuclear cross-sections controlling the neutron distribution are
strongly energy-dependent and are usually collapsed into two groups, i.e. fast and ther-
mal, respectively [1,7]. Accordingly, all power reactors are classified either as fast or ther-
mal systems, depending on the dominant energy spectra of neutrons. Therefore, it is also
interesting to expedite the significance of spectral properties on the propagating neutron
noise which is a further topic in Chapter 2. For this reason, the case of noise calcula-
tions in two groups with all cross-sections perturbed, for four different reactor designs
with different spectra was investigated. The two-group noise calculations are especially
important from a diagnostics point-of-view since the so-called local component of the
neutron noise can only be observed in such a case [1,8]. The local component of the neu-
tron noise has some significance in determining important boiling water reactor (BWR)
characteristics, such as void fraction, flow velocity etc. Moreover, the presence of the local
component together with the simultaneous perturbation of several cross-sections results
in a very peculiar interference character of the induced noise, qualitatively and quantita-
tively different from a traditional case with only a single cross-section being perturbed.

The last topic of Chapter 2 is focused on a more phenomenological modeling of the
propagating perturbation in a BWR. In the cases studied so far, a simple analytical form
of the propagating perturbation has been used. However, as practice shows, it is not
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always possible to specify a simple analytical model of the perturbation itself. In such
cases, a numerical simulation of the stochastic properties of the underlying physical
processes could be used to generate a numerical realization of the perturbation. This
method was first used in the localization of vibrating control rods, by generating stochas-
tic two-dimensional mechanical vibrations from the model of two-dimensional random
forces [9–11]. In particular, the model proved to be very useful for generating vibrat-
ing data in case of impacting when no simple analytical model for the vibrations can be
given. Another case when construction of an analytical model for the noise source is
not trivial is that of the two-phase flow in a BWR [12, 13]. The corresponding analytical
models are sufficient to explain just a few properties of the induced noise but insufficient
to elaborate any unfolding methods. As an alternative, a stochastic (Monte Carlo [14])
model of two-phase flow regime is presented in Chapter 2 in order to simulate realistic
density fluctuations and, hence, the realistic noise source for the propagating noise. The
main advantage of such a numerical representation of the perturbation is the direct ac-
cess to the properties of the noise source which provides an opportunity to investigate
the possibility and accuracy of the different diagnostic methods of unfolding noise source
parameters from the induced noise.

In certain cases, especially when the fluctuations of the neutron flux cannot be de-
scribed as small first order quantities, the feedback of the neutron fluctuations to the
original processes, such as temperature, pressure etc., and hence to the nuclear cross-
sections, cannot be neglected. For such cases, in particular for a BWR, a more conser-
vative way of modeling the reactor system, namely a “closed loop model”, should be
applied. Such a system represents a substantially more involved situation as compared
to the linear open loop system. That is, there is a conceptual and a practical difficulty
involved in the study of coupled (closed-loop) systems. The conceptual difficulty is that
it is not possible to factorize the induced neutron noise into the effect of a perturbation,
i.e. the deviation of the system parameters from the equilibrium or perturbed values,
and the transfer function. This means that the dynamical behaviour of the system is no
longer related to a system in equilibrium, rather to the perturbed state in a sophisticated
manner. The practical difficulty is that in realistic cases it is impossible to get analytical
solutions in closed form, and advanced numerical methods need to be used. As a result,
the interpretation of the results, in order to perform the system diagnostics, also becomes
more complicated. In particular, this is the case for the so-called system codes where a
high number of intertwined parameters and variables are involved. A more pragmatic
way is then to simplify the description very significantly regarding both the neutronics
and the thermal hydraulics, while preserving the non-linear coupling between them such
that the model still reproduces the main features of the BWR dynamics.

Such models are commonly referred to as reduced order models (ROMs) [15–19] and
are the main topic of Chapter 3. The basic idea of the ROM modeling is to transform par-
tial differential equations(PDEs) [7, 20], which describe the reactor behaviour, to simpli-
fied ordinary differential equations (ODEs). The reduction helps to eliminate drastically
the complexity of the system and, hence, allows to simplify the modeling of instabilities
and to get deeper understanding of physical phenomena which drive these instabilities
in the reactor core.

The simplest prototype of the ROM is a model with a one-dimensional (axially prop-
agating) thermal-hydraulic module and a corresponding homogeneous core treated with
point kinetics from the neutronic side [17, 21]. Such models have been in use and stud-
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Chapter 1. INTRODUCTION

ied for some time. For obvious reasons, such models can only reconstruct the so-called
global instability phenomena [1], in which the fundamental mode of the neutron flux
oscillates. In addition to global instabilities, so-called regional instabilities [1] can also
occur, and in fact co-exist with the global instability. The regional instability is associated
with neutron flux fluctuations in the azimuthal modes. Experience shows that it is im-
portant to be able to determine the stability properties of these two modes separately, in
order to correctly estimate the margins to instability [22, 23]. For these reasons, ROMs
have been developed with two thermal-hydraulic channels and corresponding neutronic
modes [19, 24–26]. While such a ROM can indeed study two neutronic modes at the
same time, in a real BWR two azimuthal modes exist simultaneously and their combined
behaviour (frequency and phase delay relative to each other) also carries important infor-
mation on the system and its stability properties, and also determines whether the simple
method of using the linear stability indicator, i.e. the decay ratio (DR), gives at all usable
results for non-linear systems. The capability of the ROM to simulate such a behaviour is
discussed in Chapter 3. Here, it is important to underline that in most real cases both the
global and regional instabilities are primarily triggered by thermal-hydraulic instabilities
which occur mainly due to the propagating character of the coolant properties (prop-
agating density/pressure waves). Thus, in Chapter 3, the ROM is applied to simulate
yet another case of propagating noise, in a strongly coupled system where the feedback
effects are accounted for.

As previous works show [23], when several spatial oscillation modes exist with the
same or very similar frequencies, but with different stability properties, the use of the DR
as a single global stability indicator fails. One example is an event which took place at
the Swedish Forsmark-1 power plant in 96/97 [27–29], where the local power oscillations
caused by density wave oscillations (DWOs) [30] were observed. Thus, as a final topic of
Chapter 3, the ROM simulation of local instabilities caused by propagating density of the
coolant is discussed. One of the reasons to choose this event as an example comes from
the interesting phenomena, observed in that event, namely a time-dependent rotation of
the symmetry line of the azimuthal modes. In Chapter 3, such a peculiar behaviour is
reconstructed and studied with the ROM.

The main goal of this work is not only to demonstrate how the neutron noise induced
by propagating perturbations can be modeled under different conditions, but also to ex-
plain how this knowledge can be used to study realistic cases. For this reason, a separate
chapter (Chapter 4) is devoted to the noise applications based on simulations performed
in the previous two chapters. A short overview of this work is summarized below.

In certain cases, one is interested in the slow change of the properties of the core (the
transfer function), which obviously cannot be quantified from only the induced noise,
without being able to measure the noise source. In such a case one has to make some
assumptions about the properties of the noise source, such as assuming it to be a white
noise (its auto-power spectral density (APSD) [1] being constant in frequency). Such a
case is that of the stability of the BWRs, which is usually monitored by measuring local
or averaged (over several detectors) neutron flux values, and calculating the so-called
decay ratio from the auto-correlation function (ACF) [1] of the measured neutron noise or,
equivalently, from the width of the peak in the APSD of the detector signals. Since, in the
frequency domain, the APSD of the neutron noise is given as the product of the frequency
dependent core transfer function squared, times the APSD of the driving force (DF), for
a white noise driving force the frequency properties (and hence also the properties of the

4



ACF) of the system are equivalent to that of the measured neutron noise.
Even if the assumption of the white noise character of the driving force is a very plau-

sible one, it is just an assumption which is impossible to prove by measurements. Thus,
the first topic taken up in Chapter 4 is an investigation of a case when the driving force is
not a white noise. As for the driving force, the propagating two-phase flow perturbation
with a characteristic periodic peak-sink structure in the frequency domain, is selected. It
is clear intuitively that if the driving force has a peak or a sink at or close to the system
resonance, the resulting neutron noise will deviate significantly from that induced by a
white driving force, and one will draw erroneous conclusions regarding the stability of
the system. Moreover, a change in the properties of the driving force, can be interpreted
as a change in the stability of the system.

Further, an application of the four-heated channel ROM for the stability analysis of a
BWR is considered. One consequence of the non-linearity of the nuclear systems, such
as a BWR, is the fact that the concept of the DR, as a stability parameter, fails in some
cases [22,23]. As a matter of fact, it is still not clear what stability indicators could be used
for describing the stability of these systems and their evolution in an objective quantita-
tive way. For this purpose, the developed ROM was applied to investigate the correlation
between the coupling reactivity coefficients and the decay ratio to study the possibility to
use the former one as a new stability indicator. It turned out that the dependence between
the coupling coefficients and the DR is different from the conventional one, observed in
earlier investigations. Namely, as the coupling becomes more and more negative, the DR
increases up to almost unity, (i.e. reaches its saturation point), thus, following the tradi-
tional behaviour of the DR for such studies. However, at a certain critical value, the DR
starts to decrease for any further change in the coupling coefficients. A possible explana-
tion of this unexpected behaviour as well as a short discussion about the applicability of
the coupling coefficients for stability monitoring are given.

Finally, an unfolding technique in neutron noise diagnostics is discussed. Using the
Monte Carlo model of two-phase flow developed in Chapter 2, two methods for recon-
structing void fraction and void velocity axial profiles from neutron noise measurements
are demonstrated. Notably, such MC simulations of bubbly flow in a BWR were already
studied in the past, but for a different purpose, namely to check the performance of ra-
diation attenuation based methods for determining local void fraction and local void
velocity [13]. The main advantage of such a numerical modeling is the direct access to
both the input and the output data. This allows to test different correlations between the
first moments of different quantities, i.e. the noise measurements and the mean value
of the velocity and void fraction. This is achieved by comparing the input data from
the model to the output data taken from the simulation. In real cases, there is always
the possibility to measure the neutron noise (the output) whereas the information about
the input (the mean void fraction) is missing, i.e. the original (true) void fraction profile
is not available. The latter means that even if the reconstruction of the void profile has
been performed, there is no chance to validate or estimate the reconstructed void profile.
However, as shown in Chapter 4, this is not the case for the MC simulation.

In Chapter 5, a summary of the results together with an outlook for the continuation
of the work are given.

A nomenclature of the abbreviations and acronyms used in the thesis is given at the
end of the manuscript.
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Chapter 2
METHODS FOR MODELING THE
EFFECT OF PROPAGATING
PERTURBATION IN OPEN LOOP
SYSTEMS

A physicist is just an atom’s way of looking at itself
— Niels Borh

In this Chapter, the neutron noise induced by propagating perturbations in traditional
LWR open-loop systems, i.e. in systems without any feedback, is considered.

First, the axial space-and frequency-dependence of the neutron noise is investigated
using a one-group PWR model with one average group of delayed neutrons. The cor-
responding noise source is represented as an axially propagating temperature perturba-
tion of the coolant, specified in an analytical form as the fluctuation in absorption cross-
section. The induced noise is obtained by convoluting the neutron noise source with the
analytically calculated Green’s function. All calculations are made in first-order pertur-
bation theory. The gradual diminishing of the sink structure with increasing system size
and frequency is analyzed. A special attention is paid to the frequency dependence of the
calculated neutron noise which is also used to explain the sink structure found in previ-
ous calculations for a system of power reactor size [31]. Some interesting interference
effect between the point-kinetic and space-dependent components, leading to the spatial
oscillation of the amplitudes of the total noise is discovered and explained. More details
are given in Paper I.

Next, a similar study of the induced neutron noise in two-group theory is performed.
What regards the propagating perturbation, an inlet flow temperature fluctuation de-
fined in a similar analytical form as before, is considered. The induced neutron noise is
evaluated by analytically solving two-group diffusion equations in the space/frequency
domain with an application of standard Green’s function technique. In order to study the
applicability of noise analysis to systems significantly different from traditional LWRs
dominating so far, as well as to study the effect of different spectral properties on the
induced noise, four different reactor systems are investigated. In addition, a more ad-
vanced modeling of the neutron noise where all cross-sections are affected by the inlet
temperature perturbation, is implemented. Some new interesting results due to the pres-
ence of the local component, as well as the simultaneous perturbation of several cross-
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sections are presented. Further details on this topic can be found in Paper II.
Finally, a case with a more fundamental, numerically-simulated model of noise source,

i.e. the boiling process representing the propagating perturbation, is investigated. A sim-
ple form of the two-phase flow, based on the Monte Carlo technique is chosen, in which
the basic process is the random generation and subsequent deterministic transport of the
bubbles with the flow. The induced neutron noise is obtained qualitatively in the time do-
main, by numerically convoluting the simulated neutron noise source with the transfer
properties of the system. The main focus is put on the estimation of the local compo-
nent of the neutron noise. The simulated neutron noise is further processed by standard
Fourier transform (FT) techniques to estimate the corresponding APSD. Such a numer-
ical modeling allows to model more advanced and complex noise sources and, hence,
provides a more realistic representation of the induced neutron noise, which makes it ap-
plicable for testing in real diagnostic applications. A more detailed description is given
in Paper III.

This Chapter starts with a short description of the noise source for each of the cases
mentioned above and proceeds with the calculations of the induced neutron noise and
discussion of the results.

2.1 Properties of the noise source

2.1.1 One-group theory

The noise source is specified as an axially propagating perturbation, representing den-
sity/temperature fluctuations of the coolant. It is assumed that the fluctuations are gen-
erated outside the core and, after entering the core inlet, they propagate through the core
in an unaltered form with a constant velocity v [2–4]. With only the absorbtion cross-
section perturbed, the perturbation can be written as:

δΣa(z, t) = δΣa(0, t−
z

v
)

or in the frequency domain after a temporal Fourier transform:

δΣa(z, ω) = δΣa(0, ω)e
− iω

v
z. (2.1)

In the above form δΣa(0, ω) stands for the fluctuations of the absorption cross-section at
the core inlet and is assumed to be a white noise with a constant frequency spectrum.
It is worth to point out that in a real reactor the coolant velocity v strongly depends
on an axial position, however in the present study, for simplicity of the calculations, v
is assumed to be axially-independent. Moreover, the axial dependence of the coolant
velocity will apparently destroy the well-pronounced sink structure of the neutron noise
(i.e. its reactivity component) which represents the main interest of this study. In the
frame of first order perturbation theory with one-energy group involved, for the noise
source one obtains:

S(z, ω) =
ϕ0(z)
D

· δΣa(z, ω) (2.2)

Since for some limiting cases (large frequencies), the space-dependent component of the
noise is dominating and follows the source behaviour, it is interesting to consider the
source properties: the amplitude and the phase which are given in Fig. 2.1.
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Figure 2.1: Amplitude and phase of the neutron noise source for H = 500 cm, v = 250 cm/s,
ω = π, 2π, 3π rad/s

It is demonstrated in the figure that the noise source amplitude resembles the static
flux and its phase θ is a linear function in space, as well as in frequency which can be seen
from the expression

θ = −ω
v
z (2.3)

As is customary in neutron noise diagnostics, for small system sizes and low frequen-
cies, the total noise reconstructs the reactivity behaviour and for the propagating density
perturbation in the scope of first order perturbation theory, it reads as:

ρ(ω) =
ω3
T

2πω(ω2
T − ω2)

[(1− cosωT )i− sinωT ] (2.4)

with its corresponding amplitude and phase functions expressed as:

APSDρ(ω) =
ω6
T

4π2ω2(ω2
T − ω2)2

[(1− cosωT )] (2.5)

θ =


−H

2v ω = −T
2 ω for


0 ≤ ω ≤ 2ωT

and
(2n+ 1)ωT ≤ ω ≤ 2(n+ 1)ωT ; n = 1, 2, . . .

−H
2v ω + π

2 = −T
2 ω + π

2 for 2nωT ≤ ω ≤ (2n+ 1)ωT ; n = 1, 2, . . .

(2.6)

where T is the transit time of the perturbation defined as T = H/v and ωT is defined as
ωT = 2π/T . More details are given in Paper I. In the present and subsequent calculations,
the transit time T = 2 s is selected corresponding to the characteristic frequency fT = 0.5
Hz. The corresponding graphical representation of the last two formulae are given below.
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Figure 2.2: APSD and phase of the reactivity H = 500 cm, v = 250 cm/s

The last two figures show some interesting features of the reactivity, induced by a
propagating perturbation. Namely, the amplitude of the reactivity has sinks at ω =
nωT , n = 2, 3 . . . and its phase has a discontinuity at the same points.

Below, the analytical expression as well as a graphical representation for the autocor-
relation function ACF (τ), calculated for the corresponding reactivity effect APSDρ(ω)
are shown. Utilizing the traditional definition of the ACF as a time convolution, one gets:

ACFρ(τ) =
vk2

2(νΣf )
2H2

{
(H − |τ |v)(2 + cosωT τ) +

3H

2π
sinωT |τ |

}
θ(T − |τ |). (2.7)

From Eq. (2.7), one can immediately conclude that the correlation of the noise is different
from zero only for time differences less or equal to the transit time T of the perturbation,
which means that the correlated points should belong to the same entry of the coolant,
i.e. to the same perturbation in the coolant. Thus, the maximum width of the ACF corre-
sponds to τ = T . The same result is seen from the corresponding Fig. (2.3) where some
examples of this autocorrelation function are shown.
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Figure 2.3: The ACF of the reactivity effect of propagating perturbations for two different transit
times.
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2.1.2 Two-group theory

Eq. (2.2), written for the noise source in one-group theory, can easily be generalized for
the case of two-energy groups and reads in a vector form as [1]:

S̄(z, ω) =

(
S1(z, ω)
S2(z, ω)

)
(2.8)

Here the noise sources S1 and S2, corresponding to the noise sources in the fast and
thermal energy groups, respectively, are defined in terms of the cross-section fluctuations
and the static fluxes in the form:

S1(z, ω) =
(
δΣR(z, ω) + δΣa1(z, ω)− δνΣf1(z, ω)

(
1− iωβ

iω+λ

))
ϕ1(z)−

δνΣf2(z, ω)
(
1− iωβ

iω+λ

)
ϕ2(z)

(2.9)

and
S2(z, ω) = −δΣR(z, ω)ϕ1(z) + δΣa2(z, ω)ϕ2(z) (2.10)

where the subscripts a1, a2, f1, f2, R stand for the absorbtion and fission in the fast and
thermal energy groups and removal cross-sections, respectively. Here, for convenience
of the calculations, the neutron noise source is defined in a different form compared with
the one used in one-group theory (see Section 2.1.1), i.e. the weighting factors D1 and D2

(diffusion coefficients) are left out. The corresponding fast and thermal static fluxes are
given as:

ϕ1(z) = sinB0z (2.11)

ϕ2(z) =
ΣR

Σa2 +D2B2
0

sinB0z (2.12)

with B0 = π/H . The normalization of the fluxes is used such that the maximum ampli-
tude value of the fast flux is unity. In the foregoing, the option for any of the cross-sections
to be perturbed, as well as a simultaneous perturbation of several cross-sections, is taken
into account. For obvious reasons, the frequency-dependence of both the amplitude and
phase of the neutron noise source in two-group approach is similar to that in one-group
theory and is not repeated here.

2.1.3 Numerical simulation of the neutron noise source

In the examples discussed so far, a simple analytical form for the propagating pertur-
bation has been used. However, as mentioned earlier, this is not always the case and for
certain perturbations only a numerical simulation of the perturbation can be constructed.
Therefore, in the following, a simple numerical Monte-Carlo based model of the boiling
process in a BWR heated channel, representing the more natural example of the propa-
gating perturbation, is discussed. To simplify the simulations, instead of modeling a true
3-D geometry, a two-dimensional model of a real fuel assembly emulating its radial and
axial cross-section ((x, z) geometry) with the bubbles simulated as 2-D circles, is chosen.
In order to set up a realistic model of the two-phase flow with a proper axial void fraction
profile (i.e. similar to the BWR one), a proper distribution for bubble generation should
be found. For this reason, the bubble generation rate per unit length, which generates
the desired void profile is chosen to be proportional to the gradient of the void fraction.
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It should be noted that the latter statement is not true in a real heated channel where
the bubble generation rate is proportional to the quality (not to the void fraction) but
for reasons of simplicity such an approximation is assumed. Since there are no realistic
void fraction profiles available in the form of simple analytical functions, to keep at least
the bubble generation model at a simple level, the bubble generation intensity is chosen
to be proportional to the static neutron flux, which results in the following cumulative
probability function:

P (z) =
1

2
· (1− cos(

πz

H
)) (2.13)

The axial velocity of bubbles can be estimated from the steady-state mass conservation
equation and reads as:

v(z) ≈ v0
1− α(z)

. (2.14)

The diameter of the generated bubbles is set to d = 0.8 cm. The coordinates of the bubble
centres in the z-direction are generated in such a way to provide a realistic axial BWR
void profile, whereas in the x-direction the bubble generation is chosen as a uniform one.
The intersection between the bubbles is not permitted. The simulation starts with 100
bubbles generated at t = 0 s and proceeds with the random injection of 35 new bubbles
at each consecutive time step chosen equal to δt = 0.0008 s. Both the velocity and the
void fraction for each single bubble at each time step are calculated. For realistic appli-
cations of the model, the void fraction is kept below 0.5. The bubble absence/presence
is recorded at each time step and at each axial elevation using the binary system, i.e.
“1” stands for the presence of a vapor bubble (vapor phase) and “0” stands for the ab-
sence of a bubble (liquid phase). The corresponding void signals are thereafter used as
a numerically-simulated neutron noise source for calculating the induced neutron noise.
Some more details are given in Paper III.

2.2 Neutron noise calculation procedure

2.2.1 One-energy group approach

Following the standard procedure in noise diagnostics, one starts with the space-/time-
dependent one-group diffusion equations, which in one-dimension read as [1]:

1

υ

∂ϕ(z, t)
∂t

= D△ϕ(z, t) + [(1− β)νΣf − Σa(z, t)]ϕ(z, t) + λC(z, t) (2.15)

∂C(z, t)
∂t

= βνΣfϕ(z, t)− λC(z, t) (2.16)

Approximating both the neutron flux ϕ(z, t) and the absorption cross section Σa(z, t) as
small fluctuations δϕ(z, t) and δΣa(z, t) oscillating around their mean values, substituting
the result into Eqs. (2.15) and (2.16), subtracting the static equations and applying a
temporal Fourier transform, one gets:

△δϕ(z, ω) + B2(ω)δϕ(z, ω) = S(z, ω) (2.17)

with B2(ω) = B2
0(1− 1

ρ∞G0(ω)
) being the dynamic buckling, and

S(z, ω) =
ϕ0(z)
D

· δΣa(z, ω) (2.18)
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is the noise source. The rest of the notations is standard. The full solution of Eq. (2.17) is
given via the Green’s function G(z, z0, ω) obtained from Eq. (2.17) with a delta-function
source. For a slab reactor between z = 0 and z = H , the solution for the Green’s function
is conveniently written as:

G(z, z0, ω) =


− sin(B(ω)z) sin(B(ω)(H−z0))

B(ω) sin(B(ω)H) if z < z0.

− sin(B(ω)z0) sin(B(ω)(H−z))
B(ω) sin(B(ω)H) if z > z0.

(2.19)

Finally the total solution for Eq. (2.17) becomes:

δϕ(z, ω) =
∫
G(z, z0, ω)S(z0, ω)dz0 (2.20)

For the analysis it is useful to re-write the total solution δϕ(z, ω) in such a way that it is
split into two terms: point-kinetic and space-dependent term, respectively. Thus, after
a standard factorization of the flux δϕ(z, ω) into an amplitude factor P (t) and a shape
function ψ(z, t) and approximating each of the two as fluctuations around mean values,
in the frequency domain the full solution can be represented as:

δϕ(z, ω) = ϕ0(z)G0(ω)ρ(ω) + δψ(z, ω) (2.21)

where ρ(ω) stands for the reactivity effect of the cross-section perturbation and is defined
as:

ρ(ω) = − 1

νΣf

∫
φ2
0(z)δΣa(z, ω) dz (2.22)

and φ0(z) is the normalized static flux. The first term in Eq. (2.21) is usually called the
point-kinetic or reactivity term and corresponds to the globally excited core response,
following the reactivity behaviour of the noise source. The second term is named as the
space-dependent term (or sometimes called “pure space-dependent term”), and it de-
scribes the locally-distributed space-dependent noise. It is known that for a small system
size and/or for small perturbation frequencies, the first term is dominating and follows
the reactivity behaviour, whereas for a large system size and/or for the high frequencies
the second one is more pronounced and reproduces the noise source profile itself. These
general tendencies will be shown to appear also for the noise induced by propagating
perturbations, with some interesting consequences, which are specific for just this type
of perturbation, as will be seen in Section 2.3.1. For more details one can refer to Paper I.

2.2.2 Two-energy group approach

Following the same linearization procedure as described above but rather in two-group
diffusion theory this time, after a temporal Fourier transform, the equations for the group
noise read as [1]:(

D1∇2 − Σ1(ω) νΣf2(ω)
ΣR D2∇2 − Σ2(ω)

)(
δϕ1(z, ω)
δϕ2(z, ω)

)
=

(
S1(z, ω)
S2(z, ω)

)
(2.23)

The corresponding equation for the Green’s matrix can be obtained from Eq. (2.23), as-
suming delta-function shaped sources. Thus, the full solution of Eq. (2.23) is given in a
matrix form as:

δΦ̄(z, ω) =

∫ H

0
Ĝ(z, z′, ω)S̄(z′ω)dz′ (2.24)
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The same solution can also be expressed via adjoint Green’s function as:

δΦ̄T (z, ω) =

∫ H

0
S̄T (z, ω)Ĝ†(z′, z, ω)dz′ (2.25)

where Ĝ†(z′, z, ω) is called the adjoint Green’s function. The full derivation can be found
in Paper II.

2.2.3 Numerical estimation of the neutron noise

Assuming that the perturbation in the corresponding cross-section (mostly the removal in
case of a BWR) is proportional to the fluctuation of the void fraction δα(z, t), the induced
neutron noise in the space-time domain can be estimated following the same procedure
as for the analytical models discussed before, i.e. as [1, 8]:

δϕ(z, t) =

∫ H

0
G(z, z′, t)ϕ0(z

′)δα(z′, t)dz′ (2.26)

where δα(z′, t) is estimated numerically from the Monte-Carlo model. For the sake of
simplicity, it is assumed that the system is one-dimensional and only a one-dimensional
cross-section of the fluctuations is taken as the noise source. Since in the present study,
only the local component of the neutron noise is of interest, the transfer functionG(z, z′, t)
can be approximated as:

G(z, z′, t) ∼ e−λ(z)|z−z′| (2.27)

2.3 Quantitative analysis of the space dependence of the noise

This Section shows some results of the neutron noise calculations, performed in the space
domain for different system sizes and different frequencies or, equivalently, different
propagating velocities in one-group approximation and for four spectrally-different cores
with several cross-sections simultaneously perturbed in the two-group case.

2.3.1 One-group calculations

First, the case of very small frequencies ω = 0.01 rad/s both for the small and large
system: (H =50 cm and 500 cm, respectively), is shown:
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Figure 2.4: Amplitude and phase of the neutron noise for H = 50 cm, v = 25 cm/s, ω = 0.01
rad/s
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Figure 2.5: Amplitude and phase of the neutron noise for H = 500 cm, v = 250 cm/s, ω = 0.01
rad/s

As figures (2.4) and (2.5) show, for this specific case (small frequencies) the total noise
is fully dominated by the point-kinetic term, whereas the contribution from the space-
dependent term is negligible, which agrees with our considerations in Section 2.2.1.

As a next step, another interesting case, that of a large system with an intermediate
frequency, namely ω = 10π rad/s, is discussed. This corresponds to a situation when the
reactivity effect is very small and, hence, the space-dependent component of the noise
fully dominates.
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Figure 2.6: Amplitude and phase of the neutron noise for H = 500 cm, v = 250 cm/s, ω = 10
rad/s

Indeed, as is seen from Fig. 2.6, the amplitude and the phase of the resulting noise
follows those of the reactivity (see Fig. 2.1 in Section 2.1.1), as expected. However, it is
more interesting to investigate another, less trivial intermediate case, which lies between
the two previous ones. Such a case is a frequency lying at the lower end of the so-called
plateau region, but not coinciding with a sink frequency of the reactivity, so that both the
point kinetic and the space-dependent terms of the noise co-exist. That is what is given in
Fig. 2.7 for the case of the small system (H = 50 cm) and intermediate frequency (ω = 10
rad/s).

In this case, one can observe that the total noise contains contributions from both
the reactivity term and the space-dependent term with comparable amplitudes. One
can also notice an interesting behaviour of the full solution, in the sense that both terms
are smooth functions in space, but the total solution exhibits some oscillations with a
peak-dip structure. The explanation of this phenomenon comes from the phase relations
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between the two contributions. Namely, from Fig. 2.7, it is seen that in some of the spatial
points both terms are in-phase, which generates a peak in the total noise, whereas in other
points they are out-of-phase which results in dips in the full solution. In Paper I, some
other examples of such interference effects and more detailed discussion are given.
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Figure 2.7: Amplitude and phase of the neutron noise for H = 50 cm, v = 25 cm/s, ω = 10
rad/s

2.3.2 Two-group calculations

The dynamical response of four different cores, having different energy spectra, to vari-
ous propagating perturbations, is investigated. The selected systems are a MOX fuelled
fast reactor, a PWR, a BWR and a heavy water reactor (CANDU). The detailed descrip-
tion of the properties of the cores can be found in Paper II. In order to specify the noise
source, the static fluxes should be estimated. The corresponding fast and thermal static
fluxes together with their static adjoints for all four systems are given in Paper II, where,
as expected, clear spectral differences resulting in the MOX loaded fast system having
the hardest and the heavy water moderated CANDU reactor the softest spectra, can be
observed.

Since in most work in the past the space-dependence of the transfer functions was per-
formed by using the dynamic adjoint, it is instructive to analyze the space-dependence
of each of the components of the adjoint Green’s function. The space-dependence of the
amplitude of the components of the fast adjoint function (i.e. G†

11 and G†
21) is shown in

Fig. 2.8. It should be pointed out that in these Green’s function components there is no
visible occurrence of the local component.

The space-dependence of the amplitude of the thermal adjoints (i.e. G†
12 and G†

22) for
the four cores is shown in Fig. 2.9. These results clearly agree with earlier calculations
in the literature where a strong local component was observed for the fast and the light
water cores. From Fig. 2.9 one can notice that the local component is the largest for the
fast spectrum core and it is hardly visible for the CANDU. The latter can possibly be
explained due to the large width of the local component which makes the presence of the
local component more difficult to see.

Finally, the neutron noise induced by propagating perturbations in the inlet flow tem-
perature is considered. The noise calculations are considered in two steps. First, it is
assumed that only the thermal absorption cross-section is perturbed. Such a case is nec-
essary for comparison with earlier obtained results. The space-dependence of the fast
and thermal propagating neutron noise induced by fluctuations of the thermal absorbing

16



2.3. Quantitative analysis of the space dependence of the noise

50 100 150 200 250 300 350
z @cmD

10
20
30
40
50
60

Amplitude
MOX, H=367 cm, Ω=2 rad�s

G21
Ö

G11
Ö

50 100 150 200 250 300 350
z @cmD

10
20
30
40
50
60

Amplitude
PWR, H=365 cm, Ω=2 rad�s

G21
Ö

G11
Ö

50 100 150 200 250 300 350
z @cmD

10
20
30
40
50
60
70

Amplitude
BWR, H=368 cm, Ω=2 rad�s

G21
Ö

G11
Ö

100 200 300 400 500 600
z @cmD

10

20

30

40

50

60
Amplitude

CANDU, H=594 cm, Ω=2 rad�s

G21
Ö

G11
Ö

Figure 2.8: Space dependence of the amplitude of the components of the fast adjoint: a MOX
reactor (upper left figure) , a PWR (upper right figure), a BWR (lower left figure) and a CANDU
reactor (lower right figure) for ω = 2 rad/s and z′ = H/2.
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Figure 2.9: Space dependence of the amplitude of the components of the thermal adjoint: a MOX
reactor (upper left figure), a PWR (upper right figure), a BWR (lower left figure) and a CANDU
reactor (lower right figure) for ω = 2 rad/s and z′ = H/2.
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cross-section is shown in Fig. 2.10 for all four cores investigated. The plots are similar
to those of the one-group calculations given in Section 2.3.1 where a similar interference
effect between the point-kinetic and space-dependent components leading to the oscil-
lating behaviour of the total noise was observed. The spectral ratio between the fast and
thermal neutron noise is similar to that of the static fluxes or of the corresponding Green’s
function components.
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Figure 2.10: Space-dependence of the neutron noise induced by propagating perturbation of the
thermal absorption cross-section only: in a MOX reactor (upper left figure), in a PWR (upper right
figure), in a BWR (lower left figure) and in a CANDU reactor (lower right figure) for ω = 10 rad/s
and v = H/2 cm/s. For the MOX core, the thermal noise was multiplied by a factor 6 for better
visibility.

Next, the space-dependence of the propagating noise as induced by perturbations of
all cross-section is given in Fig. 2.11. As shown in Paper II, there are a number of interest-
ing features which can be observed in the characteristics of the propagating noise demon-
strated in Fig. 2.11. The fast noise looks similar to that of the previous case, whereas the
thermal noise displays several differences. One of these is the case of the MOX where
the oscillating structure of the thermal noise is changed, i.e. the maxima and the minima
changed place and the spatial oscillations of the fast and the thermal noise are not the
same any longer. The explanation is that when fluctuations of several cross-sections take
place simultaneously, their effects add up with different signs and different weights in
the resulting noise. The sign difference is simply due to the fact that different processes
contribute differently to the neutron balance equation, i.e. the generation/destruction of
the neutrons in the corresponding groups. The different weighting is related to the fact
that the fast and thermal noise sources are contributing to the propagating noise via a
weighting by the different components of the Green’s function with different amplitudes.

Another interesting difference between Fig. 2.10 and Fig. 2.11 is that the thermal
noise is much larger in the BWR than in the case of pure thermal absorption cross-section
perturbations. This could be explained by the fact that an increase of the coolant tem-
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Figure 2.11: Space-dependence of the propagation noise induced by the fluctuations of all cross-
sections in the four cores considered, for ω = 10 rad/s and v = H/2 cm/s. For the MOX core, the
thermal noise was multiplied by a factor 6 for better visibility.

perature leads to an increase of the void fraction, with the result that the change in the
removal cross-section becomes larger than that of the thermal absorption cross-section.
In its turn, perturbation of the removal cross-section affects the neutron noise much more
than the fast noise. This is because in the thermal noise, the component due to the re-
moval cross-section dominates over the noise induced by the other cross-section fluctua-
tions. In the fast noise, the noise induced by the removal cross-section and the noise by
the other cross-section fluctuations are of comparable magnitude but have an opposite
phase. Thus, there is not any munificent increase of the amplitude observed in the case
of the fast noise.

2.4 Qualitative analysis of the frequency dependence of the
noise

In this final Section, the results of the investigation, similar to the one in the previous Sec-
tion, but performed in the frequency domain for several fixed axial positions in the reac-
tor core, as well as the corresponding numerically-simulated neutron noise, are demon-
strated.

2.4.1 One-group calculations

In the left plot of Fig. 2.12 the frequency-dependence of the amplitude of the noise, in-
duced by a propagating density perturbation is shown for two different axial core po-
sitions. It is clear that in both cases the point-kinetic behaviour dominates, showing a
frequency dependence of the noise similar to that of the reactivity.
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Figure 2.12: Amplitude of the frequency-dependence of the neutron noise for two axial positions
in the core z = 0.25H cm and z = 0.5H cm, for H = 50 cm, v = 8.3 cm/s (left figure) and for
H = 200 cm, v = 33.3 cm/s (right figure), respectively.

A more interesting result is shown in the right plot of Fig. 2.12 where a system with in-
termediate size was chosen. It is clear from the figure that for this case the total noise still
keeps some point-kinetic behaviour, although in a definitely less pronounced way. For
instance, for the different axial space points, the solution behaves differently. Namely, at
some frequencies, the noise has maximum in both spatial points; at some other frequen-
cies, it has maximum in one spatial point and a minimum in the other position.

This behaviour can be explained using the same approach as the one, applied in the
interpretation of the space-dependence of the noise, and is due to the interference be-
tween the different noise components. Therefore, the amplitude and phase for both the
total neutron noise and for each of its components are analyzed below. The correspond-
ing results are shown in Fig. 2.13 for z = H/2 .
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Figure 2.13: Amplitude and phase of the frequency-dependence of the neutron noise forH = 200
cm, v = 33.3 cm/s, z = 0.5H cm.

From the right part of Fig. 2.13, where the frequency-dependence of the phase for the
case z = 0.5H is shown, one can notice that in every second interval between two sink
frequencies the phases of the two components are equal, whereas in the alternating every
second interval the phases of both terms are out-of-phase. This affects the amplitude of
the total noise in such a way that at every second peak of the reactivity term the total
noise has a maximum, otherwise it has a minimum. The corresponding study for the
case of z = 0.25H can be found in Paper I.
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2.4.2 Two-group calculations

The same sequence will be followed here as for the space-dependence of the neutron
noise in two-group theory discussed in Section 2.3.2, but this time the frequency-depen-
dence of the neutron noise is investigated. First, the frequency-dependence of the am-
plitude of the propagating noise, induced by the perturbed thermal absorption cross-
section is considered. The corresponding results are shown in Fig. 2.14. The frequency-
dependence of the amplitude shows a similar structure as in Section 2.4.1, i.e. the peri-
odic sink structure caused by periodic vanishing of the reactivity effect of the propagating
perturbation. Several features of these spectra were also observed in similar calculations
performed for MSR systems. One is the spectral ratio between the fast and thermal neu-
tron noise. The other two features are the somewhat deeper sinks in the fast than in the
thermal noise, and the slower decay of the spectra with increasing frequency in the ther-
mal noise than in the fast. Both these features can be clarified by the fact that the thermal
noise is affected by the presence of the strong local component, whereas the weight of the
local component is vanishingly small in the transfer functions which are used to calculate
the fast noise. Regarding the depth of the sinks, similarly to the pure space-dependent
component, the local component does not have any sink structure, hence its presence
makes the sinks shallower. The difference in the decay of the spectra of the different
components with increasing frequency can be explained as being the consequence of the
much slower decay of the local component than that of the global (due to different relax-
ation lengths between the global and local components) which are integrated with highly
oscillating functions.
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Figure 2.14: Frequency-dependence of the neutron noise induced by propagating temperature
perturbation in absorption cross-section only in a MOX reactor (upper left figure), in a PWR (up-
per right figure), in a BWR (lower left figure) and in a CANDU reactor (lower right figure) for
z = H/2 cm and v = H/2 cm/s.
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The next step is the calculation of the propagating noise for the case when several
cross-sections are simultaneously perturbed. The results are given in Fig. 2.15. The struc-
ture of these spectra is significantly more complicated and irregular than in the previous
case, whereas some general properties such as the spectral dependence of the noise, less
pronounced sink structures of the thermal noise, etc. are still preserved. However, the
sink structure is much diminished and irregular even for the fast flux and there are some
peculiar deep dips in either the fast or the thermal noise at a given frequency for all sys-
tems. The seemingly irregular sink structure and the single sinks in the spectra can all be
explained by the interplay of different components of the noise, i.e. the contribution of
various cross-section perturbations together with the presence of local and global com-
ponents. More details are given in Paper II.
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Figure 2.15: Frequency-dependence of the neutron noise induced by propagating temperature
perturbation in a MOX (upper left figure), in a PWR (upper right figure), in a BWR (lower left
figure) and in a CANDU reactor (lower right figure) for z = H/2 cm and v = H/2 cm/s.

2.4.3 Numerically simulated neutron noise

As a starting point, 1320 second-long void fraction signals are generated by the Monte-
Carlo two-phase flow model described earlier. The measurements of the void fraction are
performed at eight different axial levels within the same radial position. The correspond-
ing normalized neutron noise is generated through the spatial convolution between the
binary void fraction signals imitating the neutron noise source for the case of the propa-
gating perturbation and the local component of the transfer function. The results of the
simulation of the time-dependent behaviour of the neutron noise for the fourth axial level
are shown in Fig. 2.16. The synthetic neutron noise looks quite similar to that obtained
in real measurements with a clear stochastic character of the induced noise. Then, the
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Figure 2.16: Time-dependence of the neutron noise induced by the two-phase flow fluctuations
as calculated from the Monte Carlo model for a long and a short time period, respectively.

spectral densities for each of eight detectors are calculated by using standard fast Fourier
transform (FFT). The corresponding APSDs of the simulated neutron noise are shown
in Fig. 2.17. The interesting feature, observed in all plots shown in Fig. 2.17 and at all
axial levels, is the characteristic break of the APSDs, occurring at around 17 Hz which
strongly depends on the axial position of the detector and monotonically increases with
an increasing axial elevation. This break can be explained due to the finite velocity of the
bubbles which acts as a low-pass filter for the neutron noise spectra. Likewise, the ampli-
tude of the APSD for the first four cases also increases with an increasing axial position.
One possible reason for such a behaviour of the APSD, is an axially-increasing void frac-
tion as one elevates upwards along the heated channel. However, this is not the case for
the last four points zd = 180, 210, 300 and 380 cm. The results of the neutron noise, gen-
erated from this model, will be used in Chapter 4 in the elaboration of unfolding methods
to determine the local void fraction.

10
−1

10
0

10
1

10
210

4

10
5

10
6

10
7

10
8

frequency [Hz]

A
m

pl
itu

de
 [a

.u
.]

Auto Power Spectral Density

 

 

z1=40 cm
z2=60 cm
z3=100 cm
z4=130 cm
z5=180 cm
z6=210 cm
z7=300 cm
z8=380 cm

Figure 2.17: Normalized auto power spectral densities of the simulated in-core detector signals
calculated for eight axial elevations zd = 40, 60, 100, 130, 180, 210, 300, 380 cm, respectively.
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Chapter 3
METHODS FOR MODELING THE
EFFECT OF PROPAGATING
PERTURBATION IN CLOSED-LOOP
SYSTEMS

All the waste in a year from a nuclear power plant can be stored under a desk.
— Ronald Reagan

In the present Chapter, which is the summary of Papers IV and V, the neutron noise
induced by propagating perturbations in closed-loop systems, i.e. in systems with feed-
back effect included, is analyzed. This Chapter only focuses on BWRs, where two feed-
back mechanisms, i.e. the Doppler and the void, are usually taken into account, provid-
ing the correct coupling between different aspects of physics involved, such as thermal
hydraulics, neutron transport, etc. Since different physical phenomena in the reactor core
act on different time-scales (i.e. have inherent time delays with respect to each other),
such a coupling represents the main origin for instabilities in closed-loop systems, com-
pared with open-loop ones where the properties of the system mainly depend on the
properties of the transfer function (i.e. neutron-kinetic properties of the system). As a
matter of fact, what regards the instabilities caused by propagating perturbations, the sit-
uation in closed-loop systems is much more involved and requires careful investigation.
Therefore, to study the stability properties of such complex systems, it is instructive to
construct simplified models, commonly named as reduced order models (ROMs). The
main idea of a ROM development is to drastically reduce the complexity of the system
geometry, but at the same time to preserve all main features of the BWR dynamics, in
particular, the ones related to stability. The typical ROM consists of three submodels: the
neutron-kinetics, heat transfer and thermal-hydraulics, thus, covering the most impor-
tant fields of physics that govern BWR behaviour.

Here, the analysis is performed in two steps. First, the modeling of so-called core-
wide instabilities including both the global and regional ones with ROMs, is consid-
ered [1]. For this purpose, a four heated channel ROM, taking into account the effect
of fundamental and first two azimuthal modes, is constructed. It should be pointed out
that for the correct representation of both azimuthal modes from the thermal-hydraulic
point-of-view, at least four heated channels are necessary. As will be shown later on,
the proper modeling of both azimuthal modes is important for reconstructing some in-
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teresting features related to the non-linear properties of the system such as an oscillat-
ing symmetry line which was observed in several past measurements [32]. The present
ROM is developed on the basis of earlier-developed ROMs [21, 25, 26] with some addi-
tional modifications implemented. One of them is related to a consistent ROM coupled
calculation at steady-state. To achieve this, a special methodology which provides full
consistency between the spatial discretization procedures used in the dynamical cases
and the ones implemented in static cases is developed. For this purpose, the ROM is
coupled to a 3D commercial core simulator in such a way that the balance equations (i.e.
neutron flux, heat, mass, momentum and energy balance equations) could be fulfilled
for the steady state solution of the coupled problem. In addition, a non-uniform power
profile representing the separate heat sources in the single- and two-phase regions is in-
corporated into the ROM. Special attention is paid to the coupling coefficients for the
reactivity effects related to both void fraction and fuel temperature which are explicitly
calculated combining the cross-section data from the SIMULATE-3 [33] code and the dif-
ferent neutronic eigenmodes of the heterogeneous core from the CORE SIM tool [34]. A
more detailed description is given in Paper IV.

Next, a methodology to include the effect of local instabilities into the ROM is inves-
tigated and discussed. The modeling of local instabilities with the ROM is a somewhat
more challenging task than that of core-wide instabilities, whose modeling is relatively
straightforward. The latter can be explained by the fact that any strongly localized phe-
nomenon requires a high-order modal expansion of the neutron flux. As a result, in
order to properly simulate any local instability, a very large number of modes should be
included which is obviously not feasible for such a simple tool as a ROM. In the present
study, another solution, based on the utilization of the spatial distribution of the local
instability estimated from the CORE SIM tool is demonstrated. The proposed methodol-
ogy is tested to model the effect of so-called density wave oscillations originating from
the propagating character of the coolant density perturbations traveling along a single
heated channel. As an event of interest for the demonstration of the ROM capability,
the channel instability event that took place at the Forsmark-1 BWR in 1996/1997 is cho-
sen [23,28,29]. This instability was presumably caused by several unseated fuel bundles,
creating DWOs [30] and, hence, induced local power oscillations. More details can be
found in Paper V.

3.1 Modeling of global and regional instabilities

A cursory description of a four heated channel reduced order model, consisting of three
separate submodels for the neutron transport, heat transfer and flow transport is given.
Some details regarding the development of the ROM are touched upon. Careful attention
is payed to the new features implemented, compared to already existing models. Some
results of the applications of the ROM to study core-wide instabilities are also discussed.

3.1.1 Neutron kinetic model

This Section gives a brief overview of the neutron-kinetic model, implemented in the
ROM. First, the procedure, which is applied to derive the ordinary differential equa-
tions from the 3D partial differential reactor-dynamic equations and the assumptions
which are needed to be made, are described. One starts with the three-dimensional time-
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dependent two-energy group diffusion equations, written in the operator (matrix) form
as [7, 21]:

¯̄v∗−1 · ∂Ψ̄
∗(r̄∗, t∗)

∂t∗
= [(1− β∗) · ¯̄F ∗(r̄∗, t∗)− ¯̄L∗(r̄∗, t∗)] · Ψ̄∗(r̄∗, t∗)

+

6∑
l=1

λ∗l · C∗
l (r̄

∗, t∗) · X̄, (3.1)

∂C∗
l (r̄

∗, t∗)

∂t∗
· X̄ = β∗l · ¯̄F ∗(r̄∗, t∗) · Ψ̄∗(r̄∗, t∗)− λ∗l · C∗

l (r̄
∗, t∗) · X̄, (3.2)

where Ψ̄∗(r̄∗, t∗) is the neutron flux vector which consists of the fast Ψ∗
1(r̄

∗, t∗) and ther-
mal Ψ∗

2(r̄
∗, t∗) neutron fluxes, ¯̄L(r̄, t) is the net loss matrix operator, which represents

the neutron leakage through diffusion, scattering and absorption, ¯̄F (r̄, t) is the fission
production matrix operator, which represents the neutron production through fission re-
actions, C∗

l (r̄
∗, t∗) is the concentration for the lth delayed neutron precursor group and X̄

is a unit vector. The rest of the notations are standard. From now on, an asterisk stands
for the dimensional quantities, otherwise they are considered to be dimensionless.

Applying first-order perturbation theory, namely assuming small fluctuations of the
neutron flux Ψ̄∗(r̄∗, t∗) and C∗

l (r̄
∗, t∗) around their steady state values, due to perturba-

tions in both the fission ¯̄F ∗(r̄∗, t∗) and net loss ¯̄L∗(r̄∗, t∗) operators and taking into ac-
count static equations, the following equations for the fluctuating parts ¯δΨ

∗
(r̄∗, t∗) and

δC∗
l (r̄

∗, t∗) can be obtained:

¯̄v∗−1 · ∂
¯δΨ

∗
(r̄∗, t∗)

∂t∗
= [(1− β∗) · ¯̄δF ∗(r̄∗, t∗)− ¯̄δL∗(r̄∗, t∗)] · (Φ̄∗

0(r̄
∗) + ¯δΨ

∗
(r̄∗, t∗))

+λ · δC∗
l (r̄

∗, t∗) · X̄ + [(1− β∗) · ¯̄F ∗
0 (r̄

∗, t∗)− ¯̄L∗
0(r̄

∗, t∗)] · ¯δΨ
∗
(r̄∗, t∗), (3.3)

∂δC∗
l (r̄

∗, t∗)

∂t∗
· X̄ = β∗ · ¯̄δF ∗(r̄∗, t∗) · (Φ̄∗

0(r̄
∗) + ¯δΨ

∗
(r̄∗, t∗))

−λ · δC∗
l (r̄

∗, t∗) · X̄ + β∗ · ¯̄F ∗
0 (r̄

∗) · ¯δΨ
∗
(r̄∗, t∗). (3.4)

Next, one expands both the space-time dependent neutron flux ¯δΨ∗(r̄∗, t∗), as well as
the space-time dependent concentration of the delayed neutron precursors δC∗

l (r̄
∗, t∗) in

terms of lambda (reactivity) modes as:

¯δΨ∗(r̄∗, t∗) =
∞∑
n=0

¯̄P ∗
n(t

∗) · Φ̄∗
n(r̄

∗), (3.5)

δC∗
l (r̄

∗, t∗) · X̄ =

∞∑
n=0

C∗
nl(t

∗) · ¯̄F ∗
0 (r̄

∗) · Φ̄∗
n(r̄

∗) · Λ∗
n, (3.6)

where Φ̄∗
n(r̄

∗) is the eigenvector, satisfying the corresponding λ eigenvalue problem.
Substituting Eqs. (3.5) and (3.6) into Eqs. (3.3) and (3.4), multiplying the resulting

equation by the adjoint eigenmode Φ̄∗†
m(r̄∗), assuming one group of delayed neutron pre-

cursors, after integration and some rearrangements, one gets the following dimensionless
point-kinetic equations:

dPm(t)

dt
=

1

Λm
(ρsm − β)Pm(t) +

1

Λm

2∑
n=0

ρFmn(t)Pn(t) + λCm(t), (3.7)

27



Chapter 3. METHODS FOR MODELING THE EFFECT OF PROPAGATING
PERTURBATION IN CLOSED-LOOP SYSTEMS

dCm(t)

dt
=

β

Λm
Pm(t)− λCm(t), (3.8)

where m = 0, 1, 2 is the mode number, ρsm is the static reactivity, ρFmn are the dynamic
feedback reactivities and Λm = Λmm (for m = 0 Λm gives the prompt neutron generation
time). The dynamic feedback reactivities ρFmn reflect the feedback mechanism between
the neutron kinetics and thermal-hydraulics in terms of void fraction and fuel tempera-
ture. In the linear approximation, the feedback reactivities for both void fraction and fuel
temperature can be expressed, respectively, as:

ρFmn(t) = ρVmn(t)|Tf (t)=const + ρDmn(t)|α(t)=const

=

4∑
l=1

CV
mn,l(αl(t)− α0) +

4∑
l=1

CD
mn,l(Tf,l(t)− Tf0), (3.9)

where l stands for the channel number and α0 and Tf0 are the steady-state void fraction
and fuel temperature, correspondingly. The reactivity coupling coefficients C∗V,T

mn,l were
estimated numerically utilizing the cross-section data from SIMULATE-3 and spatial dis-
tribution of the eigenmodes from CORE SIM. A more detailed derivation can be found
in Paper IV.

3.1.2 Heat transfer model

In the following, the main steps needed to be undertaken to convert the partial differ-
ential equations, describing the heat conduction in the fuel rod, into the corresponding
ordinary differential equations, are described. The necessary assumptions and mathe-
matical tricks which have to be applied to approach the final goal are also discussed. To
begin with, the general three-dimensional time-/space-dependent energy balance equa-
tion, written for the single fuel rod reads as [20, 21]:

ρ∗c∗p
∂

∂t∗
T ∗(r̄∗, t∗) = q∗

′′′
(r̄∗, t∗)− ∇̄∗ · q̄∗′′(r̄∗, t∗), (3.10)

where ρ∗ is the density of the rod fuel, c∗p is the specific heat of the fuel rod under constant
pressure, q∗

′′′
(r̄∗, t∗) is the volumetric heat production per unit time and per unit fuel rod

volume, and q̄∗
′′
(r̄∗, t∗) is the heat flux from the fuel rod surface area.

Next, neglecting the axial heat conduction and assuming azimuthal symmetry, the
fuel pellet temperature distribution can be approximated through two piece-wise quadratic
spatial functions with time-dependent expansion coefficients, written as:

Θp(r, t) =


T1(t) + η1(t)r + η2(t)r

2 if 0 < r < rd,

T2(t) + σ1(t)r + σ2(t)r
2 if rd < r < rp.

(3.11)

Here, one notes that the time dependent expansion coefficients ηi(t) and σi(t), i = 1, 2
can be expressed through the Ti(t), i = 1, 2 and system (design) parameters, utilizing the
discontinuity and boundary conditions.

Then, taking into account that there are three radial regions in the fuel rod (i.e. fuel
pellet 0 < r < rp, fuel gap rp < r < rg and fuel cladding rg < r < rp), after the
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application of the variational principle, the following reduced differential equations for
Ti(t), describing the fuel rod conduction dynamics, are obtained:

dT1,l,jϕ(t)

dt
= p11,jϕT1,l,jϕ(t) + p21,jϕT2,l,jϕ(t) + p31,jϕcq

2∑
i=0

ξi(Pi(t)− P̃i), (3.12)

dT2,l,jϕ(t)

dt
= p12,jϕT1,l,jϕ(t) + p22,jϕT2,l,jϕ(t) + p32,jϕcq

2∑
i=0

ξi(Pi(t)− P̃i), (3.13)

where pij are complicated coefficients which depend on the design and operational pa-
rameters, jϕ stands for the single- (1ϕ) or two-phase (2ϕ) regions, l is the channel number
between 1 and 4, and P̃0 is the steady state value of the fundamental mode.

3.1.3 Thermo-hydraulic model

In this Section the description of the thermal-hydraulic model for our ROM is given.
Since there are two axial coolant regions assumed in the channel, namely single-phase
and two-phase regions, with a constant flow cross section, the description is performed
in two separate sections, respectively. Within the scope of this Section, the procedure
to transform the PDEs, describing thermal-hydraulic processes, into simplified ODEs,
applying the variational method, is demonstrated.

Single-phase region

One starts with three local conservation equations written for mass, momentum and en-
ergy, respectively, as [20, 21]:

∂ρ∗(r̄∗, t∗)

∂t∗
+ ∇̄∗ · (ρ∗v̄∗)(r̄∗, t∗) = 0, (3.14)

∂(ρ∗v̄∗)

∂t∗
(r̄∗, t∗) + ∇̄∗ · (ρ∗v̄∗ ⊗ v̄∗)(r̄∗, t∗) =

∇̄∗ · ¯̄τ∗(r̄∗, t∗)− ∇̄∗ · (P ∗(r̄∗, t∗) ¯̄I) + ρ∗(r̄∗, t∗)ḡ∗, (3.15)
∂(ρ∗e∗)(r̄∗, t∗)

∂t∗
+ ∇̄∗ · (ρ∗e∗v̄∗)(r̄∗, t∗) = −∇̄∗ · q̄∗′′(r̄∗, t∗)

+q̄∗
′′′
(r̄∗, t∗) + ∇̄∗ · (¯̄τ∗ · v̄∗)(r̄∗, t∗)− ∇̄∗ · (P ∗v̄∗)(r̄∗, t∗) + (ρ∗ḡ∗ · v̄∗)(r̄∗, t∗), (3.16)

where ⊗ stands for the tensor multiplication and ¯̄I is the unit tensor.
Further, assuming the coolant flow mainly in the axial direction (i.e. neglecting the

radial flow), the time-dependent single-phase enthalpy h(z, t) can be expressed with a
second order polynomial as:

h(z, t) ≈ h2(z, t) = h(0, t) +
2∑

i=1

pi(t)z
i. (3.17)

Then, rewriting the energy balance equation in terms of enthalpy, after cross-section
averaging, the following dimensionless ODEs can be derived for the corresponding en-
thalpy time-dependent expansion coefficients pi(t) for each of four heated channels:

dp1,l(t)

dt
=

6

µl(t)
[NρNrNpch,1ϕ,l(t)− vinlet,l(t)p1,n(t)]− 2vinlet,l(t)p2,l(t), (3.18)
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dp2,l(t)

dt
= − 6

µ2l (t)
[NρNrNpch,1ϕ,l(t)− vinlet,l(t)p1,l(t)], (3.19)

where Nr and Nρ are dimensionless numbers, Fr is the Froude number and Npch,1ϕ(t) is
the so-called time dependent phase change number in the single-phase region which is
proportional to the wall heat flux q∗

′′
1ϕ and µ(t) is the boiling boundary (the axial elevation

in the reactor core where boiling starts).

Two-phase region

Following the procedure as in the single-phase region, one starts with the three local
conservation equations written for mass, momentum and energy for each coolant phase
region, respectively, as [20, 21]:

∂ρ∗k(r̄
∗, t∗)

∂t∗
+ ∇̄∗ · (ρ∗kv̄∗k)(r̄∗, t∗) = 0, (3.20)

∂(ρ∗kv̄
∗
k)

∂t∗
(r̄∗, t∗) + ∇̄∗ · (ρ∗kv̄∗k ⊗ v̄∗k)(r̄

∗, t∗) =

∇̄∗ · ¯̄τ∗(r̄∗, t∗)− ∇̄∗ · (P ∗
k (r̄

∗, t∗) ¯̄I) + ρ∗k(r̄
∗, t∗)ḡ∗, (3.21)

ρ∗(r̄∗, t∗)
∂h∗(r̄∗, t∗)

∂t∗
+ (ρ∗v̄∗)(r̄∗, t∗) · ∇̄∗ · h∗(r̄∗, t∗) =

−∇̄∗ · q̄∗′′(r̄∗, t∗) + q∗
′′′
(r̄∗, t∗) + ¯̄τ∗(r̄∗, t∗) : [∇̄∗ ⊗ v̄∗(r̄∗, t∗)]

∂P ∗(r̄∗, t∗)

∂t∗
+

+v̄∗(r̄∗, t∗) · ∇̄∗P ∗(r̄∗, t∗), (3.22)

Here, k = l, v stands for the coolant phase: l for the liquid phase and v for the vapor
phase. Further, performing a radial space-averaging on the entire cross-sectional flow
area, assuming that both phases are in thermal equilibrium (homogeneous equilibrium
model), applying the mixture model and replacing the time-dependent flow quality with
the following second order polynomial profile:

x(z, t) ≈ x2(z, t) = NρNr(d1(t)(z − µ(t)) + d2(t)(z − µ(t))2). (3.23)

and implementing the variational method to the resulting equations, after some rear-
rangements one gets the following dimensionless ODEs for the corresponding quality
time-dependent expansion coefficients di(t) for each of the four channels:

dd1,l(t)

dt
=

1

f2,l(t)
(f3,l(t)f1,l(t) + f4,l(t)), (3.24)

dd2,l(t)

dt
=

1

f5,l(t)
(f3,l(t)f1,l(t) + f6,l(t)). (3.25)

In the above, fi(t), i = 1, ..., 6 are complicated functions of time, depending on the design
and operational parameters, as well as phase variables, i.e. inlet velocity vinlet(t), pellet
temperature time-dependent coefficients Ti(t) , i = 1, 2, phase change number Npch,2ϕ,
mixture density ρm(z, t) and boiling boundaries µ(t).

The remaining two equations (3.15) and (3.21), written for the single- and two-phase
pressure drops, are used to derive the ODEs for the inlet velocity, using the pressure drop
balance and are not given here.
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3.1.4 ROM modifications

In the following, the major modifications of the present ROM, compared to other existing
ROMs developed in the past, are pointed out. These modifications were performed in
order to improve the consistency of the ROM with the input data used and to better
model the physical behaviour of instabilities. The list of the required input parameters
for the ROM simulations are given below:

1. the design parameters of the system;

2. the thermal-hydraulic state variables, i.e. saturation temperature, densities, etc.;

3. the operational parameters or conditions, i.e. inlet flow, power, external pressure
drop and inlet temperature/enthalpy.

Some of these parameters were extracted from the static core simulator SIMULATE-3
output, providing the detailed description of the BWR core. Others were taken from the
technical description of a BWR power plant and water tables.

Adjustment of the homogeneous equilibrium model to a higher order model (drift
flux model)

From the ROM analysis, it was found that the models currently used, where the homo-
geneous equilibrium model (HEM) [20,21] is utilized, significantly overestimate the void
faction at the core exit, compared with the one calculated by SIMULATE-3. For compari-
son, both void fraction profiles are demonstrated in the left plot of Fig. 3.1. From the right
plot of Fig. 3.1 where the results of the stability calculations performed with the ROM
are shown, one can conclude that the investigated system is very close to an unstable
behaviour, whereas a stable behaviour of the system was proven by system codes where
the drift flux model (DFM) [20, 25, 26] is implemented.
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Figure 3.1: Axial void profile calculated by SIMULATE-3 (left figure, red line) and by the ROM
(left figure, black line) and the corresponding ROM stability analysis (right figure) with the origi-
nal value of cross-sectional flow area A∗

actual = 1.3811 · 10−4m2.

To overcome this inconsistency between the HEM and the DFM and not to further
complicate the ROM system, the cross-section flow area of the heated channel A∗

o was
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artificially modified, so that the HEM can reproduce the void profile estimated by higher-
order models such as the DFM. The new cross-section flow area was estimated by com-
paring the exit void fraction calculated from the ROM with HEM and the one from
SIMULATE-3 with DFM, i.e. the following relationship between the old and the new
cross-section flow areas was obtained:

A∗
o,ROMadj =

1

1+
1−α∗

exit,ROM
α∗
exit,ROM

ρ∗
l

ρ∗g

· (h∗g − h∗l )− h∗inlet + h∗l

1

1+
1−α∗

exit,SIM
α∗
exit,SIM

ρ∗
l

ρ∗g

· (h∗g − h∗l )− h∗inlet + h∗l
·A∗

o,SIM (3.26)

A more detailed derivation of Eq. (3.26) is given in Paper IV. The axial void profile as
calculated from the ROM with adjusted cross-section flow area A∗

o is shown in Fig. 3.2
(left figure). Comparing the ROM stability analysis with the actual cross-sectional flow
areaA∗

actual [see Fig. 3.1, right figure] with the one performed with the adjusted flow area
A∗

o [see Fig. 3.2, right figure], one can notice that the adjustment of the flow area stabilizes
the system due to the reduction of the void fraction at the core outlet.
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Figure 3.2: Axial void profile calculated by SIMULATE-3 (left figure, red line) and by the ROM
with uniform power profile (left figure, black line) and result of the corresponding stability anal-
ysis (right figure) with the adjusted value of A∗

o = 2.049 · 10−4m2.

Introduction of non-uniform power profile

Although the cross-section flow area utilized in the ROM was properly adjusted to com-
pensate for the use of the HEM, there is still a big mismatch observed between the
void profile as calculated by the ROM with the corrected A∗

o and the one calculated in
SIMULATE-3. The reason for this mismatch can be explained by the fact that a uniform
axial power profile was assumed when calculating the ROM void profile. However, in
real commercial BWRs, the axial power profile is always bottom-peaked due to the better
moderation properties of the subcooling region. For this reason, a two-step power den-
sity representing the separate power production in the single- and two-phase regions was
introduced into the ROM. This was achieved by replacing the uniform power density c∗q
with non-uniform ones c∗q,1 and c∗q,2 for the single- and two-phase regions, respectively,
utilizing the realistic axial power profile from the 3D core simulator CORE SIM. The nu-
merical method for estimating c∗q,1 and c∗q,2 is presented in Paper IV.
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3.1. Modeling of global and regional instabilities

Iterative procedure for steady-steady state calculations

It is worth mentioning that the steady-state solution available from a commercial core
simulator together with all necessary input data and parameters for the calculations,
cannot be directly used in the ROM since such a steady-state solution will not satisfy
the corresponding ROM balance equations, i.e. neutron, heat and flow balance equa-
tions. The reason lies with the fact that the ROM equations are fundamentally different
from the ones used in core simulators, especially what regards the spatial discretization.
Consequently, a steady-state solution consistent with models implemented in the ROM
has to be found. For this purpose, an iterative procedure was developed to estimate the
proper steady-state solution. A short description of this procedure is given below.

From the steady-state solution obtained from a commercial core simulator (i.e. SIMU-
LATE-3), the three-dimensional distributions of the macroscopic cross-sections were ob-
tained together with their relative changes due to either void fraction or fuel temperature
perturbations. These cross-section distributions were consequently used in CORE SIM
to calculate the static flux. Afterwards, using the boiling boundary estimated from the
commercial core simulator SIMULATE-3, the CORE SIM solution was used to estimate
the power produced in the single- and two-phase regions. Then, the dimensionless heat
transfer equations were correspondingly modified in order to account for a non-uniform
power profile.

Next, the fuel temperature and flow properties were estimated using the ROM ther-
mal hydraulic model at the steady-state. Based on the computed thermal-hydraulic so-
lution, a new set of cross-sections as well as a new boiling boundary were calculated.
The process is then repeated until convergence. The results of the iterative procedure for
estimating the steady-state axial void profile are given in Fig. 3.3. It can be noticed that
the recalculated steady-state profile satisfactorily agrees with the SIMULATE-3 solution.
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Figure 3.3: Axial void profile calculated by SIMULATE-3 (red line) and by the ROM (black line)
for the nonuniform power profile after application of the recalculation procedure (update of the
cross-sections).

3.1.5 Analysis of the numerical results

In this Section, some of the results of the numerical integration of the resulting 42 ROM
ODEs, describing the dynamical behaviour of a BWR, are demonstrated. A large num-
ber of calculations were made from various artificial operational conditions, out of which
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only the most interesting ones are shown and discussed below. The term artificial refers
to the fact that one of the parameters of the system, namely the cross-sectional flow area
A∗

o was adjusted in such a way that it is possible to simulate different oscillating pat-
terns keeping the other parameters as typical ones for a BWR. The present investigation
is mainly focused on the qualitative comparison of the ROM results for different oper-
ational points, just to demonstrate the capabilities of the ROM to reconstruct different
stability behaviour. Emphasis is put on the coupling between different modes.

Depending on the stability properties of the modes, the following three cases were
investigated:

1. both the fundamental and azimuthal modes are stable;

2. the fundamental mode is unstable and the azimuthal modes are stable;

3. both the fundamental and azimuthal modes are unstable (combined instability).

The first two cases (1 and 2) are somewhat trivial ones since they have already been stud-
ied intensively in the past and can easily be simulated with two heated channel ROM. The
detailed investigation of both cases is given in Paper IV. Therefore, here, only the case
of a combined instability (the 3rd case), when all three modes are unstable, is discussed.
The cross-sectional flow area of the channel was chosen equal to A∗

o = 1.8 · 10−4 m2. In
order to excite both azimuthal modes, several additional modifications of the system pa-
rameters were made, namely the criticality of the azimuthal modes was set to zero and
some of the reactivity coefficientsC∗V,D

mn were properly adjusted. Such modifications were
required by the fact that the investigated operating point did not exhibit any azimuthal
instabilities and, hence, such instabilities should be introduced artificially.

For illustration, the time evolution of each of the modes is shown in Fig. 3.4. These
figures clearly demonstrate the proper excitation of the in-phase and out-of-phase oscil-
lations. The time evolution of the inlet velocities for the corresponding heated channels
is also given in Fig. 3.5. From Fig. 3.5 it is clear that two (the first and the third chan-
nels) out of four heated channels oscillate out-of-phase compared with the other two (the
second and the fourth), thus representing the time-dependent behaviour of the domi-
nant (second) azimuthal mode. Thus, the stability behaviour in this particular case is
driven by the second azimuthal mode. However, the effect of the other two modes is
also significant. The time evolution of the corresponding inlet velocities for each of the
four channels can be found in Paper IV. It is interesting to compare the current case with
earlier cases reported in the literature. For this purpose, in Fig. 3.6 the time evolution of
all three modes for four different cases (A, B, C and D) of mode inclusion is shown. The
inclusion of different modes was performed by proper adjustment of the reactivity coef-
ficients C∗V,D

mn . From Fig. 3.6 several interesting features can be observed. In the first case
(Case A) where the effect of the first azimuthal mode is excluded (upper left plot of Fig.
3.6), the fundamental mode exhibits monotonically oscillating behaviour with an ampli-
tude 3 times less than the corresponding second azimuthal mode. On the other hand, in
the second case (Case B) where the effect of the second mode is excluded (upper right
plot of Fig. 3.6), the behaviour of the fundamental mode is not so monotonic, namely it
exhibits regular phase jumps of 180◦ with amplitude 5 times less compared with the first
azimuthal mode. Such a peculiar behaviour can be clarified by the different values of
the C∗V,D

mn coefficients corresponding to different modes. From the comparison between
these two cases (A and B) and Case C (lower left plot of Fig. 3.6) where both azimuthal
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Figure 3.4: Time evolutions of the fundamental (upper left figure), the first (upper right figure)
and the second (lower figure) azimuthal modes for the case of combined instability, ρs1 = ρs2 = 0,
modified reactivity coefficients C∗V,D

mn , A∗
o = 1.8 · 10−4 m2, δvinlet = 0.1 [a.u.].
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Figure 3.5: Time evolutions of the inlet velocities for the first/second (left figure) and third/fourth
(right figure), respectively, heated channels for the case of combined instability, ρs1 = ρs2 = 0,
modified reactivity coefficients C∗V,D

mn , A∗
o = 1.8 · 10−4 m2, δvinlet = 0.1 [a.u.].
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modes are excluded, it can also be concluded that the inclusion of the azimuthal modes
decreases the amplitude of the fundamental mode almost four times. More details can be
found in Paper IV.

An even more remarkable case is when both azimuthal modes are included simulta-
neously as shown in the lower right plot of Fig. 3.6 (Case D). Comparing this case with
the first two cases discussed above (Cases A and B), one can notice that in the studied case
the amplitude of the first azimuthal mode decreases by increasing the amplitude of the
other two modes (the fundamental and the second azimuthal modes). Such interference
effects between different modes are of particular importance since they affect the stability
characteristics of each of the modes and thus, can lead to an incorrect determination of
the stability boundaries. Moreover, from this simple analysis one can demonstrate that
the inclusion of different azimuthal modes also results in earlier or delayed excitation of
the fundamental mode.
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Figure 3.6: Time evolutions of the fundamental, the first and the second azimuthal modes for
the case of combined instability, ρs1 = ρs2 = 0, modified reactivity coefficients C∗V,D

mn , A∗
o =

1.8 · 10−4 m2, δvinlet = 0.1 [a.u.]; case A - upper left figure, case B - upper right figure, case C -
lower left figure and case D - lower right figure (the first azimuthal mode is not visible due to its
smallness compared with the other two modes).

To conclude this investigation, another interesting phenomenon, namely the oscillat-
ing symmetry line between the first two azimuthal modes, modeled with the present
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ROM, is discussed. The oscillating symmetry line has already been observed in some
past instability events and several possible explanations of this phenomenon were pro-
posed. Such an oscillating pattern is usually observed when both azimuthal modes are
excited and oscillate with close frequencies. This difference in the frequencies thus cre-
ates a time-dependent phase shift between the modes resulting in the oscillating symme-
try line. Intuitively, it is clear that in order to simulate such a behaviour, the properties
of the heated channels should be different. For this reason, in the ROM, the inlet k-losses
(pressure loss coefficients) were modified resulting in different flow rates in each channel
and creating the oscillating pattern. The result of this simulation is given in Fig. 3.7. It
should be emphasized that such a time-dependent phase shift between the modes can
also lead to an incorrect determination of the stability properties.
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Figure 3.7: Time evolutions of the first and the second azimuthal modes for the case of combined
instability, ρs1 = ρs2 = 0, modified inlet pressure loss coefficients kinlet and reactivity coefficients
C∗V,D

mn , A∗
o = 1.8 · 10−4 m2, δvinlet = 0.1 [a.u.].

3.2 Modeling of local instabilities

A methodology used to model the effect of local instabilities (in particular, the ones
caused by density wave oscillations) in reduced order models is described. The modified
ROM is hereafter applied to analyze a realistic local instability event, i.e. the Forsmark-1
instability event of 96/97. A quantitative comparison between the ROM-simulated re-
sults and the corresponding power plant stability measurements is performed, out of
which some conclusions are drawn.

3.2.1 ROM modifications to account for the effect of local instabilities

Throughout this study, it is assumed that the DWOs are self-sustained and only their
effect on the stability properties of the system is investigated. The effect of the core re-
sponse on the DWOs is thus neglected. Following similar steps as in the case of core-wide
instabilities, one starts with the general time- and space-dependent two-group diffusion
equations which, after the application of first order perturbation theory (i.e. considering
small fluctuations of all quantities around their mean values), can be converted to the
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following noise equations (i.e. equations for the fluctuating parts):

¯̄v∗−1 · ∂
¯δΨ

∗
(r̄∗, t∗)

∂t∗
= [(1− β∗) · ¯̄δF ∗(r̄∗, t∗)− ¯̄δL∗(r̄∗, t∗)] · (Φ̄∗

0(r̄
∗) + ¯δΨ

∗
(r̄∗, t∗))

+[(1− β∗) · ¯̄F ∗
0 (r̄

∗, t∗)− ¯̄L∗
0(r̄

∗, t∗)] · ¯δΨ
∗
(r̄∗, t∗) + λ · δC∗(r̄∗, t∗) · X̄, (3.27)

∂δC∗(r̄∗, t∗)

∂t∗
· X̄ = β∗ · ¯̄δF ∗(r̄∗, t∗) · (Φ̄∗

0(r̄
∗) + ¯δΨ

∗
(r̄∗, t∗)) + β∗ · ¯̄F ∗

0 (r̄
∗) · ¯δΨ

∗
(r̄∗, t∗)

−λ · δC∗(r̄∗, t∗) · X̄. (3.28)

Eqs. (3.27)-(3.28) describe the system response to any type of perturbations including
both the ones induced by core-wide and the ones induced by local perturbations. How-
ever, one can study the effect of each perturbation separately using a similar approach in
each case. That can be achieved by introducing the corresponding noise sources into the
cross-section operators ¯̄δF ∗ and ¯̄δL∗, i.e.

¯̄δXS∗(r̄∗, t∗) = ¯̄δXS∗h(r̄∗, t∗) + ¯̄δXS∗i(r̄∗, t∗), (3.29)

which give rise to the corresponding fluctuations in the neutron fluxes written as:

¯δΨ
∗
(r̄∗, t∗) = ¯δΨ

∗h
(r̄∗, t∗) + ¯δΨ

∗i
(r̄∗, t∗), (3.30)

δC∗(r̄∗, t∗) = δC∗h(r̄∗, t∗) + δC∗i(r̄∗, t∗), (3.31)

where i stands for inhomogeneous (i.e. local oscillations) and h for homogeneous (core-
wide oscillations). The solution of this kind of problem can be found by first determining
the response of the core to a pure local oscillations ¯δΨ

∗i
(r̄∗, t∗), i.e. solving the inhomo-

geneous problem (derived from Eqs. (3.27)-(3.28)) defined as:

¯̄v∗−1 · ∂
¯δΨ

∗i
(r̄∗, t∗)

∂t∗
= [(1− β∗) · ¯δF̄ ∗i(r̄∗, t∗)− δ̄L̄∗i(r̄∗, t∗)] · Φ̄∗

0(r̄
∗)

+[(1− β∗) · ¯̄F ∗
0 (r̄

∗, t∗)− ¯̄L∗
0(r̄

∗, t∗)] · ¯δΨ
∗i
(r̄∗, t∗) + λ∗ · δC∗i(r̄∗, t∗) · X̄, (3.32)

∂δC∗i(r̄∗, t∗)

∂t∗
· X̄ = β∗ · ¯̄δF ∗i(r̄∗, t∗) · (Φ̄∗

0(r̄
∗) + ¯δΨ

∗i
(r̄∗, t∗)) + β∗ · ¯̄F ∗

0 (r̄
∗) · ¯δΨ

∗i
(r̄∗, t∗)

−λ∗ · δC∗i(r̄∗, t∗) · X̄, (3.33)

where the second order terms were left out. The general solution of Eqs. (3.32)-(3.33) can
be found by assuming delta-function (localized) perturbations in the cross-sections and,
thus reads as:

¯δΨ
∗i
(r̄∗, t∗) = ¯̄B∗ · expiω∗t∗ ·ψ̄∗i(r̄∗, r̄∗0, ω

∗), (3.34)

δC∗i(r̄∗, t∗) · X̄ = ¯̄C∗ · expiω∗t∗ ·ψ̄∗i(r̄∗, r̄∗0, ω
∗), (3.35)

where r̄∗0 stands for the location of the local perturbation in the cross-sections, and ¯̄A∗, ¯̄B∗

and ¯̄C∗ are matrix coefficients. Combining Eqs. (3.34)-(3.35) with Eqs. (3.32)-(3.33), one
gets the explicit solutions for the neutron flux ¯δΨ

∗i
(r̄∗, t∗) and the concentration of the

delayed neutron precursors δC∗i(r̄∗, t∗) of the inhomogeneous problem (3.32)-(3.33).
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Next, subtracting the result, i.e. Eqs. (3.32)-(3.33) with known solutions (3.34)-(3.35)
from the generic equations (3.27)-(3.28) and neglecting small terms, one obtains the equa-
tion for the homogeneous problem ¯δΨ

∗h
(r̄∗, t∗) given as:

¯̄v∗−1 · ∂
¯δΨ

∗h
(r̄∗, t∗)

∂t∗
= [(1− β∗) · ¯̄δF ∗h(r̄∗, t∗)− ¯̄δL∗h(r̄∗, t∗)] · (Φ̄∗

0(r̄
∗) + ¯δΨ

∗h
(r̄∗, t∗))

+[(1− β∗) · ¯̄F ∗
0 (r̄

∗, t∗)− ¯̄L∗
0(r̄

∗, t∗)] · ¯δΨ
∗h
(r̄∗, t∗) + λ∗ · δC∗h(r̄∗, t∗) · X̄, (3.36)

∂δC∗h(r̄∗, t∗)

∂t∗
· X̄ = β∗ · ¯̄δF ∗h(r̄∗, t∗) · (Φ̄∗

0(r̄
∗) + δ̄Φ

∗h
(r̄∗, t∗))

+β∗ · ¯̄F ∗
0 (r̄

∗) · ¯δΨ
∗h
(r̄∗, t∗)− λ∗ · δC∗h(r̄∗, t∗) · X̄, (3.37)

where ¯δΨ
∗h
(r̄∗, t∗) and δC∗h(r̄∗, t∗) are defined as:

¯δΨ
∗h
(r̄∗, t∗) = ( ¯δΨ

∗ − ¯δΨ
∗i
)(r̄∗, t∗),

δC∗h(r̄∗, t∗) = (δC∗ − δC∗i)(r̄∗, t∗).

The solution of Eqs. (3.37)-(3.38) can be found by applying traditional mode expansion,
similarly to the one used in earlier calculations. Thus, taking only the first three eigen-
modes of the flux expansion into account, the full solution to Eqs. (3.27)-(3.28) is given
as:

¯δΨ
∗
(r̄∗, t∗) =

2∑
n=0

¯̄P ∗
n(t

∗) · Φ̄∗
n(r̄

∗) +

Ns∑
k=1

¯̄B∗
k · expiω

∗
kt

∗ ·ψ̄∗
k(r̄

∗, r̄∗0, ω
∗
k), (3.38)

where Φ̄∗
n(r̄

∗) is the solution of the corresponding eigenfunction problem, k stands for
an index representing a local source and Ns is the total number of local sources in the
investigated problem.

It is interesting to point out that, from a mathematical point-of-view, Eqs. (3.36)-(3.37)
look exactly the same as the ones solved for the case of pure homogeneous (core-wide)
perturbations (see Section 3.1.1) since no explicit presence of local sources can be ob-
served. On the other hand, from a physical point-of-view, the effect of local perturbations
is taken into account implicitly via the feedback term [(1−β∗) · ¯̄δF ∗h(r̄∗, t∗)− ¯̄δL∗h(r̄∗, t∗)] ·
¯δΨ

∗h
(r̄∗, t∗) where the effect of both the core-wide and local sources is included.

In addition, from Eq. (3.38), one can also conclude that the presence of the local
sources simply leads to some extra heating terms in the power oscillations due to the
change of the cross-sections resulting from the neutron noise induced by a DWO.

To sum it up, since the power oscillations strongly influence the fuel temperature, one
only needs to modify the heat transfer equations to correctly simulate the effect of local
perturbations in the ROM compared with the case of core-wide instabilities. The remain-
ing of the ROM can be kept unchanged. The corresponding changes in the fuel temper-
ature and of the resulting void production will induce perturbations in cross-sections,
expressed as ¯̄δF ∗h and ¯̄δL∗h, thus creating an additional thermal-hydraulic feedback ef-
fect in the neutron-kinetic model mentioned earlier. Thus, the modified heat transfer
equations with the effect of local instabilities included, read as:

dT1,l,jϕ(t)

dt
= p11,jϕT1,l,jϕ(t) + p21,jϕT2,l,jϕ(t)
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+p31,jϕ[cq(P0,j(t)− P̃0,j) + cqξ1P1,j(t) + cqξ2P2,j(t) + cq

Ns∑
k=1

γk,l sin(ωkt+ φk,l)], (3.39)

dT2,l,jϕ(t)

dt
= p12,jϕT1,l,jϕ(t) + p22,jϕT2,l,jϕ(t)

+p32,jϕ[cq(P0,j(t)− P̃0,j) + cqξ1P1,j(t) + cqξ2P2,j(t) + cq

Ns∑
k=1

γk,l sin(ωkt+ φk,l)], (3.40)

where l = 1..4, j = 1, 2, P0,j , P1,j , and P2,j take a non-uniform axial power profile into
account, and γk,l is defined as:

γk,l =

∫
V ∗
l

¯̄F ∗
0 (r̄

∗)ψ̄i∗(r̄∗, r̄∗0, ω
∗
k)dr̄

∗∫
V ∗
core

¯̄F ∗
0 (r̄

∗)Φ̄∗
0(r̄

∗)dr̄∗
. (3.41)

3.2.2 Analysis of the measurements

In this Section, the neutron flux measurements performed during the stability tests to
study the Forsmark-1 local instability event of 1996/1997, are investigated [23, 27, 28].
First, a brief introduction into the instability event itself is given.

The event took place in 1996 when start-up tests were carried out at the Swedish
BWR Forsmark-1 for the fuel cycle 16. During these tests, some unstable operational
conditions at reduced power and reduced flow, were detected. Later on, in January 1997,
new stability measurements were performed, in order to investigate the instability event.
In one of them, when the reactor was operated at 63.3 % of power and at a core flow of
4298 kg/s, the same instability pattern was again observed with an oscillation frequency
around 0.5 Hz. The appearance of this instability was somewhat surprising since all
earlier stability calculations indicated a completely stable core [23, 27, 28].

During these stability measurements, the lower axial plane of the core was well equip-
ped with LPRMs, placed at 36 different radial positions and in 2 axial levels. The signals
from only 27 were recorded at a sampling frequency of 12.5 Hz. As an illustration of these
measurement tests, one of the signals, filtered between 0.4-0.6 Hz and corresponding to
the strongest detector response is shown in Fig. 3.8.

After a spectral analysis of the measurements, several even more interesting fea-
tures were discovered. The first one is related to the space-dependence of the decay
ratio, namely one half of the core oscillated with DR=0.6 whereas the other half with
DR=0.9 [23, 27, 28]. However, in all previous studies, the DR was always assumed to be
a global stability indicator and, hence, space-independent. Another interesting feature is
the rotating symmetry line between the first two azimuthal modes which was observed
as a result of the modal decomposition of the corresponding measurements. The time
evolution of the first three modes after the decomposition, namely the fundamental, the
first and the second azimuthal modes, is given in Fig. 3.9. For the purpose of compari-
son, both azimuthal modes are shown in the same plot. As one can see from these figures,
both global and regional instabilities corresponding to the fundamental and the first two
azimuthal modes, respectively, are present. An even more remarkable feature which can
be clearly seen from the right Fig. 3.9, is the changing phase shift between the azimuthal
modes, resulting in a rotating symmetry line of the regional oscillations.
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Figure 3.8: Time evolution of the filtered neutron noise, measured by LPRM7.
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Figure 3.9: Time evolution of the fundamental, fist and second azimuthal modes after modal
decomposition of the measurement data.

Further studies of the measurements indicated that the instability was driven by most
likely two or even more local noise sources. Later on, it was suggested that these lo-
cal noise sources are presumably caused by unseated fuel assemblies leading to density
wave oscillations and, hence, to local power oscillations.

3.2.3 ROM simulation of the local instabilities

In the following, the results of the simulation of the Forsmark-1 channel instability event
using the extended ROM are presented. The time-dependent amplitude factors for each
of the three modes were calculated by numerical integration of 42 ROM ODEs.

First, the case without the introduction of any DWO, i.e. the case when only core-
wide instabilities can occur, is considered. The corresponding results are given in Fig.
3.10. As Fig. 3.10 shows, for this specific case, the ROM predicts a stable core, both with
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the respect to in-phase and out-of-phase oscillations, and no oscillating symmetry line is
observed. This simulation perfectly agrees with earlier stability calculations performed
by the utility according to which the core was proven to be stable.
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Figure 3.10: Time evolutions of the fundamental, the first, and the second azimuthal modes, as
computed by the ROM, δVinlet = 0.1[a.u.].

Next, the case when three local sources were introduced into the ROM is discussed.
Some results of this simulation are shown in Fig. 3.11. The dynamical characteristics of
the corresponding sources together with their spatial distributions and locations in the
core are given in Paper V.
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Figure 3.11: Time evolution of the neutron noise source (left figure) and the induced neutron
noise decomposed into the fundamental, the first, and the second azimuthal modes (right figure),
as computed by the ROM.

In Fig. 3.11, the time-dependence of the strongest local noise source is given, as well as
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the decomposition of the corresponding induced neutron noise into the fundamental, the
first and the second azimuthal modes. It is worth to point out that all three modes are
oscillating with a DR of unity. This is explained by the fact that all modes are driven by
the external local sources.

For the purpose of comparison, in Fig. 3.12 the time evolution of the first three modes,
obtained as a result of the modal decomposition of the real measurements, together with
the strongest neutron noise, is given. From Figs. 3.11-3.12, it can be clearly seen that
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Figure 3.12: Time evolution of the neutron noise source (left figure) and the induced neutron
noise decomposed into the fundamental, the first, and the second azimuthal modes (right figure),
as determined from the measurements.

both cases exhibit qualitatively a similar behaviour. Namely, all modes are properly ex-
cited and oscillate with comparable amplitudes. Furthermore, the mode amplitudes have
approximately the same ratio, compared with the respective strongest source. Another
interesting feature which can be seen in both the ROM simulation and the measurements
is the oscillating symmetry line. For better visibility, both azimuthal modes as calculated
from the ROM are shown separately in Fig. 3.13.
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Figure 3.13: Time evolution of the first and the second azimuthal modes, as computed by the
ROM.
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In order to better understand the studied stability event, it is also instructive to per-
form two other ROM simulations, i.e. the one when the system response is calculated
separately from the DWOs and another one when the neutron noise, induced by only the
local sources (the system response being excluded), is considered. As shown in Paper V,
from the comparison between these two cases (in terms of decomposed results), one can
clearly show that the effect of the system dynamics on the total noise is quite negligible
(due to the stable behaviour of the system) and, thus, the full core (measured) response
is mainly driven by the local power oscillations induced by the DWO.
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Chapter 4
APPLICATIONS

Try everything. Do everything. Nuclear. Biomass. Coal.
Solar. You name it. I support them all.

— Boone Pickens

In this Chapter, some applications of the neutron noise investigations, performed in
the previous two chapters are shown. In general, depending on the area of applicabil-
ity, the neutron noise diagnostics can be classified into several different categories. The
first of these, named as “stability” applications, is aimed at monitoring the core stability,
determining the margins to the instability, as well as providing information about the
stability properties of the system by analyzing the neutron noise measurements (whether
locally with local power range monitor (LPRM) or globally with averaged power range
monitor (APRM) detectors). In order to quantify the instability, a reliable stability indi-
cator is required. The most commonly used stability indicator, especially in real power
plant measurements is the so-called decay ratio [1]. In order to utilize the DR as a stabil-
ity indicator, it should be assumed that the system dynamics can be modeled as a second
order damped linear oscillator driven by a white driving force. In such a case, the DR
gives a measurement of the damping of the system and is defined as the ratio between
two consecutive maxima of the solution to the second order oscillator. In practice, it is
not the signal itself, but the auto-correlation function of the normalized neutron density
that is used. The DR is then defined as the ratio of two consecutive maxima of the ACF,
such as A2/A1 or A3/A2, as illustrated in Fig. 4.1.

A2 A3 A4 A5
A6

A7 A8 A9 A10A1 5 10 15 20
Τ @sD

-1.0

-0.5

0.5

1.0
ACFHΤL

Figure 4.1: An analytical ACF is shown where the decay ratio is defined as DR= A2

A1

Since in a linear system the APSD of the noise is given as a product of the transfer
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function squared, multiplied by the APSD of the driving force, with the assumption of
white character of the driving force, the APSD of the induced neutron noise is related only
to the system transfer function. Therefore, in real practical applications (in particular, in
BWR stability measurements where the driving force cannot be measured), the ACF is
usually estimated from the corresponding APSD of the measured noise after an inverse
Fourier transform [1].

However, for a driving force which deviates from a white noise, i.e. a driving force
that has its own frequency dependence, the frequency characteristics of the neutron noise
(APSD) will deviate from that of the system transfer function. Investigation of such a case
is the subject of Paper VI, which will be briefly summarized below. The frequency depen-
dence of the perturbation is determined as the reactivity effect of the void propagating
fluctuations, and the APSD of the resulting neutron noise (after multiplication with the
system transfer function) is Fourier-inverted analytically, to reconstruct the ACF of the
detector signal for the case of such a non-white driving force. Then the decay ratio is
determined by the traditional method, assuming white noise driving force. Since the sys-
tem properties are known in advance, the possible error in the estimation of the stability
properties of the system (DR) between two cases, i.e. the white and non-white DF, is
investigated with a curve fitting procedure.

As mentioned earlier, in order to utilize the DR as a stability indicator, the assumption
about the linearity of the system is one of the most crucial ones. However, a real reactor
system is non-linear, due to many feedback effects between neutronics, heat transfer and
fluid flow. As several instability events showed, for such cases, the concept of the DR as
a stability indicator might give erroneous results (see e.g. the space-dependent DR in the
Forsmark-1 instability event [23]). It is therefore instructive to investigate what stability
parameters, other than the DR can be used for describing the stability properties of non-
linear systems. As a tool for such an investigation, the reduced order model of a BWR
(with major non-linear characteristics preserved, i.e. the ones due to the feedback), de-
veloped in the previous Chapter is used. In this study, the so-called reactivity coefficients
Cmn characterizing the change of the cross-sections with respect to the void fraction and
fuel temperature fluctuations are chosen as a possible candidate for the new stability
indicator. For this purpose, the dependence between the reactivity coefficients and the
decay ratio is qualitatively investigated. The Cmn-coefficients are gradually changed and
the decay ratio for the most important quantities is estimated by a proper curve fitting.
As observed in the past, an increase of the amplitude of the Cmn-coefficients should lead
to an increase of the DR (due to the more negative coupling) until it reaches its satura-
tion value of DR=1 and becomes constant for any further change in the Cmn- coefficients.
However, as will be shown later in this Chapter, this is not the case for the present ROM,
i.e. the DR starts to decrease after reaching some critical value. Possible explanations for
this unexpected behaviour of the DR together with the technique used for its investiga-
tion are summarized below. More details can be found in Paper VII.

Another type of noise diagnostics applications can be specified as “unfolding tech-
niques” where the main objective is to extract hidden information about system parame-
ters from neutron noise measurements. Shortly, the basis of this unfolding technique can
be expressed through the following relation [1]:

δϕ(r̄, ω) =

∫
G(r̄, r̄′, ω) · S(r̄′, ω)dr̄′ (4.1)

Eq. (4.1) shows that the effect of the perturbation δϕ(r̄, ω) can be factorized into the noise
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source S(r̄′, ω) and the system transfer G(r̄, r̄′, ω). In the diagnostic task, G(r̄, r̄′, ω) is
usually assumed to be known since it depends only on the parameters of the unper-
turbed system and, hence, can be calculated analytically. Thus, the task is to quantify the
noise source S(r̄′, ω) from the measured neutron noise δϕ(r̄, ω). In practice, δϕ(r̄, ω) is
only known in a few spatial points and, thus, the direct inversion of Eq. (4.1) is not of
much practical use. Instead, some simple analytical model for the neutron noise (which
qualitatively reproduces the behaviour of the perturbation) with just a few unknown pa-
rameters, is constructed. Using this model together with the measured neutron noise
combined with spectral analysis provides the opportunity to quantify unknown param-
eters.

Such unfolding procedures were proven to work fairly well in many cases, e.g. in the
case of vibrating control rods that need to be identified, the averaged flow velocity of the
coolant in the heated channel that should be estimated, etc. One example of the appli-
cation of such a technique, but with numerically simulated neutron noise (see Chapter
2) will be given below where the possibility to extract axial void fraction and velocity
profiles from the measured neutron noise is investigated. In such a case the noise source
is specified as the fluctuations in the coolant density which are obviously difficult to sim-
ulate analytically and the application of the numerical simulation is thus justified. Two
methods for the reconstruction will be tested. One is based on the dependence of the
break frequency of the APSD of the simulated neutron noise on the void content [8] and
another one utilizes the transit times of the void fluctuations [1]. Comparing the results
of the reconstruction with input data of the model, the accuracy of both methods can be
estimated. Further details are given in Papers III and VIII.

4.1 Stability

This Section shows some examples of stability applications of neutron noise analysis.
Two cases are considered. The first case is related to open-loop systems where the driving
force is assumed to have a non-white character, i.e. some frequency-dependence. The
second case refers to closed-loop systems, where the correlation between the DR and the
coupling reactivity coefficients as well as the possibility to use the latter one as a new
stability indicator are analyzed. Some main features of the calculation procedure are
summarized below and some conclusions from this study are also drawn.

4.1.1 BWR stability in open-loop system (non-white driving force)

ACF calculation procedure for the white noise driving force

Following the same methodology as in Paper VI, one begins with the second order equa-
tion, describing a linear damped oscillator, written as:

δϕ̈(t) + 2ξω0δϕ̇(t) + ω2
0δϕ(t) = f(t), (4.2)

where δϕ(t) stands for the induced neutron noise, ξ is the damping factor, ω0 is the sys-
tem resonance frequency and f(t) is the driving force. Performing a temporal Fourier
transform of (4.2) and taking into account that the system is linear, one obtains:

δϕ(ω) =
f(ω)

(ω2
0 − ω2) + 2ξω0ωi

≡ H(ω)f(ω), (4.3)
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where H(ω) is the system transfer function. Assuming a white-noise behaviour of the
driving force and applying the Wiener-Khinchin theorem, the APSD of δϕ(t) can be writ-
ten as

APSDδϕ(ω) = APSDf (ω)|H(ω)|2 = C |H(ω)|2, (4.4)

where C denotes the white noise character of f(t). The auto-correlation function of the
neutron noise δϕ(t) is calculated by applying an inverse FT to the noiseAPSDδϕ. The cor-
responding integration in the inverse FT is performed by using the theorem of residues
which requires the poles of H(ω) to be known. From Paper VI, the corresponding poles
can be written as:

ω1,2,3,4 = ± ω0(1 ± iξ).

It should be pointed out that the expression above is valid under the assumption that the
decay ratio β = e−ξ2π ≥ 0.5 , which allows neglecting second order terms in ξ. More
detailed calculations are given in Paper VI. Thus, for the numerical values of ξ which are
commonly used, the ACF for the neutron noise is given as:

ACF (τ) =
C e−ξ|τ |ω0

4ξω3
0

cos(τω0). (4.5)

ACF calculation procedure for the non-white noise driving force

In this Section one repeats the same calculations which were performed in the previous
Section, but this time one assumes a non-white noise character of the driving force, which
in the frequency domain has the same functional form as the reactivity effect of the prop-
agating density perturbation. Some of the properties of the propagating perturbation as
a source for the neutron noise, such as its APSD, ACF, phase and the corresponding reac-
tivity effect, have earlier been discussed in Chapter 2 and, hence, are not repeated here.
Thus, omitting some constant factors for simplicity, one has:

APSDf (ω) =
1− cosωT

ω2(ω2 − ω2
T )

2
. (4.6)

Using this result and again assuming a linear system, the total APSD for the neutron
noise is given as

APSDδϕ =
(1− cos(ωT ))[

(ω2
0 − ω2)2 + 4ξ2ω2ω2

0

]
ω2(ω2 − ω2

T )
2
, (4.7)

where APSDf is defined by Eq. (4.6) and the rest of the notations has the same meaning
as earlier. Following the same steps as in the previous Section and performing an inverse
FT, one obtains an analytical expression for the auto-correlation function. However, as
is shown in Paper VI, this task is more challenging than the white noise driving force
case, since this time there are two contributions to the poles. One of them comes from
the transfer function |H(ω)|2 and another one from the driving force APSDf . The last
contribution complicates the calculations and creates some peculiarities in the total ACF.
Namely, as will be demonstrated below, the result in the ACF consists of two parts. The
first is related to a case when |τ | > T , and is called the asymptotic part. The second one is
defined for |τ | < T and is named as the transient part. As will be seen in the next Section,
the asymptotic part of the ACF has exactly the same oscillating character as the ACF for
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the white driving force and hence, has the same decay ratio which will be designated as
the true one, since it is related to the system properties. In contrast, the transient part
does not exhibit the same behaviour and deviates from that observed in the case of the
white driving force. The explanation of this unusual behaviour comes from the fact that
the driving force, namely APSDf , contributes to the poles only for |τ | < T but not for
|τ | > T (see Chapter 2 for the properties of the ACFf ). This results in the fact that the
ACF of the noise induced by a non-white driving force deviates from the one induced
by a white driving force. Thus, for a finite correlation time, the transient part of the total
ACF is affected by both the driving force and the system itself over the corresponding
finite time region, which is not the case for the asymptotic one which follows a white
noise behaviour.

Finally, applying an inverse Fourier transform to APSDδϕ and assuming small ξ val-
ues, one obtains the following expression for the ACF of the oscillations, induced by a
non-white driving force:

ACF (τ) = e−ξω0|τ |A cos
[√

1− ξ2ω0|τ | − α
]
Θ[|τ |]

−0.5e−ξω0|T−τ |A cos
[√

1− ξ2ω0|T − τ | − α
]
Θ[|τ − T |]

−0.5e−ξω0|T+τ |A cos
[√

1− ξ2ω0|T + τ | − α
]
Θ[|τ + T |]

+ T 4

128π5

(
(T − |τ |)( 4π

ω4
0
+ F cos [ωT τ ]) + Y sin [ωT |τ |]

)
Θ[T − |τ |].

(4.8)

Here A, B, F and Y are complicated functions of the system parameters. The correctness
of the above solution was checked by Fourier transforming it back to the frequency do-
main and comparing it with Eq. (4.7), as well as calculating the inverse transform of Eq.
(4.7) numerically by MATLAB and comparing it with the analytical result quantitatively.

Qualitative and quantitative analysis of the results

This Section summarizes all calculation results for both a white and a non-white driving
force and supplies their qualitative and quantitative analyses. In the qualitative analysis
the focus is put on the behaviour of the ACF as well as that of the APSD, performing a
parallel investigation of both functions. One starts with a case when f0 = fT = 0.5 Hz,
which in terms of the transit time corresponds to T = 2 s. The corresponding APSD and
ACF are shown in Fig. 4.2.
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Figure 4.2: APSD and ACF of the system transfer and the total resulting noise for fT = f0 = 0.5
Hz for the case of DR = 0.8; in the legend DF stands for the “driving force”
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In order to simplify the discussion, the following notations are defined: the ACF for
the non-white driving force will be designated as virtual or measured ACF; the ACF for
the white-noise driving force will be denoted as the true one. Thus, analyzing the APSD
profile, one can end up with two interesting cases which are quite important from a stabil-
ity point of view. If both the driving force and the system transfer function have a narrow
peak around the same frequency, the total or virtual APSD will be even narrower than
that of the true one, indicating a less stable system as determined from measurements,
than the true system stability. That can be a drawback from the operational point-of-view
since the operators might try to change the operational point, to avoid the instability.

Another important case is when the APSD of the driving force has a minimum around
the system resonance frequency. Due to the joint effect of the APSDs of the driving force
and the system transfer, the total APSD becomes broader than that of the system, hence
indicating better stability from the measurement than the true one (smaller DR compared
with the true one). This means that the driving force decreases the power oscillation
and the situation becomes especially dangerous in the case of quite unstable system be-
haviour, since in that case it will be hidden under the driving force.

However none of these situations are accounted in our model, which is clearly seen
from Fig. 4.2 where the virtual and true DR are both equal to 0.8. In the case shown in
the figure, the APSD of the driving force has a first sink at ω = 2ωT and exhibits a quite
smooth, almost constant frequency behaviour around the system resonance frequency
ωT , which keeps the shape of total (measured) APSD similar to that of the system. Thus,
both curves, namely the system and the measured APSDs are quite narrow and result in
DR=0.8.

Some further cases, keeping the system resonance frequency constant, but changing
the resonance frequency of the driving force, have been also studied. As is shown in
Paper VI, the increase of fT does not give any new information, since the driving force
APSD keeps the same constant behaviour over the system resonance, and hence it does
not affect the system stability. It is much more interesting to investigate cases when one
decreases fT so much that one of the dips of the driving force APSD approaches the sys-
tem resonance peak. One such case is shown in Fig. 4.3 (left figure) where fT = 0.51f0.
This will lead to a coincidence between the resonance peak of the system APSD and the
first dip of the driving force APSD, and hence to a dip for the total APSD. As a result the
total ACF demonstrates quite a stable system, since there are almost no oscillations in its
profile, shown in Fig. 4.3 (right figure). It is interesting to note that ACFs with such a
character were observed in real measurements. For the analysis of a real measurement,
such situations can lead to serious problems. That is, despite the fact that the asymp-
totic DR is similar to the true one, it will not be possible to determine it correctly, since
in practice this part of the ACF will be masked due to the scatter of measurement data
and presence of background noise, hence the oscillations will not even be visible. Thus,
the only DR ratio which will be accessible is the virtual one, related to the transient part
of the ACF which does not reflect the real stability property of the system and makes
instabilities undetectable. The real problem appears when some of the thermal hydraulic
parameters suddenly change their values and consequently move fT away from the sys-
tem resonance frequency. As a result the instabilities would appear in a very unexpected
and sudden way. Some other interesting cases of the similar study can be found in Paper
VI.

From the operational point-of-view, it is always good to know the DR of the asymp-
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Figure 4.3: APSD and ACF of the system transfer and the total resulting noise for fT = 0.51f0 for
the case of DR = 0.8

totic part of the ACF, since it gives true information about the reactor stability. But as
previously said, it is not always possible to evaluate the DR sufficiently accurately from
the asymptotic part which is usually not even known. Instead, one can only estimate
the DR for the total ACF. In this context it might be useful to estimate the error in DRs
between two cases: for the measured or total ACF and the asymptotic or true ACF.

In Table 4.1, some results of a series of such calculations, performed for different
transit times Tf (and ωT ) of the driving force, are given. The estimations of the DR were

Table 4.1: Results of curve fitting with the ACF of white driving force, Eq. (4.5), to the ACFs with
non-white driving force spectra

Decay Ratio Frequency,Hz
DR DRtr DRasy f0 ff fp

Case 1. DR = 0.6

fT = f0 = 0.5Hz 0.6 0.57 0.6 0.5 0.5 0.5
fT = 2

3f0 = 0.33Hz 0.6 0.38 0.6 0.5 0.49 0.5
fT = 0.55f0 = 0.29Hz 0.6 0.11 0.6 0.5 0.5 0.5
fT = 0.51f0 = 0.26Hz 0.6 0.085 0.6 0.5 0.49 0.5
fT = 0.5f0 = 0.25Hz 0.6 0.059 0.6 0.5 0.5 0.5
fT = 2.5f0 = 0.2Hz 0.6 0.15 0.6 0.5 0.49 0.5
Case 2. DR = 0.8

fT = f0 = 0.5Hz 0.8 0.8 0.8 0.5 0.5 0.5
fT = 2

3f0 = 0.33Hz 0.8 0.65 0.8 0.5 0.51 0.50
fT = 0.55f0 = 0.29Hz 0.8 0.21 0.8 0.5 0.5 0.5
fT = 0.51f0 = 0.26Hz 0.8 0.14 0.8 0.5 0.5 0.5
fT = 0.5f0 = 0.25Hz 0.8 0.1 0.8 0.5 0.5 0.5
fT = 2.5f0 = 0.2Hz 0.8 0.31 0.8 0.5 0.5 0.5
Case 3. DR = 0.98

fT = f0 = 0.5Hz 0.98 0.98 0.98 0.5 0.5 0.5
fT = 2

3f0 = 0.33Hz 0.98 0.97 0.98 0.5 0.5 0.5
fT = 0.55f0 = 0.29Hz 0.98 0.53 0.98 0.5 0.5 0.5
fT = 0.51f0 = 0.26Hz 0.98 0.23 0.98 0.5 0.52 0.5
fT = 0.5f0 = 0.25Hz 0.98 0.11 0.98 0.5 0.5 0.5
fT = 2.5f0 = 0.2Hz 0.98 0.61 0.98 0.5 0.51 0.5
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made in several ways or for several parts of the total ACF using curve-fitting procedure:
namely the DR for the separate asymptotic part of ACF, denoted as DRasy, and the DR
for the total ACF together with its transient part, denoted as DRtr. The results given in
Table 4.1 confirm the expectations and predictions mentioned above. Namely, if one has
access to the ACF without any effect from measurement uncertainties and background
noise, the asymptotic DR is always equal to the true one. On the other hand, the curve
fitting to the whole curve gives completely different results, resulting in an overestimated
DR. Thus, one can conclude that the presence of the colored noise source leads to an error
in DR estimations. But as also pointed out, the coloured noise source as represented by
propagating void perturbations in a BWR does not lead to such problems in practical
cases.

4.1.2 BWR stability in closed-loop systems

Dependence of the decay ratio on the reactivity coefficients (Cmn- coefficients)

The ROM, developed and described earlier in Chapter 3, is applied to expedite the de-
pendence between the DR and the coupling reactivity coefficients Cmn. A number of
different cases where the Cmn-coefficients were manually modified are analyzed. For
each case studied, the DR corresponding to the fundamental mode is numerically esti-
mated. The corresponding dependence of the DR on theCmn-coefficients is shown in Fig.
4.4
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Figure 4.4: Dependence of the Decay Ratio on the reactivity Cmn-coefficients

As Fig. 4.4 demonstrates, the dependence between the DR and the Cmn-coefficients is
not monotonic over the whole range of the Cmn-coefficients. First the DR increases with
increasing amplitude of theCmn- coefficient (following the conventional behaviour of the
DR), whereas at approximately Cmn = −0.0361 a.u., the DR suddenly starts to decrease
approaching a low-value region at around Cmn = −0.2 a.u.
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Estimation of the dynamical properties of the system (amplitude, phase, frequency
and decay ratio)

To provide some insight into the origins of the sudden drop in the DR curve, a curve-
fitting procedure is applied to all physical quantities available from the ROM, where it
is assumed that the behaviour of a BWR can be described as a second-order decaying
oscillator, i.e. fitted to the following decaying sine-function:

ϕ(t) = A exp(−γt) sin(ωt+ φ) (4.9)

Such a curve-fitting procedure is applied to four given Cmn values, thus providing infor-
mation about the amplitude A, frequency ω, decay constant γ and phase φ of some key
parameters, i.e . void fraction α, averaged surface fuel temperature Tfs, power P and
inlet pressure drop δPinlet. The corresponding results (except for the phase) are shown in
Figs. 4.5, respectively.
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Figure 4.5: Dependence of the amplitudes A, frequency ω and decay constant γ of the void frac-
tion α, averaged surface fuel temperature Tfs, power P and inlet pressure drop δPinlet on theCmn

coefficients; for the amplitude all the quantities were weighted to their corresponding maximum
values.

A careful analysis of the upper left part of Fig. 4.5 shows that, as the Cmn coefficients

53



Chapter 4. APPLICATIONS

decrease down to −0.0341 a.u., the amplitude change in both the void oscillations and the
power oscillations is significantly larger compared with the ones in the surface fuel tem-
perature and the inlet pressure drop oscillations. This leads to the conclusion that most
of the produced fuel heat is transferred into the change of the void fraction. However, for
Cmn values between −0.034 a.u. and −0.0907 a.u., the situation is reversed, namely the
amplitudes of the surface fuel temperature as well as the inlet pressure drop oscillations
experience a drastic jump whereas the amplitude of the oscillations in the void fraction
do not change so much.

Such a peculiar behaviour of the quantities can be interpreted as if all the heat from
the fuel is converted into an increase of the amplitudes of the surface fuel temperature
and the inlet pressure drop oscillations, leaving the void change mostly unaffected. The
increase in the amplitude of the inlet pressure drop oscillations apparently stabilizes the
system (due to the phase delay between the power change and the feedback which be-
comes closer to −180◦) and thus contributes to the decrease in the DR. Such an unex-
pected transition of the energy transfer from the void change into the surface fuel temper-
ature/inlet pressure drop change can be explained by the inertia of the heat transferred
between the fuel and the coolant (i.e. it takes some time for the heat to be transferred from
the fuel to the coolant) leading to some time-delay between the change in the power and
the corresponding change in the feedback.

One can also show that for the last two cases, i.e. Cmn = −0.034 a.u. and Cmn =
−0.0907 a.u., the characteristic time of the power oscillations is less than the time it takes
for the system to transfer heat from the fuel to the coolant. As a result, for a certain critical
value (in our case Cmn = −0.036 a.u.), the changes in the power (which frequency is a
function of Cmn) become too fast for the system to be able to transfer all the heat into
the coolant, but instead the energy oscillations are mostly transferred into changes in the
surface fuel temperature and the inlet pressure drop. Such a phenomenon might then
lead to an additional stabilization of the system and thus a decrease of the DR.

Thus, one can conclude that the dependence between the DR and the reactivity coef-
ficients (Cmn-coefficients) is not a trivial one, i.e. the DR experiences some peculiar drop
at a certain critical value of the Cmn-coefficient. Although the Cmn-coefficients might
provide some information about the stability properties of the system, additional more
detailed investigations on this topic are necessary.

4.2 Unfolding technique

Some preliminary results of the reconstruction of the void fraction and velocity profile
from the simulated neutron noise using two different methods are presented and dis-
cussed. The description of the Monte Carlo technique applied to simulate synthetic neu-
tron noise signals induced by fluctuations in the coolant density, as well as the description
of the model involved have already been given earlier in Chapter 2 and, therefore, will
not be repeated here.

4.2.1 Methods for void content estimation

Two possibilities of estimating the averaged void fraction from the neutron noise mea-
surements are analyzed in this Section. The first method (for convenience called “break
frequency” method ), suggested in the late 70s, is based on the correlation between the
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so-called break frequency of the APSD of the measured neutron noise and the corre-
sponding axial positions of the detectors [8]. As will be shown later on, this method
requires the knowledge of the velocity of the fluctuations which, for reasons of simplic-
ity, will be expressed with the void fraction by Eq. (2.14), thereby eliminating it as an
unknown quantity. The second method also utilizes Eq. (2.14) combined with the infor-
mation about the transit times of the void fluctuations which can be estimated from the
cross-correlation of two axially distant neutron detector signals.

Break frequency method

The principles of the break frequency method can be summarized as follows. Assuming
the following simple form for the propagating character of the void fluctuations [8]:

δα(z′, ω) ∝ e
−iω z′

v(z′) (4.10)

letting the velocity v(z′) and the static flux ϕ0(z′) be constant within the range λ−1(z) of
the local component at any given axial elevation z and combining Eq. (2.26) with Eq.
(2.27) (see Chapter 2), after FT one obtains the following simplified relation between the
normalized auto-power spectral density of the density fluctuations and the one corre-
sponding to the induced neutron noise:

NAPSDδϕλ
z = C ·NAPSDδα

z (ω) · 1

(1 + ω2τ2λ)
2
, (4.11)

where
τλ(z) =

1

v(z) · λ(z)
.

is the time it takes for the perturbation to pass the range of the local component.
From Eq. (4.11) it can be clearly seen that the fluctuations in the neutron flux δϕλ at

a certain axial position z are proportional to the corresponding fluctuations in the void
fraction δα at the same location z, times a frequency-dependent term (Lorentzian term)
with a break frequency [8]

fb(z) =
1

2π
· v(z) · λ(z) = 1

2π
· v(α(z)) · λ(α(z)). (4.12)

Eq. (4.12) shows that the break frequency is dependent on the void fraction through the
local void velocity and the local range (often called “field of view”) of the local compo-
nent. This dependence is rather implicit, but in principle it lends a possibility to deter-
mine the local void fraction.

The dependence of the local root λ on the local average void fraction can be approxi-
mated as:

λ(α(z)) = λ0 − k · α(z) (4.13)

where λ0 is the value of the local root with zero void fraction. The linear term k to-
gether with λ0 can easily be extracted from the lattice physics code calculations, such as
CASMO-4 [35]. A more detailed derivation of Eq. (4.13) is given in Paper III.

Then, combining (4.12) and (4.13) yields

α(z) =
1

k

[
2πfb(z)

v(α(z))
− λ0

]
(4.14)
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Further, assuming the simplified relationship (2.14) between the local average void frac-
tion and the local two-phase flow velocity yields for the axial void fraction the expression

α(z) =
u− 1

u− k
. (4.15)

Here u is defined as

u =
v0 · λ0

2 · π · fb(z)

where v0 is the (known) inlet velocity of the coolant and fb(z) can be estimated numeri-
cally for the corresponding APSDs.

Transit time

Another possibility to determine the void fraction is to use some simple explicit relation-
ship between the local void velocity and local void fraction such as (2.14) and combine
it with the measurements of the local velocity itself (e.g. from transit times using the
CCF of the neutron noise measurements [1]). Although the relationship (2.14) is an ap-
proximate one since it assumes the same velocity for the vapour and liquid phases, it
is advantageous for practical application since the knowledge of extra parameters is not
required.

As has long been known, the transit times of two-phase flow fluctuations between
pairs of detectors axially away from each other (i.e. the time it takes for the fluctuation
to propagate between two axial points, e.g. z1 and z2) can be determined from noise
measurements. This can be performed both from the cross-correlation function (CCF) or
from the phase of the cross-power spectral density (CPSD). In the present work, for the
sake of simplicity, the transit times are estimated from the CCF by using the maximum
of this function.

However, the transit time does not give any direct information of the velocity v(z1) or
v(z2) because it is related to the integral of the inverse velocity as

τ12 =

∫ z2

z1

dz

v(z)
, (4.16)

Then, assuming the following 3rd order polynomial approximation for the velocity
profile:

v(z) = a · z3 + b · z2 + c · z + d, (4.17)

and taking into account Eq. (4.16), the following system of equations can be used for
identifying the unknown coefficients a, b, c and d :∫ zi+1

zi

dz′

a · z3 + b · z2 + c · z + d
= τi,i+1, (4.18)

for four pairs of detectors i = 1, 2, 3, 4. In the above, it is assumed that the transit times
τi,i+1 can be estimated from the CCF between the neutron noise measurements performed
in five different axial levels. From this non-linear system of equations, the coefficients
a...d can be determined. Once the unknown coefficients are evaluated, the axial velocity
profile can be reconstructed and hence the void profile can be calculated from Eq. (2.14).
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This method is more straightforward from a practical point-of-view since it does not
require any additional data other than noise measurements. However, it is important
to emphasize that since the whole procedure is based on one single physical quantity,
the transit times should be estimated in a quite precise way or an increased number of
detectors should be used.

4.2.2 Analysis of numerical results

In this Section, the corresponding parameters for both methods are determined from the
simulated neutron noise measurements, provided by the Monte Carlo model.

The results of the Monte Carlo simulation including simulated neutron noise signals
together with their calculated APSDs, have already been demonstrated and discussed
earlier in Chapter 2. Therefore, here, only the results of the quantitative processing of
these data are shown and analyzed.

Table 4.2: Results of the curve fitting procedure of the APSD of the Monte Carlo simulated neu-
tron noise to the Lorentzian coefficient (Eq. (4.11)).

Det. pos., zd [cm] Amp., A [a.u.] τλ [s] Break freq., fb [Hz]
z1 = 40 cm 4.82 · 106 0.0650 15.38
z2 = 60 cm 8.08 · 106 0.0649 15.51
z3 = 100 cm 1.14 · 107 0.0602 16.61
z4 = 130 cm 1.21 · 107 0.0593 16.87
z5 = 180 cm 1.19 · 107 0.0565 17.69
z6 = 240 cm 1.17 · 107 0.0557 17.94
z7 = 300 cm 1.13 · 107 0.0540 18.51
z8 = 380 cm 1.10 · 107 0.0534 18.72

The break frequencies for each of the eight APSDs as well as their amplitudes were
numerically estimated by fitting the corresponding curves to the Lorentzian coefficient
defined in Eq. (4.11) (see Table 4.2). As can be seen from the table, both the amplitude
of the APSD (except for the last four cases) and the break frequency rise axially in the
core. As a further step, the estimated break frequencies are substituted into Eq. (4.15) to
recalculate the void fraction in eight detector locations. The result is plotted in Fig. 4.6
(blue line). For comparison, the “true” void profile (the output from Monte Carlo simu-
lations calculated by time averaging over the corresponding set of void fraction signals)
is also given in Fig. 4.6 (red line). From the two figures, one can conclude that the void
fraction calculated from the simulation qualitatively reproduces the behaviour of the true
one. However, the break frequency method overestimates the void fraction, primarily in
the lower part of the channel. From a practical point-of-view, this region is less interest-
ing since it usually corresponds to the subcooling area where the bubbles are primarily
generated rather than propagate.

Next, the results for the second method are discussed. The CCF function between
different detector pairs is estimated using the detector signals generated by the Monte
Carlo model. Then, the corresponding transit times τexp and averaged velocities vexp are
calculated and the results are given in Table 4.3. For comparison, the true transit times τtr
calculated from the true velocity profile are also given in the last column of Table 4.3. As
one can see, the results from both methods are in a good agreement with each other. Once
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Figure 4.6: True axial void profile (the output from Monte Carlo model, red) and “reconstructed”
(“experimental”, blue) axial void profile, as calculated by the break frequency method (Eq. 4.15).

Table 4.3: Results of the transit time calculations from the Monte Carlo simulation (both the true
and reconstructed ones).

Det. dist. dij [cm] τtr [s] τexp [s]
z13 = 60 cm 0.263 0.262
z35 = 80 cm 0.302 0.302
z57 = 120 cm 0.408 0.410
z78 = 80 cm 0.261 0.262

the transit times are found, one can estimate the unknown coefficients for the velocity
profile (see Eqs. (4.17)-(4.18)), as mentioned in the previous Section.
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CONCLUDING REMARKS

Success is not the key to happiness. Happiness is the key to success.
If you love what you are doing, you will be successful.

— Albert Einstein

Some of the dynamical properties of the neutron noise in light water reactors concern-
ing the inter-related areas of traveling perturbations and BWR instability problems have
been investigated, using different techniques for modeling the neutron noise. The analy-
sis was made in both open-loop systems, where the system properties are mainly defined
by those of the transfer function (calculated for the unperturbed core) and all feedback
effects are neglected, as well as in closed-loop systems, where the strong coupling be-
tween neutron-kinetic and thermo-hydraulic models are accounted for. As for the noise
source, the main perturbation type which dominates in BWRs, i.e. the propagating type
of perturbation traveling axially with a coolant, was chosen.

First, for the case of open-loop systems, the space-/frequency-dependence of the
propagating neutron noise in one group theory was analyzed. Some interesting interfer-
ence effects between the point-kinetic and pure space-dependent terms for the medium
size systems/medium frequencies were discovered and explained. As a consequence, in
practical cases, the presence of both components will apparently complicate the utiliza-
tion of the induced noise for diagnostic purposes. Next, a similar study was performed in
two-group theory to expedite the interpretation of the effect of different spectral proper-
ties on the induced neutron noise. As a result, it was suggested that it might be beneficial
to include fast neutron detection methods in the noise diagnostic systems for fast reac-
tors. In addition, it was demonstrated that for the correct description of the induced
noise, it is important to model the noise source by accounting for its effect on all cross-
sections. Such results have a significance both to BWRs and PWRs, as well as for some
planned future reactor types, in particular Generation IV MSRs, where the propagating
perturbations could have a stronger effect due to the circulating properties of the fuel.

In the case of closed-loop systems, a simple reduced order model (ROM) with four
heated channels was applied to study both global and regional instabilities in BWRs. It
was found that the inclusion of the fundamental and both azimuthal modes is crucial
for the characterisation of BWR stability, and their interference can lead to an incorrect
determination of the corresponding stability boundaries. Apart from this, it was demon-
strated that the developed ROM is capable to handle not only core-wide instabilities, but
also the effect of local ones (induced e.g. by DWOs) in a simplified manner. Moreover,
the ROM is able to provide a deeper insight and understanding into the origins of studied
instability events. As a continuation, a more realistic model for the propagating DWOs,
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based on the data from system codes and taking into account the axial phase shift be-
tween different core elevations, is planned to be introduced into the ROM to investigate
its effect on the stability properties of the system.

Finally, some applications of the neutron noise diagnostics, based on the foregoing
studies, were discussed. As a first step, the effect of the non-white character of the driving
force on the stability properties in a BWR was investigated. From this analysis, it was
concluded that for the practical cases, the non-white character of the driving force does
not induce any significant change on the determination of the stability properties of the
system, as compared with the case of a white driving force. However, as shown in the
thesis, in some pathological cases, the unstable state of the system might not be detected
until the properties of the driving force change.

Then, using the newly-developed ROM the possibility to utilize the coupling reac-
tivity coefficients as a new stability parameter, instead of the traditional DR, was inves-
tigated. It was found that in the frame of the present ROM, the behaviour of the DR
as a function of Cmn is not monotonic which makes the alternative to use the reactiv-
ity coefficients as a new stability indicator questionable. To clarify this problem, further
investigation is necessary.

Next, the unfolding technique of the neutron noise was considered. Two methods
(the break frequency and transit time) for the reconstruction of the axial void profile
from the MC simulated neutron noise were tested. Both methods show promising re-
sults and can be considered as good candidates for testing them on actual neutron noise
measurements. However, further developments of the model are necessary in order to
improve the consistency of the estimations. It should also be mentioned that the inves-
tigation was limited to bubbly flows only, whereby a more sophisticated model may be
required for other flow regimes. As a future work, a more fundamental application of the
break frequency method, i.e. combining both methods together to increase the accuracy
of the void reconstruction, will be considered. Furthermore, the transit time method is
also planned to be tested on real neutron noise measurements performed in the Swedish
Ringhals-1 power plant, as a continuation of the present work.

To summarize, the problems of traveling perturbations discussed in this thesis, as
well as the methods elaborated for their solution, bring some significance for both the
safety and economy of reactor operation. What regards the first item, using simple mod-
els for the neutron noise, some intuition into the characteristic properties of the reactor
system and the methods to quantify them was obtained. Such knowledge will obviously
help to detect and identify abnormal (unstable) reactor behaviour long before it leads to
serious consequences and, thus, to operate the reactor in a much safer manner. In terms
of economical benefits, the implemented diagnostic methods proved to be a powerful
tool for the online monitoring and unfolding of reactor parameters, important for both
core management and surveillance. In addition, compared to other methodologies, such
techniques do not require any installation of additional equipment and can be performed
on already existing instrumentation. However, to improve the quality of the obtained re-
sults as well as the efficiency of the employed algorithms, a more sophisticated modeling
of the governing physical processes providing a better representation of realistic cases
are necessary and will be undertaken in the future.
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NOMENCLATURE

ACF Auto Correlation Function
APRM Averaged Power Range Monitor
APSD Auto Power Spectral Density
BWR Boiling Water Reactor
CANDU CANada Deuterium Uranium
CCF Cross Correlation Function
CPSD Cross Power Spectral Density
DF Driving Force
DFM Drift Flux Model
DR Decay Ratio
DWO Density Wave Oscillation
(F)FT (Fast) Fourier Transform
HEM Homogeneous Equilibrium Model
LPRM Local Power Range Monitor
LWR Light Water Reactor
MOX Mixed Oxide
MSR Molten Salt Reactor
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PWR Pressurized Water Reactor
ROM Reduced Order Model
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[3] Kosály G. and Meskó L., “Remarks on the transfer function relating inlet temperature
fluctuations to neutron noise”, Atomkernenergie, 18, pp. 33-36, 1972.

[4] Pázsit I., “Neutron noise theory in the P1 approximation”, Progress in Nuclear Energy,
40, pp. 217-236, 2002.

[5] Pázsit I. and Jonsson A., “Reactor kinetics, dynamic response and neutron noise in
Molten Salt Reactors (MSR)”, Nuclear Science and Engineering, 167, pp. 61-76, 2010.

[6] Jonsson A. and Pázsit I., “Two-group theory of neutron noise in Molten Salt Reac-
tors”, Annals of Nuclear Energy, 38, pp. 1219-1246, 2011.

[7] Bell G. I. and Glasstone S., “Nuclear Reactor Theory”, Van Nostrand-Reinhold Com-
pany, New York, USA, 1970.
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