

POLCA-T code validation against Peach Bottom 2 End of Cycle 2 Turbine Trip Test 2

by:

Henric Lindgren

Master of Science Thesis Division of Reactor Technology 2004

Department of Energy Technology Royal Institute of Technology Stockholm, Sweden

Proposal and approval of a Master of Science thesis at the Department of Energy Technology

Title: POLCA-T code valid	ation against Peach Bc	ttom 2 End of Cyc	e 2 Turbi	ne Trip Te	st 2			
Author: Henric Lindgren		Report nr:						
Project:		Pages:						
Overall responsible at KTH	4:							
Dr. Henryk Anglart								
Approved at KTH by: Signature:								
Overall responsible at indu	ustry:							
Dr. Dobromir Panayotov								
Industrial Partners:								
vestingnouse Electric Sw	eden AB	Cignoture						
Approved by industrial par	thers:	Signature:						
Abstract:								
of cycle 2 at Peach Bottom pressure increase transier data was recorded for com	ו Unit 2. The aims for th its on neutron flux in the iputer code's validation	e transient tests w e core. From these	ere to inv experime	estigate then the stigate the stigatet the st	ne effects of ue transient			
The main objective of the s pressure increase transier code POLCA-T. Some ser parameters, models and o	study is to validate the nts using the coupled 31 nsitivity studies on effec ptions are also perform	Westinghouse met D neutron kinetics ts of some therma led.	hodology and syste I hydraulio	for 3D and ms therma c and kine	alysis of al-hydraulics tics			
The methodology for perfor generation, depletion calco model), core 3D neutron k coupled 3D core and plant and the results obtained in taking into account fuel ex control rods, fuel temperat POLCA7 was used when p Steady state Hot Zero Pow model, using POLCA7 and In the final step of the tran plant systems thermal hyd	irming transient analysi ulations, system therma- inetics and thermal-hyd systems transient anal each of the steps. Cro posure, coolant density cure, and xenon depend performing depletion ca ver and Hot Full Power 1 POLCA-T. sient analysis the West traulics transient code F p Test 2 (TT2) using m	s is split up in five f al-hydraulics only a lraulics analysis (ir lysis. This report de ss section data wa historical and inst lencies. Westingho lculations and xen analyses were per inghouse coupled POLCA-T was valid	major ste nalysis (ii iitializatio escribes t s generat antaneou ouse 3D n on transie formed to 3D core n lated aga	ps: cross s nitialization n of core n he work po- ted by PHC s depende odal core ent calcula o initialize t neutron kin inst the PE	section data n of plant nodel), and erformed DENIX encies, simulator tions. the core etics and 32 Boiling pted by the			
Water Reactor Turbine Tri	p Test 2 (TT2), using m	ultiple table cross	section d	ata genera	ated by the			
vvestinghouse PHOENIX (code. Obtained results	were compared wit	n availab	le measur	ed data and			
snowed good agreement v	vith them. Thus the 3D	transient methodo	ogy using	g the POLO	SA-1 CODE			
was validated for pressure	increase transients.							
Distribution LIST								
Name/Company	Conies	Name/Company	/		Copies			
			1					

CONTENTS

A	BBREVIATIONS	7
1	INTRODUCTION	8
	1.1 BACKGROUND. 1.2 OBJECTIVES	8 9 9 . 10
2	3D TRANSIENT ANALYSIS METHODOLOGY	. 12
	 2.1 CROSS SECTION DATA GENERATION	. 12 . 14 . 15 . 16 . 17
3	CROSS SECTION DATA GENERATION	. 18
	 3.1 PEACH BOTTOM 2 CORE DATA	. 18 . 24 . 25 . 25 . 27 . 28 . 29 . 30 . 31 . 31 . 32 . 32 . 33
4	DEPLETION CALCULATIONS	. 34
	 4.1 PROCESS PARAMETERS AND INPUT DATA	. 34 . 35 . 39 . 45 . 47 . 47 . 48 . 49 . 51
	4.4.1 Results of depletion calculations cycle 2 4.4.2 Depletion and Xenon calculations prior to tests	. 51 . 54

	4.5	CONCLUSIONS	58
5	ΙΝΙΤ	TALIZATION OF THE CORE MODEL	60
	5.1 5.2 5.2. 5.2. 5.2. 5.2. 5.3	HOT ZERO POWER. 6 HOT FULL POWER. 6 1 Sensitivity study of bypass flow rate. 6 2 Relative power for fuel assemblies 75 and 367. 6 3 Radial power distributions 6 4 Core averaged axial void distribution 6 CONCLUSIONS 6	50 52 57 58 58 58
6	CO	UPLED 3D CORE AND PLANT SYSTEMS TRANSIENT ANALYSIS	70
	6.1 6.2 6.3 6.3. 6.3. 6.4 6.4 6.5	POLCA-T PB2 PLANT MODEL 7 DESCRIPTION OF TURBINE TRIP SIMULATION CASES RUN 7 ZERO TRANSIENT CALCULATIONS 7 1 Static and transient cross section models 7 2 Results of Zero transient 7 TURBINE TRIP TRANSIENT SIMULATION 7 1 Results of TT2 transient simulation 7 CONCLUSIONS 7	70 71 72 72 72 74 75 79
7	SU	MMARY	31
8	REF	FERENCES	33
A	PPENI	DIX 1 – PROCESS PARAMETERS FOR CYCLE 1 AND CYCLE 2	36
A	PPENI	DIX 2 – INPUT DATA FOR DEPLETION CALCULATIONS	93
A	PPENI	DIX 3 – CONTROL ROD CONFIGURATIONS FOR TT2 INITIAL STATE AND HOT ZERO POWER STATE	00
A	PPENI	DIX 4 – ASSEMBLY NUMBERS MAP FOR PEACH BOTTOM 2 IN POLCA7)1
A	PPENI	DIX 5 – RADIAL POWER DISTRIBUTIONS PRIOR TO TT210)2
A	PPENI	DIX 6 – PEACH BOTTOM 2 RPV NODALIZATION IN POLCA-T)6

LIST OF FIGURES

FIGURE 3.1. CORE LOADING PATTERN CYCLE 1	19
FIGURE 3.2. CORE LOADING PATTERN CYCLE 2	20
FIGURE 3.3. BUNDLE DESIGN FOR FUEL ASSEMBLY TYPE 1	20
FIGURE 3.4. BUNDLE DESIGN FOR FUEL ASSEMBLY TYPE 2	21
FIGURE 3.5. AXIAL VARIATION OF BURNABLE ABSORBER IN FUEL ASSEMBLY TYPE 2	21
FIGURE 3.6. BUNDLE DESIGN FOR FUEL ASSEMBLY TYPE 3	22
FIGURE 3.7. AXIAL VARIATION OF BURNABLE ABSORBER IN FUEL ASSEMBLY TYPE 3	22
FIGURE 3.8. BUNDLE DESIGN FOR FUEL ASSEMBLY TYPE 4	23
FIGURE 3.9. BUNDLE DESIGN FOR FUEL ASSEMBLY TYPE 5	23
FIGURE 3.10. BUNDLE DESIGN FOR FUEL ASSEMBLY TYPE 6	23
FIGURE 3.11. DEFINITION OF THE DIFFERENT FUEL SEGMENT TYPES GENERATED IN PHOENIX	24
FIGURE 3.12. PHOENIX GEOMETRY MODEL OF A 7X7 ASSEMBLY	26
FIGURE 3.13. CORE ORIFICING AND TIP SYSTEM ARRANGEMENT	28
FIGURE 3.14. CALCULATION PROCEDURE FOR A SINGLE COOLANT DENSITY HISTORY	32
FIGURE 4.1. DATA SUMMARIES FOR PROCESS PARAMETERS AT PB2 DURING CYCLE 1	36
FIGURE 4.2. DATA SUMMARIES FOR PROCESS PARAMETERS AT PB2 DURING CYCLE 2 TO DATA SET 37	37
FIGURE 4.3. CONTROL ROD SEQUENCE GROUPS A AND A2 AT PEACH BOTTOM 2	38
FIGURE 4.4. CALCULATION OF PROCESS PARAMETERS FOR DEPLETION CALCULATIONS	39
FIGURE 4.5. COOLANT AND BYPASS FLOW IN A FUEL ASSEMBLY	41
FIGURE 4.6. POLCA7 METHOD FOR DETERMINING INITIAL GUESS OF BYPASS FLOW	42
FIGURE 4.7. CORE BYPASS FLOW RATE FOR CYCLE 1 AND 2	43
FIGURE 4.8. CORE BYPASS FLOW FRACTION FOR CYCLES 1 AND 2	44
FIGURE 4.9. INFLUENCE OF SPLFIX ON PRESSURE DROP IN ACTIVE CHANNELS AND BYPASS	47
FIGURE 4.10. COMPARISON BETWEEN MEASURED AND CALCULATED TIP RESPONSE AT THE END OF CYCLE 1	
	50
FIGURE 4.11. COMPARISON BETWEEN MEASURED AND CALCULATED TIP RESPONSE AT THE END OF CYCLE 2	2
	53
FIGURE 4.12. DATA SUMMARIES BETWEEN DATA SET 37 AND TT3.	55
FIGURE 4.13. INFLUENCE OF CORE POWER ON XENON POISONING	50
FIGURE 4.14. METHODOLOGY FOR CALCULATING ACION NON-EQUILIBRIUM DISTRIBUTIONS PRIOR TO TTZ	ວ <i>1</i>
TIGURE 4. 13. COMPARISON BETWEEN CALCULATED CORE AVERAGE AXIAL RELATIVE POWER AND FTEDITAT	50
	00
PIGURE 5.1. FOLOAT HUT ZERU FOWER CALCULATIONS. COMPARISON BETWEEN FROENIX CD AND	61
FREVIOUS CALCULATIONS WITH FSO CD	62
FIGURE 5.2. TTO ZERO FOWER AXIAL FOWER DISTRIBUTIONS FOR FUEL ASSEMBLIES 75 AND 507	61
FIGURE 5.3. TTZ STEADT STATE THEF CALCULATIONS WITH FOLCAT AND FOLCATE	66
FIGURE 5.4. DIFASS FLOW SENSITIVITY STUDY WITH FOLCA-T EXERCISE 2	66
FIGURE 5.5. CORE AVERAGE ANAL FOWER SHAFE USING CORRECTED LITAILE	67
FIGURE 5.0. AXIAL FOWER DISTRIBUTIONS FOR FOLLASSEMBLIES 7.5 AND 507	68
FIGURE 6.1. FISSION DOWED DUDING 10 SECOND ZEDO TRANSIENT CALCULATIONS	73
FIGURE 6.2. STEAM DOME DESSURE DUDING 10 SECOND ZERO TRANSIENT CALCULATIONS	7/
FIGURE 6.3 FISSION DOWER DURING THE FIRST FIVE SECOND 2 ERO TRANSIENT CALCULATIONS	76
FIGURE 6.4 FIGURATION FOR THE DIVIDING THE FIRST FIVE SECONDS OF THE TTZ TRANSIENT	77
FIGURE 6.5. STEAM DOME DESCRIPTE FOR THE FIRST EIVER FLAR OF THE FTZ TRANSIENT	77
FIGURE 6.6. CODE EVIT DESCURE FOR THE FIRST FIVE SECONDS OF THE TTZ TRANSIENT	78
FIGURE 6.7 MAIN STEAM LINE PRESSURE FOR THE FIRST FIVE SECONDS OF THE TTZ TRANSIENT	78
FIGURE 6.8. TURRINE IN ET PRESSURE FOR THE FIRST FIVE SECONDS OF THE TT2 TRANSIENT	70
HOUSE GO, FORDINE INCEPTING ON THE FINOL THE GEODINDO OF THE FIZ TRANGENT	.0

LIST OF TABLES

TABLE 3.1. PB2 FUEL ASSEMBLY DATA FOR CYCLE 1 AND CYCLE 2	19
TABLE 3.2. AVERAGE FUEL TEMPERATURE FOR CYCLE 1 AND CYCLE 2	27
TABLE 4.1. PEACH BOTTOM 2 RATED CONDITIONS	34
TABLE 4.2. CONSTANTS FOR EQUATION (4.7)	44
TABLE 4.3. SENSITIVITY STUDY ON BYPASS FLOW FRACTION AND LEAKAGE PATH 1 LOSS COEFFICIENT	46
TABLE 4.4. SUMMARY OF THE DEPLETION CASES	48
TABLE 4.5. RESULTS OF DEPLETION CASES 3, 6, 7 AND 8 AT END OF CYCLE 1	49
TABLE 4.6. RESULTS OF DEPLETION CASES 3, 6, 7 AND 8 AT END OF CYCLE 2	52
TABLE 4.7. SUMMARY OF TIP COMPARISON FOR EACH DETECTOR STRING	54
TABLE 4.8. RESULTS OF DEPLETION AND XENON CALCULATIONS FOR TT2 INITIAL STATE	57
TABLE 5.1. TT2 INITIAL CONDITIONS	63
TABLE 5.2. TT2 STEADY STATE CALCULATED DATA WITH POLCA7 AND POLCA-T USING PHOENIX AND P	SU
Cell Data	65
TABLE 5.3. TT2 STEADY STATE CALCULATIONS WITH CORRECTED L1AREA	67
TABLE 6.1. SUMMARY OF TRANSIENT CALCULATION CASES	71
TABLE 6.2. TT2 SEQUENCE OF EVENTS	76

ABBREVIATIONS

AO	Axial Offset
APRM	Average Power Range Monitor
BA	Burnable Absorber
BWR	Boiling Water Reactor
CD	Cell Data
CR	Control Rod
EFPH	Effective Full Power Hours
EOC	End of Cycle
FA	Fuel Assembly
HFP	Hot Full Power
HZP	Hot Zero Power
KKL	KernKraftwerk Leibstadt
LHGR	Linear Heat Generation Rate
LPRM	Local Power Range Monitor
NEA	OECD Nuclear Energy Agency
NRC	United States Nuclear Regulatory Commission
NW	Northwest
OECD	Organization for Economic Cooperation and Development
PB2	Peach Bottom Atomic Power Station Unit 2
pcm	per cent mille (10 ⁻⁵)
PHX	PHOENIX lattice code
PPF	Power Peaking Factor
ppm	parts per million (10 ⁻⁶)
PSU	Pennsylvania State University
RMS	Root Mean Square
RPV	Reactor Pressure Vessel
SE	Southeast
SI	Spectrum Interaction
TIP	Traveling In-Core Probe
TSV	Turbine Stop Valve
тт	Turbine Trip

1 INTRODUCTION

Nuclear Power Plants are very complex systems. In order to maintain safe and efficient operation it is important to have models that can predict and simulate the operational conditions before performed by the operational staff. The phenomena that can occur in a Nuclear Power Plant require a theoretical model that can be applied for the entire reactor system. Neutron kinetics models must be applied to the core, along with a thermal hydraulic model for the core and systems.

To simulate transient events, the neutron kinetics and thermal hydraulics models must be coupled in order to consider the interaction of the phenomena. Westinghouse transient code POLCA-T is a 3D core simulator where the core neutron kinetics and the plant thermal hydraulics models are coupled together.

1.1 Background

Three Turbine Trip (TT) transient experiments, and four low-flow stability tests were performed prior to shutdown for refueling at the end of cycle 2 (EOC2) of the Boiling Water Reactor (BWR) Peach Bottom Unit 2 (PB2) in Pennsylvania, in April 1977 [1]. The aims for the TT tests were to investigate the effects of pressure increase transients on neutron flux in the core. The low-flow stability tests were performed to investigate the sensitivity of core stability when small perturbations are made in the operating conditions. From all these experiments, unique transient data was recorded for computer code's validation [1].

In order to verify the capability of different coupled codes during complex transient events, the US Nuclear Regulatory Commission (NRC) and OECD Nuclear Energy Agency (NEA), in cooperation with the Pennsylvania State University (PSU), developed a Boiling Water Reactor transient benchmark. The transient used for the benchmark was the PB2 EOC2 Turbine Trip 2. The benchmark specifications are described in detail in [2].

Previous validations have been made for POLCA-T against PB2 EOC2 Low-Flow Stability tests [3],[4] and the Turbine Trip benchmark [5],[6],[7],[8]. During these validations however, the cross-section data used was generated by PSU using the CASMO and Simulate codes [2]. The fuel exposure, coolant density histories and Xenon distributions were embedded implicitly in the cross section data generated by PSU for the TT2 initial state; and the models in POLCA7 and POLCA-T that utilize fuel exposure and Xenon dependencies were not used in the benchmark analyses. Despite the good agreement between the results in the benchmark and the measured data, the results cannot qualify Westinghouse 3D transient methodology using POLCA-T code due to the requirements of the benchmark specifications. Westinghouse methodology and codes for cross-section data generation differs from the methodology and codes used in the benchmark. In the present POLCA-T code validation against PB2 EOC2 TT2 test, the cross section data is generated using Westinghouse's PHOENIX-code following the standard methodology.

In order to validate the methodology, the results obtained from POLCA7 and POLCA-T have to be compared with available from PB2 measured data.

1.2 Objectives

The main objective of the study is to validate Westinghouse methodology for 3D analysis of pressure increase transients using the coupled 3D neutron kinetics and system thermalhydraulics code POLCA-T. Some sensitivity studies on effects of some thermal hydraulic and kinetics parameters, models and options are also performed.

1.3 Chapters overview

Chapter 2 describes the 3D transient methodology. The methodology generally used requires five steps in order to perform 3D transient study, and all steps are presented.

Chapter 3 discusses the first step in the procedure which is cross section data generation using Westinghouse PHOENIX code, including definitions and assumptions used. The generated cross section data is used further in the depletion calculations.

The core depletion calculations performed by the Westinghouse POLCA7 code for cycle 1 and 2 are explained in chapter 4. Different options and parameters used in the depletion calculations are explained. The results of the depletion calculations are compared with data from PB2 by performing steady state calculations at the end of cycle 1 and cycle 2.

In chapter 5, the method of initializing the core neutronics model by performing Hot Zero Power calculations is described along with Hot Full Power calculations for the state prior to the TT2 transient with POLCA7 and POLCA-T. A sensitivity study on the influence of the bypass flow rate is performed also. The results are presented and compared to previous calculations using PSU data and also to measured plant data.

In chapter 6 the coupled neutron kinetic and thermal hydraulic transient calculations for the TT2 is performed with POLCA-T. Zero transient calculations and TT transient calculations are performed and sensitivity studies on the cross section models and different POLCA-T options. The results are compared to measured data and to results obtained using PSU data.

In chapter 7, a summary of the work is presented.

Six appendices include the following:

- 1. The process parameters of cycle 1 and cycle 2
- 2. The input data used for the depletion calculations
- 3. Control rod configuration for TT2 initial state and Hot Zero Power state
- 4. Assembly numbers map for Peach Bottom 2 in POLCA7
- 5. Radial power distributions for Hot Zero Power and Hot Full Power state prior to TT2
- 6. Peach Bottom 2 Reactor Pressure Vessel nodalization in POLCA-T

1.4 Westinghouse codes

Westinghouse codes used in the present study for the BWR TT POLCA-T code validation are briefly described below.

PHOENIX

PHOENIX is a 2D lattice neutron transport theory and depletion code which evaluates neutronics behavior in two dimensions of a fuel assembly and individual pin cells, and generates multiple table cross sections. PHOENIX creates spatially smeared (homogenized) microscopic and macroscopic cross-sections for each fuel segment, with discrete energy dependence, using two energy groups (thermal and epithermal) [9].

IFIGEN

IFIGEN is a pre-processor to PHOENIX. In IFIGEN, the depletion steps, boron contents, and moderator density histories are defined for which the cross section tables will be generated with PHOENIX [10].

CoreLink

CoreLink is a post-processing program for PHOENIX. CoreLink prepares the nodal cross section tables for POLCA7 from the files that were generated by PHOENIX. CoreLink processes data for each fuel segment type, and produce cell data tables in ASCII¹ format that will be later used by the program TABBE. The cell data contain all cross section tables for each fuel segment type [11].

TABBE

TABBE is a service program for cell data files. TABBE can convert cross section tables stored in ASCII format to binary format, and also dump tables from the binary file back to ASCII format. TABBE can also list the contents of the cell data files, and list k-infinity tables [12].

POLIN

POLIN is an input processor to POLCA7. All the inputs, where the core is modeled are made in POLIN. The inputs are then checked by POLIN for correctness before POLCA7 is started [13].

POLCA7

The Westinghouse POLCA7 code is a 3D nodal core simulator. POLCA7 solves the coupled neutronics diffusion equation and thermal-hydraulic equations using two energy groups. POLCA7 tracks burnup distributions and important nuclides during all reactor operation conditions; control rod insertions and axial spacer grid positions. In POLCA7, the assemblies are divided in axial nodes that are homogenized, to which fuel segment data is linked [9],[11].

¹ ASCII format in this case means a plain text file

POLDIS

POLDIS is a distribution file service program for POLCA7 which is used for manipulating distributions. One feature of POLDIS is that distribution files can be created. This was the only option used for this program in the present study, where the TIP measurements from PB2 were put into binary format [14],[15].

SKYFFEL

SKYFFEL is a core shuffling program for the free standing POLCA7. In SKYFFEL, the fuel assemblies, control rods and detectors are shuffled between fuel cycles [16].

POLCA-T

POLCA-T is a 3D transient code which brings together the 3D core neutron kinetics and plant system thermal-hydraulics models. The code has a full 3D core model based on the POLCA7 code, and the plant systems thermal hydraulics model is based on the RIGEL code. POLCA-T uses the BISON modules SAFIR for the balance of plant models and PARA for the steam line model. The code is presently under validation with emphases on pressure increase transient analysis and stability [5],[17],[18].

2 3D TRANSIENT ANALYSIS METHODOLOGY

When 3D transient analyses are performed using coupled codes, the methodology generally consists of five steps as follows:

- 1. Cross section data generation
- 2. Depletion (core follow) calculations
- 3. Plant systems thermal hydraulic only transient analysis: initialization of plant model
- 4. 3D core neutronics and thermal hydraulic hot zero power calculations and hot full power steady state calculations: initialization of core model
- 5. Coupled 3D core neutron kinetics and plant thermal hydraulic systems transient analysis

These five steps are described in detail in the sections below.

2.1 Cross section data generation

Cross section data generation is the first step in the 3D transient analysis. One of the reasons for generating cross section tables is to obtain the data required by the 3D core simulator and the transient code. The core simulator and transient code are further used in the depletion calculations of the core, and in the steady state and transient analyses, which are the following steps of the methodology.

In a 3D nodal core simulator and in the transient code, each fuel assembly is axially divided into a number of nodes. The 3D nodal core simulator has models with coupled neutronics, thermal-hydraulics and depletion. The core simulator requires data that is homogenized for each material composition in order to solve the neutron diffusion equation. These homogenized data for each material composition are not prepared by the core simulator, but instead by a separate 2D transport theory and depletion code often called lattice code [19].

A fuel assembly can have different axial compositions. Each unique axial composition is called a fuel segment type. A common assumption when generating data for each fuel segment type is that it is surrounded by identical fuel segments, which means that the fuel segment parameters depend primarily on the assembly itself, and not on its position in the core. The position dependency is later modeled in the core simulator [19].

For each fuel segment type, successive independent depletion calculations are performed. This is to model the history effects for fuel exposure and material burnup. Independent non-depletion calculations are also performed to model instantaneous effects by means of branch calculations. In these calculations, the fuel segment state parameters fuel exposure, coolant density and coolant density history are determined [19].

The calculations are performed to create Cell Data (CD) that will be linked to each fuel segment type. The CD consists of macroscopic and microscopic cross section tables, diffusion coefficients, discontinuity factors, pin-power, pin-burnup form factors and delayed neutron data.

When a depletion calculation is performed, all parameters are held constant at their base values, and only the fuel exposure changes. The base values are the parameters for which the core is designed to run during normal operation (rated parameters). Non-depletion off-base branch calculations are based on instantaneous variations from the rated state parameters [19].

The CD is generated for many depletion histories. The data includes all the significant state parameters and is tabulated. From the tables, interpolations can be performed by the core simulator of the history parameters to get the history dependent data for the specified node [19].

The coolant density history and control rod (CR) history are the two history state parameters used by the core simulator, where the coolant density history is the only independent parameter in the cross section tables. The CR history is regarded only for pin-power form factor maps and neutron flux discontinuity factors. This is done explicitly in supplementary cross section tables [19].

The non-depletion off-base calculations are made for the instantaneous steps, for all state parameters independently. However, in some cases some parameters are combined and varied simultaneously. The active coolant density is the most important parameter for the off-base calculations and is always varied simultaneously with the other parameters. This means that the CD is a tabulation of three independent variables, namely the fuel exposure, the instantaneous coolant density and the coolant density history [19].

The base values for a BWR are defined in [19] as:

- Hot Full Power (HFP) moderator² density corresponding to a saturated or sub-cooled condition with no void at rated core pressure
- HFP coolant density corresponds to the reference coolant density (coolant density at a selected void condition)
- HFP nominal power density
- HFP nominal fuel temperature
- No control rods or spacer grids present
- Reference boron concentration of zero ppm
- Equilibrium xenon at nominal power density

For the off-base parameter values, instantaneous variations of the coolant density are made for each depletion case, and variations with the following state parameters are calculated, as explained in pp. 8-9 of [19]:

• Average fuel Doppler temperature

² The moderator and active coolant are treated differently in a BWR. The active coolant is the internal assembly flow. The moderator includes also the internal and external assembly bypasses.

- Control rod presence for each control rod type
- Spacer grid presence for each spacer grid type
- Xenon concentration (non-equilibrium)

The presence of CR during the depletion is treated specially with the control rod history tables for pin-power form functions and discontinuity factors. This is done to capture the impact they have on reactivity and pin powers. When a CR is inserted the fissile isotope Pu-239 is built up and the depletion of U-235 retardates in the near vicinity of the CR. When the CR is removed very large pin power peaking may occur. The CR history tables are generated assuming the control rods have been inserted for certain depletion periods, and withdrawn after some period [19].

The base CD tables are generated with base dependencies in three state parameters; the fuel exposure, the reference coolant density and the coolant density history. All other parameters also affect these base CD-tables, and are additional contributors to the base CD tables [19].

The inputs to the lattice code when generating the CD is design data for the fuel and the other materials present in the core, and a microscopic cross section library.

The reason for generating nodal data by means of a separate lattice code is that the microscopic cross section library is very large, and the 3D core simulator cannot acquire data directly from the library. Separate CD tables including only the homogenized compositions present in each fuel segment and in the CR and detectors are generated. In these tables, the core simulator interpolates in order to achieve data for the desired state of the reactor.

When the CD is generated, the next step in the 3D transient analysis can be performed: the depletion calculations with the core simulator up to the desired operational point when the transient analysis is to be performed.

The cross section generation process for PB2 cycle 1 and cycle 2 along with used assumptions and results are presented in chapter 3.

2.2 Depletion calculations

The second step in the 3D transient analysis is depletion (core follow) calculations. During operation of a nuclear power plant, the initial isotopes are depleted, and some isotopes are built up and then depleted. In order to obtain the actual distributions of the isotopes at the state prior to the transient analysis, the core must be depleted to model all the history effects in the core during the operation up until the time of the transient analysis.

The parameters that determine the depletion of the core are several. Among them are core thermal power, coolant flow, control rod presence, pressure and core coolant inlet subcooling. The variation of these parameters during the operation must be considered in order to model the local depletion effects in the core. The cross section tables are used by the core simulator where all different operating states and exposures are modeled by interpolating in the tables.

3D neutronics core simulators are used for the calculations where the fuel, control rods and detectors are depleted. In the core simulators, the fuel assemblies are divided in axial nodes. These nodes may consist of several material compositions, to which cell data is linked.

Burnup steps no larger than 1 MWd/kg are recommended in order to model all local depletion effects in the core sufficiently. At the end of each depletion calculation, the calculated distributions for the isotopes and the histories are saved. Having all these distributions saved, a new set of depletion calculations for the next burnup step is performed.

In order to check the accuracy of the depletion calculations and the generated cell data, instantaneous steady state power calculations can be performed, and compared with measured plant data. The calculated TIP (Traveling In-core Probe) detector response can be compared with measured TIP detector response. If the deviations between the calculated and measured TIP response are within certain acceptable limits, the core depletion calculations are considered to be satisfactory.

Between the fuel cycles, a specialized code or a core simulator is used to shuffle and reload the core, and to initiate distributions for the fresh fuel assemblies.

When the core is depleted during the cycles, the xenon is assumed to be equilibrium. If the reactor has not been operating with steady conditions prior to the transient test, xenon transient calculations must be performed in order to model the non-equilibrium xenon distributions in the core. This is important because xenon has an extremely large absorption cross section [20].

The distribution of xenon in the core is assumed to be in equilibrium in the core if the reactor has been operating with steady conditions for a long time period (more than 72 hours). However, if significant changes in the operating conditions are made in a shorter time period prior to the transient test, the xenon will not be in equilibrium. Xenon is formed in two ways in the core, directly from the fission process and from the decay of lodine. It is the xenon that is formed from the decay of lodine that requires approximately 72 hours to reach a new equilibrium.

The depletion calculations and xenon transient calculations for PB2 during cycle 1 and cycle 2 up to the state prior to the TT2 test are described in detail along with the achieved results in chapter 4.

2.3 Plant systems thermal hydraulic transient analysis: initialization of plant model

The third step in the 3D transient analysis is the development of the thermal hydraulic plant model. The purpose of this step is to develop, initialize and test the response of the plant model from the thermal hydraulic system, and compare the results with available measured data.

The boundary conditions necessary to perform the initialization of the model for the TT simulation are assumed to be the following:

• power versus timetable

- turbine pressure controller set-point versus time
- steam bypass valve position versus time
- feed water mass flow and temperature versus time

The development of the plant model is independent of the cross section model used.

When the plant model is developed, the response of the model is tested by performing transient calculations using the above mentioned boundary conditions. The calculated parameters, steam dome and core exit pressures, main steam line and turbine inlet pressures, reactor pressure vessel (RPV) water level etc. are compared to measured data [5].

This step was performed in previous validations, [5], [21], and is independent of the cross section model used and will not be performed again in this study. The plant model is described in more detail in chapter 6.

The next step in the 3D transient analysis is to initialize the core model. When the core model is initialized, it is coupled with the thermal hydraulics model in the final step, which is coupled 3D core and plant systems transient analysis.

2.4 3D core steady state calculations (Hot Zero Power and Hot Full Power calculations): initialization of core model

In the fourth step of the 3D transient analysis the 3D core model is initialized. By means of performed steady state calculations, the response of the 3D core neutronics and thermal hydraulics models with lower and upper plenum boundary conditions is tested. The analyses are performed by the core simulator.

The first part of initializing the core model is performing Hot Zero Power (HZP) calculations. The HZP is an artificial state where the core neutronics model is initialized and verified. The HZP calculations are performed at 1% of the rated power. The thermal hydraulic parameters (fuel temperature and coolant density) are fixed in each node which turns off the thermal hydraulic feedback in the core, hence only the core neutronics model and the generated cross section data are tested [2].

When the core model is initialized, steady state Hot Full Power (HFP) calculations are performed for the state prior to the transient test. The process parameters for the state prior to the transient experiment are used when calculating the steady state.

The calculated power and its distributions are compared to measured plant data for the state.

The calculation procedure is described in detail in chapter 5 along with the process parameters at PB2 for the state prior to the TT2 tests, and the results of the calculations.

Now all first four steps have been completed in order to prepare the coupled 3D core and plant systems transient analysis. The cross section tables have been generated; the core has been depleted up to the desired state; the thermal hydraulic and core models have been

initialized. The fifth and final step is to perform calculations for the transient with coupled core and thermal hydraulic models.

2.5 Coupled 3D core and plant systems transient analysis

In the final step of the 3D transient analysis the thermal hydraulic plant model is coupled with the 3D neutron kinetics model and transient analysis is performed.

The first step is to perform zero transient calculations. Zero transient calculations are performed in order to avoid that any numerical noise or input errors are superimposed on the results in the transient calculations.

Immediately following the zero transient calculations, the system is perturbed in the way that was used in the test and the transient calculations are performed.

A sensitivity study is performed in order to check the effect of some input parameters, code's options and models on results. The choice of parameters, options and models is made considering their uncertainty and importance for phenomena assumed to be important for simulated transient.

The calculated parameters fission power, steam dome pressure, main steam line pressure, turbine inlet pressure, etc. are compared to measured plant data.

The transient calculations, and the steps involved are explained in detail in chapter 6 along with the analysis, results and comparison with measured data.

3 CROSS SECTION DATA GENERATION

Cross section data generation was the first step in the 3D transient analysis. The methodology described in section 2.1 was applied using Westinghouse codes.

In the Westinghouse 3D nodal core simulator POLCA7, each fuel assembly is axially divided into nodes. Each node may contain a number of fuel segment types, to which cell data³ (CD) is linked. POLCA7 requires data that is homogenized for each fuel segment (often called material composition) in order to solve the neutron diffusion equation. The homogenization means that all materials and their temperatures, densities and exposure are assigned to the whole composition [19]. These homogenized data for each material composition are not prepared by the core simulator, but instead by Westinghouse 2D transport theory and depletion code PHOENIX [22], [23].

In order to model the neutron transport for each fuel segment type in PHOENIX, the design data of PB2 [24] was used to describe all materials that the core consisted of during cycle 1 and cycle 2.

A description of the PB2 reactor and the design data for cycle 1 and cycle 2 used when generating the cell data is described in the next section. A thorough description of PB2 during cycle 1 and cycle 2 is found in [24].

3.1 Peach Bottom 2 Core Data

Peach Bottom 2 is a General Electric BWR/4 Nuclear Power Plant. The core consisted of 764 fuel assemblies with an active length of 144 inches (365.76 cm). 185 control rods provided reactivity control. Local Power Range Monitors (LPRM) and a Traveling In-core Probe (TIP) system were used to detect neutron flux in the core.

During cycle 1, the core was loaded with 764 7x7 fuel assemblies. When the core was shuffled and reloaded for cycle 2, 576 7x7 fuel assemblies remained in the core, and 188 8x8 assemblies were loaded.

The fuel assembly geometry and data is shown in Table 3.1 for the assembly types that were present in cycle 1 and cycle 2 (Table 1, 2 and 3 in [24]).

In the 7x7 assemblies, the spacer was connected to the fuel rod by a Zirconium connector located on the fuel rod. In the 8x8 assemblies, the water rods were spacer positioning rods.

In [24], there is no distinction between fuel assemblies of type 4-1 and 4-2 in the fuel assembly identification map. Therefore all type 4 fuel assemblies are assumed to be of type 4-1, since only eight assemblies of sixty-eight are of type 4-2. The only difference between fuel type 4-1 and 4-2 is the fuel box thickness, see Table 3.1.

The core loading patterns are shown below in Figure 3.1 and Figure 3.2 for cycle 1 and cycle 2 respectively.

³ The macroscopic and microscopic cross section tables, diffusion coefficients, discontinuity factors, pin-power and pin-burnup form factors for each fuel segment type are assembled and called Cell Data

Assembly type	1	2	3	4-1	4-2	5	6
No of assemblies, initial core	168	263	333	0	0	0	0
No of assemblies, cycle 2	0	261	315	60	8	116	4
Geometry	7x7	7x7	7x7	8x8	8x8	8x8	8x8
Assembly pitch, in	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Fuel rod pitch	0.738	0.738	0.738	0.640	0.640	0.640	0.640
Fuel rods per assembly	49	49	49	63	63	63	62
Water rods per assembly	0	0	0	1	1	1	2
Fuel rods containing Gd ₂ O ₃	0	4	5	5	5	5	5
No of spacer grids	7	7	7	7	7	7	7
Inconel per grid, lb	0.102	0.102	0.102	0.102	0.102	0.102	0.102
Zr-4 per grid, lb	0.537	0.537	0.537	0.614	0.614	0.614	0.614
Spacer width, in	1.625	1.625	1.625	1.625	1.625	1.625	1.625
Assembly average fuel composition:							
Gd ₂ O ₃ , g	0	441	547	490	490	328	313
UO ₂ , kg	222.44	212.21	212.06	207.78	207.78	208.00	207.14
Total fuel, kg	222.44	212.65	212.61	208.27	208.27	208.33	207.45
1/2 Width of wide water gap, in	0.375	0.375	0.375	0.355	0.335	0.355	0.355
1/2 Width of narrow water gap, in	0.188	0.188	0.188	0.167	0.147	0.167	0.167
Bundle average enrichment	1.10	2.50	2.50	2.74	2.74	2.74	2.60
Weight of U per fuel assembly, kg	196.1	187.1	186.9	183.2	183.2	183.3	182.6
Channel geometry							
Outside width, in	5.438	5.438	5.438	5.478	5.518	5.478	5.478
Thickness, in	0.08	0.08	0.08	0.10	0.12	0.10	0.10
Inside corner radius, in	0.38	0.38	0.38	0.38	0.38	0.38	0.38
Material	Zr-4						

Table 3.1. PB2 fuel assembly data for cycle 1 and cycle 2

Core loading pattern Peach Bottom 2 Cycle 1

01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Figure 3.1. Core loading pattern cycle 1

Core loading pattern Peach Bottom 2 Cycle 2

01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Figure 3.2. Core loading pattern cycle 2

The individual fuel bundle design for each fuel assembly is shown in Figure 3.3 through Figure 3.10, where the individual pin enrichment is shown, along with the rods containing the burnable absorber (BA) Gd_2O_3 .

For the fuel assemblies of type 2 and type 3, the BA is not distributed over the entire fuel rod length. This is shown in Figure 3.5 and Figure 3.7. For the assemblies of type 4, 5 and 6, the BA is distributed over the entire fuel rod length. The figures are taken from [24].

wide-wi	de co	orner	•						
Г									
	2	1	1	1	1	1	1		
	1	1	1	2	1	1	1		
	1	1	2	2	2	2	1		
	1	2	2	2S	2	2	1		
	1	1	2	2	2	2	1		Rod
	1	1	2	2	2	1	1		
	1	1	1	1	1	1	1		
]	S=si

Rod type	U-235 (wt%)	Gd ₂ O ₃ (wt%)	No. of rods
1 2	1.33 0.71	0 0	31 18

S=spacer positioning rod

Figure 3.3. Bundle design for Fuel Assembly type 1

The "wide-wide corner" presented in Figure 3.3 represents the corner where the control rod will be located. The wide-wide corner is also referred to as the northwest (NW) corner. The same analogy is used for the opposite corner, which is called the southeast (SE) corner. The control rods are always located in the NW corner, and the detectors are always located in the SE corner in the PHOENIX simulation.

wide-wide corner									
Г			-		-				
	4	3	3	2	2	2	2		
	3	2	1	1	1	1	2		
	3	1	5A	1	1	5A	1		
	2	1	1	1S	1	1	1		
	2	1	1	1	6B	1	1		
	2	1	5A	1	1	1	2		
	3	2	1	1	1	2	2		

Rod type	U-235 (wt%)	Gd ₂ O ₃ (wt%)	No. of rods
1	2.93	0	26
2	1.94	0	12
3	1.69	0	6
4	1.33	0	1
5A	2.93	3.0	3
6B	2.93	3.0	1

S=spacer positioning rod

Figure 3.4. Bundle design for Fuel Assembly type 2

Figure 3.5. Axial variation of Burnable Absorber in Fuel Assembly type 2

wide-w	ide co	orner	•									
ſ	4	3	3	2	2	2	3]	Rod type	U-235 (wt%)	Gd ₂ O ₃ (wt%)	No. of rods
	3	8D	1	1	1	1	2		1	2.93	0	26
	3	1	1	1	1	5A	1		2	1.94	0	11
	2	1	1	6C	1	1	1		3	1.69	0	6
	2	1	1	1	1	1	1		4 5A	2.93	3.0	2
	2	1	5A	1	1	7F	2		6C	2.93	3.0	1
	3	2	1	1	1	2	2		7E 8D	2.93 2.93	4.0 4.0	1
L								J	6C=spacer	positioning ro	d	

Figure 3.6. Bundle design for Fuel Assembly type 3

Figure 3.7. Axial variation of Burnable Absorber in Fuel Assembly type 3

de-wi	de c	orne	er					
	4	3	2	2	2	2	2	3
	3	2	1	5	1	1	1	2
	2	1	1	1	1	1	5	1
	2	5	1	1	1	1	1	1
	2	1	1	1	ws	1	1	1
	2	1	1	1	1	1	1	1
	2	1	5	1	1	1	5	1
	3	2	1	1	1	1	1	2

v

Rod type	U-235 (wt%)	Gd ₂ O ₃ (wt%)	No. of rods	
1	3.01	0	39	
2	2.22	0	14	
3	1.87	0	4	
4	1.45	0	1	
5	3.01	3.0	5	
WS	-	-	1	

WS=spacer positioning water rod

Figure 3.8. Bundle design for Fuel Assembly type 4

de c	orne	er					
4	3	2	2	2	2	2	3
3	2	1	5	1	1	1	2
2	1	1	1	1	1	5	1
2	5	1	1	1	1	1	1
2	1	1	1	ws	1	1	1
2	1	1	1	1	1	1	1
2	1	5	1	1	1	5	1
3	2	1	1	1	1	1	2
	4 3 2 2 2 2 3	4 3 3 2 2 1 2 5 2 1 2 1 2 1 2 1 3 2	4 3 2 3 2 1 2 1 1 2 5 1 2 1 1 2 1 1 2 1 5 3 2 1	4 3 2 2 3 2 1 5 2 1 1 1 2 5 1 1 2 5 1 1 2 1 1 1 2 1 1 1 2 1 5 1 3 2 1 1 3 2 1 5	4 3 2 2 2 3 2 1 5 1 2 1 1 1 1 2 5 1 1 1 2 5 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 5 1 1 3 2 1 1 1	4 3 2 2 2 2 2 3 2 1 5 1 1 2 1 1 1 1 1 2 5 1 1 1 1 2 5 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 5 1 1 1 2 1 5 1 1 1 3 2 1 1 1 1	4 3 2 2 2 2 2 2 3 2 1 5 1 1 1 2 1 1 1 1 1 5 2 5 1 1 1 1 5 2 5 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 5 1 1 1 1 2 1 5 1 1 1 5 3 2 1 1 1 1 1 1

Rod type	U-235 (wt%)	Gd_2O_3 (wt%)	No. of rods
1 2 3 4 5	3.01 2.22 1.87 1.45 3.01	0 0 0 0 2.0	39 14 4 1 5
VV 3	-	-	I

WS=spacer positioning water rod

Figure 3.9. Bundle design for Fuel Assembly type 5

wide-wi	ide c	orne	er						
Г				r					
	4	3	2	2	2	2	2	3	
	3	2	1	5	1	1	1	2	
	2	1	1	1	1	1	5	1	
	2	5	1	1	WR	1	1	1	
	2	1	1	ws	1	1	1	1	
	2	1	1	1	1	1	1	1	
	2	1	5	1	1	1	5	1	
	3	2	1	1	1	1	1	2	
L									

Rod type	U-235 (wt%)	Gd_2O_3 (wt%)	No. of rods
1 2 3 4 5 WS WR	3.01 2.22 1.87 1.45 3.01 - -	0 0 0 2.0 -	38 14 4 1 5 1 1

WS=spacer positioning water rod WR=water rod

Figure 3.10. Bundle design for Fuel Assembly type 6

The fuel rods in assembly type 6 have a length of 140 inches. The difference between type 6 and the other fuel types is that type 6 has an end plug containing natural uranium at the top and bottom. The bottom end plug is 4 inches long, and the top end plug is 6 inches long. Since the active fuel length is 144 inches, the assumption was made that fuel assembly 6 contained of the bottom 4 inch end plug, and the fuel rods of 140 inches. The top end plug containing natural uranium was not modeled, see Figure 3.11.

The different fuel assembly types are modeled separately in PHOENIX as individual fuel segment types. Assembly types 2, 3 and 6 are split up into several fuel segment types due to the variation in axial material composition. The fuel segment types are defined in the next section.

3.2 Definition of fuel segment types

In order to generate the cross section data, the different fuel segment types had to be defined. A fuel segment type is a detailed 2D radial cross section description of an assembly, including fuel pins, assembly boxes and water gaps, to which nodal data is associated.

Six different fuel assembly types were used in PB2 cycle 1 and 2. They are described by eleven different fuel segment types due to the variation in axial geometry and material compositions. The different fuel segment types are illustrated in Figure 3.11. The eleven unique axial layers are modeled according to Figure 3.3 through Figure 3.10.

Figure 3.11. Definition of the different fuel segment types generated in PHOENIX

Separate cross section tables were generated for each fuel segment type and assembled in one cell data file using the Westinghouse program chain IFIGEN/PHOENIX/CoreLink/TABBE. The assumptions used and the calculations that were performed are explained in the next sections.

3.3 **PHOENIX** input data

In order to model the neutron transport in the fuel segment, each fuel segment type must be modeled with the corresponding geometries and masses.

For each fuel segment type, all the materials are modeled by their masses and densities. Examples of those are; the enrichment of the fuel, the contents of BA, materials in fuel cladding and fuel boxes, compositions of coolant, detectors, control rods and spacer grids, etc.

The geometry of the fuel assembly is described in the PHOENIX input. All the geometries of the pins, gaps and boxes etc. were given, as well as the geometries of the control rods and detectors. The position of each pin in the assembly was also input to PHOENIX.

In addition to the design data [24], PHOENIX requires a cross section library for the isotopes that are present in the considered design materials. The cross section library is a data base containing data for 308 materials [25], and is based on the ENDF/B-VI.

Some calculations are required of the design data before it can be input to PHOENIX. An example is the geometries of the fuel assemblies, which is described in the next section.

3.3.1 **PHOENIX** geometry representation

PHOENIX requires a certain geometry model for the fuel rods, assembly box, control rods and detectors. Some modifications are required to the original design data in order to get it into PHOENIX geometry. An example of a 7x7 assembly with PHOENIX geometry is shown in Figure 3.12. The calculations that were necessary for the inputs to PHOENIX were generated following the recommendations given in [10], [11], [22] and [23].

The average fuel temperature is a required input to PHOENIX. This is explained in the next section.

3.3.2 Fuel temperature

The average fuel temperature is used as a reference when generating the CD. A variation from the average fuel temperature is later modeled in IFIGEN. This is done in order to model the Doppler Effect in the CD tables.

The average fuel temperature for each fuel assembly was calculated as an input to PHOENIX. The Linear Heat Generation Rate (LHGR) was used in order to determine the average fuel temperature. The procedure is explained in [11] as

$$LHGR = \frac{0.96 \cdot Q}{M \cdot n \cdot l} \tag{3.1}$$

where

- Q rated thermal reactor power, kW
- M number of bundles in core
- *n* number of fuel rods in each bundle
- *l* active length of fuel bundle, m

Figure 3.12. PHOENIX geometry model of a 7x7 assembly

The fuel temperature is found using equation (3.1) and a graph for the relation between the LHGR and average fuel temperature [11]. The calculated average fuel temperatures for cycle 1 and cycle 2 are presented in Table 3.2. During cycle 2, both 7x7 and 8x8 fuel assemblies were present, and hence the average number of active fuel rods in each bundle is used in the calculations.

The in-core flux detectors at PB2 during cycle 1 and cycle 2 were neutron detectors [24]. The neutron detectors are modeled in the SE corner in PHOENIX, and the calculations to model them in PHOENIX (Figure 3.12) are described in the next section.

input data	cycle 1	cycle 2
Q, kw	3293000	3293000
Μ	764	764
n	49	52.44*
l, m	3.6576	3.6576
calculated:		
LHGR, kW/m	23.088	21.573
Tfuel, K	933	909

 Table 3.2. Average fuel temperature for cycle 1 and cycle 2

* average value in core

3.3.3 Detectors data

The neutron flux in the core during cycle 1 and cycle 2 of PB2 was detected by fixed Local Power Range Monitors (LPRM) and a Traveling In-core Probe (TIP) system. The LPRM and TIP system give a representation of the spatial distribution of the neutron flux in the water gaps in the core. The LPRM are fixed in the core, and are distributed evenly in 43 radial positions throughout the core and with 4 detectors axially. The TIP is a 1 inch long fission chamber containing U-235 which is connected to a cable and can be positioned in any axial position in one of the 43 detector strings [24].

The TIP system is used to give an accurate representation of the axial neutron flux distribution in the core. The TIP system is generally used approximately once per month in order to calibrate the LPRM. During transient situations, the TIP system is not used. The LPRM however are always located in the core, and are used to measure the neutron flux during transients. The LPRM positions and the TIP system arrangement are illustrated in Figure 3.13, where the 43 detector strings are shown. The core orificing is shown also in the figure.

When modeling the detectors in PHOENIX, some assumptions had to be made in order to get it into PHOENIX geometry. The location of the detector in the PHOENIX geometry model is shown in Figure 3.12. First of all, the fuel type with the smallest narrow gap (south and east gaps) had to be calculated (it turned out to be fuel 4-2, since it has the thickest box). This was because in PHOENIX the detectors, modeled with square geometry in the SE corner, cannot overlap the pin-cells; this would have generated an error. Another assumption needed was that the space between the pin cell and the detector needed to be at least 0.002 cm for numerical reasons [26].

The half thickness of the narrow gap was calculated to be 0.398 cm. The height and width of the detector with PHOENIX geometry was 0.398 - 0.002 = 0.396 cm. This size was modeled for all fuel types since the detector pin is assumed to have the same geometry for the entire core when modeled later in POLCA7.

The mass of the steel in the detector pin must be kept constant when changing the geometry to maintain the correct absorption cross section. The mass was kept constant by modifying the steel density when the area was changed.

3.3.4 Additional assumptions in the PHOENIX input data

The steel composition was assumed to be SS-type 304 as given in [24].

The formula for calculating the relative spacer grid area for the spacers in [11] was modified, because of the presence of Zircalloy in the spacers, to

$$A_{sg} = \frac{m_{inc} + m_{Zr-4}}{\rho_{avg} \cdot h_{sg}} \text{ where } \rho_{avg} = \frac{\left(m_{inc} + m_{Zr-4}\right) \cdot \rho_{Zr-4} \cdot \rho_{inc}}{m_{inc} \cdot \rho_{Zr-4} + m_{Zr-4} \cdot \rho_{inc}}$$
(3.2)

and

- A_{se} relative area of spacer grid, cm²
- m_{inc} mass of Inconel in spacer grid, g
- m_{Zr-4} mass of Zircalloy-4 in spacer grid, g
- $ho_{\scriptscriptstyle avg}~$ average density of spacer grid, g/cm 3
- h_{sg} height of spacer grid, cm
- ρ_{inc} density of Inconel, g/cm³
- ρ_{Zr-4} density of Zircalloy-4, g/cm³

The input values to equation (3.2) are given in Table 3.1.

The detector and the neutron absorbing material B_4C in the control rods were modeled using the compositions given in [11]. The steel in the control rods, and the water in the water paths of the control rods were homogenized into a mixture of steel and water. The steel-water mixture in the control rods was assumed to be the same as for the composition "BWR2/3/4 Dlattice" in [11]. The composition and geometry for the control rod-handle was extracted from KKL data, since there was no geometry data on the CR-handle in [2] or [24] for PB2.

In PHOENIX, all data necessary to generate the base case cross section tables are input. Base case means unrodded fuel, no spacers or detectors present, equilibrium xenon, nominal power density and reference coolant density etc. The data necessary to perform the branch calculations are input in IFIGEN, which is a pre-processor to PHOENIX. In IFIGEN code's input data the depletion steps, boron contents, and coolant and moderator density histories are defined, along with the geometries for the control rods, spacers and the detectors. This is explained in the next section.

3.4 IFIGEN input data

IFIGEN is a pre-processor to PHOENIX where the data required to perform the branch calculations are defined. In IFIGEN the burnup steps, control rod and spacer presence, number of active coolant densities, fuel temperatures and xenon contents are defined in an operational matrix [10]. The operational matrix and the IFIGEN inputs are described along with some assumptions in the sections hereafter.

3.4.1 The operational matrix

In order to have a comprehensive overview of all necessary calculations in the CD generation process, IFIGEN uses an operational matrix that defines the following [10]:

- Burnup values where base tables are generated, and for which burnup values branch calculations should be performed.
- Number of active coolant density conditions (including branches) for which tables should be generated.

- For which burnup values branch calculations will be performed with control rod and/or spacer presence.
- The number of non-base boron conditions and fuel temperatures (for Doppler calculations).
- For which burnup values Xenon branch calculations should be performed.

Each of these parameters defined in the operational matrix are described further in the next sections.

3.4.2 Burnup steps

Base cross section tables are generated for several burnup values. This is done in order for the core simulator POLCA7 to be able to use the tables for any burnup value and interpolate the corresponding cross sections. Branch calculations are made for all, or some selected burnup steps. All the burnup values are defined in the matrix, and according to Westinghouse methodology the cross section tables are generated in a span from 0 MWd/t to 70 000 MWd/t, with burnup steps no larger than 2 000 MWd/t between the generated tables [11]. In the low burnup region, the burnup steps are 500 MWd/t in order to model the fast burnup of the BA accurately.

3.4.3 Coolant density histories

The base cross section tables are generated for a reference coolant density, which is the active coolant density at a specified void. Branch calculations are also performed to generate tables for conditions other than the reference case.

The reference coolant density used to generate the base tables is specified in [11] as:

• 40 % void at saturated conditions for a pressure of 70 bars (286 °C).

The branch tables are generated for the following conditions:

- 0 % void at 20 °C subcooled conditions (266 °C) for a pressure of 70 bars.
- 20 % void at saturated conditions for a pressure of 70 bars.
- 60 % void at saturated conditions for a pressure of 70 bars.
- Subcooled conditions, 20 °C at 1 bar pressure.
- Subcooled conditions, 80 °C at 1 bar pressure.
- Subcooled conditions, 160 °C at 70 bars pressure.

The last three cases are zero-power conditions. These tables are used in zero power calculations, and in Doppler calculations [10].

3.4.4 Control rods and spacers

The base tables are generated for unrodded fuel assemblies, which means that the control rod is withdrawn. Branch calculations are performed for cases with an inserted control rod for the specified burnup values.

The same is applied for spacer grids. The base tables are generated without spacer grid presence. Branch calculations are again performed for cases with spacer grid presence.

3.4.5 Boron contents and Doppler temperature

The base tables are generated with a boron content of 0 ppm. One non-base boron condition is calculated and the boron variation is assumed to be 1000 ppm according to [11]. Branch calculations are performed at the specified burnup values in order to model the boron content.

In order for the core simulator to model the Doppler effect, one variation from the base fuel temperature is tabularized. The base value for the fuel temperature was calculated for the PHOENIX input and was 933 K and 909 K for cycle 1 and cycle 2 respectively. The recommendation in [11] is that the Doppler variation should be $T_f^{base} + 400K$, where T_f^{base} is

the base value for the fuel temperature for each cycle. However, in this case the Doppler variation was set to 1199 K, when the recommendations were that it should be less than 1200 K due to numerical reasons [11].

3.4.6 Xenon branches

The base cross section tables are generated assuming equilibrium xenon. Branch calculations are performed to generate tables with zero xenon. This is done in order to model the indirect and most important effect that xenon has on the neutron spectrum (called xenon spectrum effect).

Xenon has an extremely large absorption cross section. The neutron absorption changes considerably when the xenon number density deviates from its equilibrium. The secondary effect of this is the neutron spectrum that changes and this in turn affect all fissionable isotopes' cross sections. The dependence of the xenon on the neutron spectrum is close to linear.

Tables are generated for equilibrium xenon at rated conditions and for zero xenon. By doing this, all deviations from the xenon equilibrium state can be modeled for the cross sections of the fissionable isotopes [28].

3.5 Calculation procedure

The calculations when generating the CD tables are divided in two major steps, illustrated in Figure 3.14 for a single coolant density history. First of all a depletion case for each single coolant density is performed for the base conditions. At certain burnup values the calculated data is saved. The saved data represents the base conditions for the coolant density at the specified burnup.

In the second step, the saved data is used in a restart where branch calculations are performed for each off-base case that is specified in the matrix. For the branch calculations, no further depletion is performed.

Figure 3.14. Calculation procedure for a single coolant density history

3.6 Results of cross section calculations

The results from the calculations are multiple cross section tables with dependencies in the three state parameters: fuel exposure, coolant density history, and reference coolant density. The results also include pin maps that contain the enrichment and BA content in the fuel pins, the pin power and exposure. The cross section tables are generated for all eleven different fuel segment types, and put into one binary CD file using the Westinghouse code TABBE [12]. The reflection of neutrons escaping the core is not modeled in PHOENIX. The neutron reflection is treated specially and is described in the next section.

3.7 Reflector data

Neutrons that escape the core are slowed down and/or reflected in both the radial and axial direction. Two different methods can be applied to model the neutron reflection, either by

explicit reflectors which are represented as material regions, or by albedo boundary conditions. A common practice is to use explicit reflectors for the radial reflection, and albedo boundary conditions for the axial reflection. In this specific case generic BWR reflectors CD were used for the radial reflector region and albedo boundary conditions for the top and bottom of the core according to [29].

3.8 Conclusions

The CD was generated using Westinghouse methodology. The data will be used in the depletion calculations for PB2 cycle 1 and 2, and tested by means of steady state calculations. Finally the data will be used in the transient calculations. The CD takes into account xenon number density, fuel exposure and historical and instantaneous coolant density dependencies explicitly, as is required by the 3D core simulator POLCA7.

4 **DEPLETION CALCULATIONS**

During the operation of a nuclear power plant the initial isotopes are depleted, and some isotopes are built up and then depleted. The TT2 test was performed at the EOC 2. In order to model the state prior the TT2 test correctly, depletion calculations were performed to obtain the actual distributions of isotopes in the core.

The depletion calculations were performed by modeling the operational states during cycle 1 and cycle 2 using POLCA7 and is described in the next section. The process parameters used for the calculations were taken from figures 63-100 in [24].

The accuracy of the depletion calculations was checked by performing steady state power calculations at the end of cycle 1 and cycle 2, using instantaneous process parameters given in [24]. The calculated TIP response by POLCA7 was then compared to the measured TIP signals. The results of the depletion calculations are presented in section 4.2.2 for cycle 1 and section 4.4.1 for cycle 2.

4.1 Process parameters and input data

The process and input parameters of PB2 cycle 1 and 2 used for the POLCA7 depletion calculations are presented in this section. The rated conditions of PB2 are presented in Table 4.1 (Table 3.1.1.3 in [2]).

Parameter	Value
Core thermal power, MW	3 293
Core total flow rate, kg/s	12 915
Bypass flow rate, fraction of total core flow	Figure 4.7
Fraction of core thermal power passing through fuel cladding	0.96
Approximate bypass coolant total power fraction	0.02
Approximate active coolant total power fraction	0.02
Rated reactor dome pressure, MPa	7.033
Rated core pressure, MPa	7.1361
Core pressure drop at rated conditions, MPa	0.1517
Core inlet enthalpy, kJ/kg	1212.5
Average enthalpy rise across core, kJ/kg	254.91
Reactor average exit quality	0.129
Design hot channel active coolant exit quality	0.25
Design bypass exit quality	0
Total feedwater flow rate, kg/s	1 679.70
Feedwater temperature, °C	191.17

Table 4.1 Deach Pottom 2 rated conditions

4.1.1 Process parameters for cycle 1 and 2

The process parameters core thermal power, total number of inserted CR notches, total flow and core inlet subcooling for the two cycles were used as input data to POLCA7 in order to repeat the operational conditions at PB2. The process parameters are given in figure 63-100 of [24] as daily average values. These parameters were used when calculating the POLCA7 input process parameters for each burnup step and are plotted in Figure 4.1 and Figure 4.2 for the entire cycle 1 and cycle 2 respectively. The process parameters were converted in SI units and tabulated in Appendix 1 as daily average values.

The depletion calculations were performed in 43 steps for cycle 1 and 22 steps for cycle 2. The local burnup is affected by the CR positions, the flow rate, core inlet coolant subcooling and power level. The process parameters shown in the figures below were processed in order to get input data for the depletion calculations, and are described in the next section.

4.1.2 Input data

The steps for which the depletion calculations were performed had to be smaller than 1 MWd/kg in order to model the local burnup properly [28]. During each burnup step, the process parameters power, total flow, core inlet subcooling and the number of inserted CR notches were integrated and averaged. The average core thermal power for a burnup step is calculated as follows:

$$Q_{avg} = \frac{1}{\Delta t} \int_{t} Q \, dt \tag{4.1}$$

where

- Q_{avg} Averaged core thermal power for the burnup step, MW
- *Q* Daily average core thermal power, MW
- Δt Time for the burnup step, h

The inputs to the equation above are the daily average values from figure 63-100 of [24] (tabulated in Appendix 1). The same procedure is used when calculating average flow, inlet subcooling and average number of inserted CR notches for the burnup step. All the calculated parameters for input to POLCA7 are found in Appendix 2.

The CR positions are described by the number of notches *withdrawn* in the CR configuration maps (data set 01 – 37 in [24]), where one notch is equal to 3 inches. The physical notches at PB2 were 6 inches apart; hence the number of withdrawn notches was always even [24].

The CR positions changes many times between the measured data sets due to power regulations, sudden shutdowns and changes of CR sequences. In the data summaries in [24] figures 63-100, only the total number of *inserted* CR notches is given for each day. The exact CR configuration is only given for the data sets. For the burnup steps where the CR configuration is not given, the CR positions must be derived using CR sequences. The CR sequence groups A and A2 are shown in Figure 4.3, where the 185 control rods are divided in 21 groups. The CR positions can be assumed according to the CR sequence groups that are defined in [24], figures 56-61. The sequence groups are ordered, so CR groups with high sequence numbers are inserted first and CR groups with low sequence numbers withdrawn first. Using this knowledge, the actual CR positions were derived.

The exact position of each control rod in the core for each burnup step is given in Appendix 2.

Figure 4.1. Data summaries for process parameters at PB2 during cycle 1

Figure 4.2. Data summaries for process parameters at PB2 during cycle 2 to data set 37

Figure 4.3. Control rod sequence groups A and A2 at Peach Bottom 2

The burnup steps must also be calculated, and can be expressed in terms of burnup or time units, either as MWd/kg or Effective Full Power Hours (EFPH) as shown in the following equations respectively [30]:

$$\Delta E_{core} = \frac{Q_{avg} \cdot \Delta t}{m_{tot} \cdot 24} \tag{4.2}$$

$$\Delta t_{EFPH} = \frac{Q_{avg} \cdot \Delta t}{Q_{nom}} \tag{4.3}$$

These two equations are related as

$$\Delta E_{core} = \frac{Q_{nom} \cdot \Delta t_{EFPH}}{m_{tot} \cdot 24}$$
(4.4)

where

 ΔE_{core} - Burnup step, MWd/kg ("d" stands for days)

- Δt_{EFPH} Burnup step, EFPH
- m_{tot} Mass of initial heavy nuclides for all fuel bundles, kg
- Q_{nom} Nominal core thermal power, MW
- $Q_{\scriptscriptstyle ave}$ $\,$ $\,$ Averaged core thermal power for the burnup step, MW $\,$
- Δt Time for the burnup step, h

The burnup steps decide the burnup range for which the core was depleted using the specified process parameters. When significant changes were made in the operation, new

operational parameters were used for the next step in the depletion calculations. An example of this is illustrated in Figure 4.4 below.

Figure 4.4. Calculation of process parameters for depletion calculations

The burnup step size was calculated as EFPH when performing the depletion calculations by using equation (4.3). The averaged process parameters for core power, flow, subcooling, CR notches used as POLCA7 input data in the depletion calculations are shown in Appendix 2 along with the calculated EFPH for each step.

4.1.3 POLCA7 models and options used and investigated

Some of the parameters used as input data to the depletion calculations involve certain uncertainties. In order to check the sensitivity to some parameters and calculation options in POLCA7, several different cases were performed for the depletion calculations. The parameters and options that were studied and varied were the Dittus-Boelter heat transfer coefficient, the fuel Doppler temperature, the option for describing the bypass flow, and parameters describing leakage flow through leakage path 1. These parameters and options are described in more detail in sections 4.1.3.1- 4.1.3.4.

Eight different cases were performed in the depletion calculations. However, only four of them were found to be valuable. They are described in section 4.2.1. The cases represent different combinations of the above mentioned parameters and options.

4.1.3.1 Dittus-Boelter heat transfer coefficient

The Dittus-Boelter correlation is used to calculate the single-phase heat transfer coefficient between the fuel wall and the liquid coolant

$$Nu = C_{DB} Re^{0.8} Pr^{0.4}$$
(4.5)

Where Nu, Re and Pr are Nusselt, Reynold and Prandtl numbers respectively and C_{DB} is a constant that for the best-estimate correlation for turbulent flow is $C_{DB} = 0.023$, [31], [32]. This is also the default value for the constant in POLCA7 [13].

From equation (4.5) the heat transfer coefficient H_{DB} is obtained as:

$$H_{DB} = C_{DB} \frac{G^{0.8}}{D_h^{0.2}} \left(\frac{c_p}{\mu_l}\right)^{0.4} \lambda_l^{0.6}$$
(4.6)

The other parameters in the equation are:

- G mass flux, kg/(m²·s)
- D_h hydraulic diameter, m
- c_p heat capacity of liquid coolant, J/(kg·K)
- μ_l dynamic viscosity of liquid coolant, kg/(m·s)
- λ_{l} liquid conductivity, W/(m·K)

Two different values were used for C_{DB} in the calculations. Both the default $C_{DB} = 0.023$, and also $C_{DB} = 0.030$ which was used in previous validations and is recommended in [32] when using subcooled boiling correlation EPRI [32],[33]. In the present validation the Levy subcooled boiling correlation was used [32],[33]. The reason for using $C_{DB} = 0.030$ was that using $C_{DB} = 0.023$ generated bypass void in the calculations when combined with certain options. The bypass void did not occur when using $C_{DB} = 0.030$ in these cases. These results are not physical and the bypass void is explained in detail in section 4.1.4. For the final case, the default value $C_{DB} = 0.023$ was used.

The influence of the Doppler temperature was also studied in the depletion calculations, and is described in the next section.

4.1.3.2 Fuel Doppler Temperature

During a pressure increase transient in a BWR, the boiling of the coolant after the void collapse has the main influence on the negative reactivity feedback. A secondary and smaller effect during a pressure increase transient on the reactivity feedback is the Doppler Effect. When the fuel temperature increases, more neutrons are absorbed and give a decrease in reactivity.

In the CD generation process, the fuel temperature was 933 K for 7x7 fuel and 909 K for 8x8 fuel. A new set of CD was generated that had a fuel temperature of 750 K for all fuel segment

types. The CD with fuel temperatures 933 K for 7x7 fuel and 909 K for 8x8 fuel, and the CD with fuel temperatures 750 K for all fuel types, were used in different runs to see the influence of the Doppler temperature on the calculated axial power. However both sets showed no differences in results and for the final calculations the CD set with fuel temperatures 933 K and 909 K was used.

The flow in the bypass channel can be specified in POLCA7 in two different ways by using two different options. Both options were used in the calculations and are described in next section.

4.1.3.3 Bypass flow

In the BWR core the coolant flow is separated into active coolant flow and bypass flow. Active coolant flow is the water that directly cools the fuel rods inside the fuel assemblies. The inter assembly water flow and the flow inside the water pins is called bypass flow. The amount of the total flow that goes into the bypass is determined by the leakage from the main channel to the bypass.

In GE BWR/4 reactors with 7x7 and 8x8 fuel, two different leakages appear as shown in Figure 4.5; one between the main channel before the orifice inlet and the core support plate (leakage path 1), and the second (leakage path 2) from the main channel into the bypass before the lower tie plate [13]. In the 8x8 fuel with water pins, a part of the coolant flow goes into the water pins also.

Figure 4.5. Coolant and bypass flow in a fuel assembly

The fraction (expressed as a percentage) of the total core flow that goes into the bypass can be specified in POLCA7 in two different ways. One option is to specify one value for the bypass flow fraction that will stay constant in the thermal hydraulic iterative process. The other option is to specify a minimum and a maximum bypass flow fraction (SPLMIN and SPLMAX). With this information, the initial guess of the bypass flow fraction used in the iteration process

is found according to Figure 4.6 in POLCA7. The two different options will not necessarily calculate the same final result for the bypass flow.

Both options were used in the depletion calculations. The option where POLCA7 guess the initial bypass flow fraction, and improves it by iteration was used in the final calculations. The reasons for this are elaborated in section 4.1.4.

Figure 4.6. POLCA7 method for determining initial guess of bypass flow. [13] p. 150

During the first part of cycle 1, holes were drilled in the core support plate increasing the bypass flow fraction. The holes in the core support plate would increase the flow area of leakage path 1. The plant was shutdown and the holes in the core support plate were plugged in November of 1975 (see Figure 4.1). After the core support plate holes plugging, the leakage of the total flow into the bypass channel was decreased. During cycle 2, 8x8 fuel assemblies were added, which changed the leakage areas due to the different dimensions of the fuel and the waterpins, which did not exist in the 7x7 fuel, and hence affected the bypass flow fraction.

Three different relations between total flow and bypass flow appear for cycle 1 and 2:

- 1. Cycle 1 with 7x7 fuel assemblies before core support plate holes plugging.
- 2. Cycle 1 with 7x7 fuel assemblies after core support plate holes plugging.
- 3. Cycle 2 with 7x7 and 8x8 fuel assemblies.

When the option of specifying the bypass flow fraction explicitly in POLCA7 was used, the three different situations were modeled separately for the different parts of the depletion calculations. This was done in order to model the correct bypass flow fraction. The core bypass flow rate is expressed as a function of total core flow in fig. 54-55 of [24], reproduced below in Figure 4.7. The three lines represent cases 1, 2 and 3 respectively.

From these figures, the bypass flow fraction was calculated as a function of total core flow rate. This function was then used in the bypass flow fraction calculations for each burnup step.

Core bypass flow for cycle 1 and 2

Figure 4.7. Core bypass flow rate for cycle 1 and 2. [24] figures 54-55

After the core support plate holes plugging during cycle 1, and during cycle 2, there was a linear dependence between the core bypass flow rate and the fraction of rated core flow. From this, the bypass flow fraction was expressed as a function of the total core flow rate:

$$w_{bp,\%} = \frac{(c_1 \cdot w_{tot} + c_2) \cdot 126}{w_{tot}} \cdot 100$$
(4.7)

where $c_1 \cdot w_{tot} + c_2$ describes the linear function with the constants c_1 and c_2 and

$W_{bp,\%}$	-	bypass flow fraction of total flow, %
W_{tot}	-	total core flow, kg/s
$W_{bp,i,Mlb/hr}$	-	core bypass flow rate from Figure 4.7, Mlb/hr
$W_{tot,i,kg/s}$	-	core total flow from Figure 4.7, kg/s
126	-	conversion factor from Mlb/hr to kg/s

However, for case 1, before the core support plate holes plugging during cycle 1, there was not a linear dependence between the core bypass flow rate and the fraction of rated core flow as seen in Figure 4.7. The approach in this case was to select certain points in Figure 4.7 and interpolate linearly between these points. Due to this, several linear functions were obtained. For each of those linear functions, equation (4.7) was applied to calculate the bypass flow fraction. The results of the calculations are shown in Figure 4.8 and Table 4.2.

Figure 4.8. Core bypass flow fraction for cycles 1 and 2

case	valid for flow range: (% of rated flow)	c1	c2
1	32.1 - 40.0	0.001364	-3.331923
	40.0 - 50.0	0.001281	-2.904110
	50.0 - 70.0	0.001154	-2.082192
	70.0 - 90.0	0.001116	-1.736986
	90.0 - 100.0	0.001052	-0.997260
	100.0 - 120.0	0.001035	-0.778082
2	30.3 - 120.0	0.000589	-1.200414
3	29.4 - 120.0	0.000744	-1.584851

Table 4.2	Constants	for equation	(4.7)
-----------	-----------	--------------	-------

The last parameters that were investigated were the leakage path 1 area and loss coefficients and are described in the next section.

4.1.3.4 Leakage path 1 area and loss coefficient

A sensitivity study was performed on the area and flow loss coefficient of leakage path 1. The reason for performing this sensitivity study was that the value of this area is not well known. When the core is loaded, there are some leakages between the fuel assemblies and the core support plate through which coolant flows. The value of the leakage path 1 area and its loss coefficient depends on the core support plate and fuel assemblies manufacture tolerances and roughness of their surfaces. For these reasons both parameters have very high uncertainty.

4.1.4 Sensitivity study of bypass flow options and leakage path 1 area and loss coefficient

In the very first depletion cases bypass void occurred that were for some depletion steps as high as 16%. This is not realistic and some investigation had to be made in order to realize why the high bypass void occurred. A sensitivity study was performed where the two different options of describing the bypass flow fraction were tested, along with the influence of the leakage path 1 area and loss coefficient.

The bypass flow fraction can be specified explicitly in POLCA7. This is done by setting the input parameter SPLFIX > 0. If the input parameter SPLFIX = 0, the bypass flow fraction is calculated by POLCA7.

The leakage flow into the bypass through leakage path 1 (w_{leak1}^{CSP}) is calculated as:

$$w_{leak1}^{CSP} = s_{bp}^0 \cdot w_{tot}$$
(4.8)

where s_{bp}^{0} is the bypass flow fraction, and w_{tot} is the total flow in kg/s

When SPLFIX = 0, s_{bp}^{0} is initially guessed according to Figure 4.6, and is later improved in an iterative process [33]. In the iterative process the distribution of the coolant between the active channels and the bypass is adjusted to fulfill the criteria that the pressure drop over all channels is equal. When the flow distribution is determined, the leakage flow through the core support plate is calculated according to equation (4.8). This flow is used when calculating the pressure drop over the core support plate.

When SPLFIX > 0, s_{bp}^{0} is set to that specific value, and stays constant in the iterative process. In this case, w_{leak1}^{CSP} is not calculated to satisfy the flow distribution criteria. Consequently, POLCA7 does not calculate the pressure drop over the core support plate properly (see Figure 4.9). If the calculated pressure drop is too large, the pressure in the bypass will be too low. This in turn leads to a low saturation enthalpy in the bypass, and a bypass steam quality that is too large. This is the reason for the high bypass void when using SPLFIX > 0.

The loss coefficient ξ_{leak1} affects the bypass flow in the case when SPLFIX = 0, when it is used in the iterative process of finding the flow distribution [33]. In both cases for the SPLFIX input, the pressure drop is affected by ξ_{leak1} .

A sensitivity study was performed to see the influences of the loss coefficient and SPLFIX on the results. The loss coefficient ξ_{leak1} is called L1RC in the POLCA7 input. The values used for L1RC in the study were 1900, 240 and 80. The values for SPLFIX were 7.8574 and 0.0. In the study the PSU CD was used and the TT2 initial steady state process parameters (Table 5.1). The results are shown in Table 4.3. The value of L1RC in the first sets of depletion calculations was 1900, which was considered to be too large to be realistic [27], [34].

Steady state calculations were also performed using POLCA-T with PSU CD for the TT2 initial conditions to compare the results and get a better understanding of the source of the high

bypass void. POLCA-T uses a more advanced thermal hydraulic model, and the calculated pressure drop over the core support plate was reasonable. This in turn predicted a much lower bypass void than POLCA7. The results below and the results from the POLCA-T calculations showed that the high predicted void in the bypass came from using the calculation option where the bypass flow was given explicitly.

L1RC	1900	1900	240	240	80	80
SPLFIX	7.8574	0.0	7.8574	0.0	7.8574	0.0
Bypass flow (% of total)	7.86	8.12	7.86	12.04	7.86	16.08
Bypass outlet void (%)	15.37	2.95	5.03	0.00	0.00	0.00
Keff	0.99860	1.00286	1.00271	1.00126	1.0032	0.99923
Power Peaking Factor total	2.286	2.261	2.277	2.226	2.273	2.190
Power Peaking Factor radial	1.470	1.459	1.465	1.461	1.465	1.462
Power Peaking Factor axial	1.482	1.480	1.483	1.456	1.481	1.430
Axial Offset (%)	3.00	10.99	10.19	10.35	11.10	9.31
Core average void	33.50	31.74	31.81	32.92	31.59	34.33
dP (active channels - bypass) in node 1 (MPa)	0.2509	0.0277	0.0490	0.0251	-0.0164	0.0226
dP (active channels - bypass) in node 24 (MPa)	0.2250	0.0032	0.0243	0.0027	-0.0409	0.0022
dP active channels, core average (MPa)	0.0509	0.0503	0.0505	0.0485	0.0504	0.0467
dP bypass (MPa)	0.0250	0.0258	0.0258	0.0261	0.0259	0.0263

Table 4.3. Sensitivity study on bypass flow fraction and leakage path 1 loss coefficient

In Table 4.3 it is clearly shown how SPLFIX influence the pressure in the bypass. For all cases when SPLFIX = 0, the pressure difference between the bypass and the active channels are in the same range. The pressure difference between the active channel and the bypass at the outlet (node 24) is small, which is realistic when the two channels exit into the same upper plenum.

When SPLFIX > 0, the pressure drop into the bypass channel is not calculated correctly, and the pressure differences between the active channel and the bypass do not show consistency in the calculations. In the case of L1RC = 80, the pressure is higher in the bypass channel than in the active channel, which is not realistic. The pressure in the active channels and the bypass is plotted for L1RC = 1900 in Figure 4.9. The figure demonstrates that core support plate pressure drop has been calculated incorrectly for the case when SPLFIX > 0. There is a pressure difference between the active channels and the bypass channel which is larger than 2 bars. The pressure difference between the active channels and the bypass channel at the top of the core (node 24) should be small, as is the case when using SPLFIX = 0.

The results in Table 4.3 and Figure 4.9 show that the option SPLFIX > 0 should never be used in POLCA7 calculations.

It is also shown in Table 4.3 that L1RC affects the bypass flow fraction when the option SPLFIX = 0 is used.

In the first sets of depletion calculations, the option SPLFIX > 0 together with L1RC = 1900 were used. From the results in Table 4.3, it is shown that this combination produce results that cannot be trusted, hence new sets of depletion calculations were performed using different options and data and are explained in the next section.

POLCA7 pressure drop in active channel and bypass, with L1RC = 1900, using PSU CD

Figure 4.9. Influence of SPLFIX on pressure drop in active channels and bypass

4.2 Depletion calculations of cycle 1

Eight different cases were run for the depletion calculations, however only four of them were found to be valuable. The parameters and options that were studied and varied were the Dittus-Boelter heat transfer coefficient, the fuel Doppler temperature, the option for describing the bypass flow, and parameters describing leakage path 1 flow. The depletion cases represent different combinations of the above mentioned parameters and options.

4.2.1 Description of depletion cases

Below is an explanation of the four different depletion calculations which results will later be discussed.

- Case 3: In this case the bypass option SPLFIX > 0, the Dittus-Boelter heat transfer coefficient constant $C_{DB} = 0.030$, and the original set of CD with fuel temperatures 933 K and 909 K were used.
- Case 6, 7 and 8: These cases used the bypass option SPLFIX = 0, Dittus-Boelter heat transfer coefficient constant C_{DB} (called htrdit in the POLCA7 input) was set to its default value of 0.023. Different bypass flow area A_{leak1} and loss coefficients ξ_{leak1} were used. These two parameters are called L1AREA and L1RC in the POLCA7 input.

Table 4.4 presents a summary of the depletion cases.

case	SPLFIX	htrdit	L1AREA*	L1RC
3	> 0	0.030	10431.86 / 10431.86	1900
6	= 0	0.023	10431.86 / 7000.00	240
7	= 0	0.023	12620.00 / 5215.00	240
8	= 0	0.023	10431.86 / 7000.00	100

Table 4.4. Summary of the depletion cases

* - before and after core support plate holes plugging

The accuracy of the depletion calculations was checked by performing power calculations at the end of each cycle and comparing the calculated TIP distribution with the measured TIP distribution from PB2 [24].

4.2.2 Results of depletion calculations cycle 1

In order to check the accuracy of the depletion calculations, steady state calculations were performed at the end of cycle 1 with POLCA7. The calculations used the process parameters for data set 24 as input data [24]. In the steady state calculations, the neutron TIP detector response was calculated by POLCA7. The calculated TIP response was then compared with the measured TIP detector response from PB2 [24].

The results of depletion cases 3, 6, 7 and 8 are shown in Table 4.5, where the influence of the parameters specified in the previous section is shown. Case 3 is presented in this section as a reference only to demonstrate the use of the option SPLFIX > 0.

The power shape is also described by the axial offset, which is given in Table 4.5. A negative axial offset means that the core power has a bottom peak; a positive axial offset means top peaked power. The axial offset (AO) is similar for cases 6-8, while it differs for case 3. The same behavior is shown for the power peaking factor (PPF). The PPF shows the relation between the nodal maximum volumetric power density compared to the core average volumetric power density. The PPF are in the same range for cases 6-8, and different for case 3. From the results of the AO and the PPF the conclusion is that the values of the L1AREA and the L1RC used for cases 6-8 give small differences in the results.

It is shown in Table 4.5 that the results of cases 6, 7 and 8 are very similar. This is confirmed in Figure 4.10, where the calculated core average axial TIP responses for the four cases are compared with the measured TIP response. The power shapes for cases 6, 7 and 8 are almost impossible to tell apart. The differences between the different cases are the leakage path 1 area and loss coefficient and all three combinations of the parameters give results that are very similar, hence the results of the depletion calculations are insensitive to changes in these parameters if they are varied within this range (L1AREA between 5000-7000, and L1RC between 100-240).

TIP 24	End of Cycle 1	case 3	case 6	case 7	case 8
input	htrdit	0.03	0.023	0.023	0.023
data	SPLFIX	> 0	= 0	= 0	= 0
	L1RC	1900	240	240	100
	L1AREA at EOC1	10431.86	7000	5215	7000
results	k-effective	0.99324	0.99154	0.99203	0.99147
	Avg diff. (TIPMEA, TIPNEU)	5.9	9.3	8.7	8.9
	RMS diff. (TIPMEA, TIPNEU)	7.2	11.5	10.8	11.0
	Max diff. (TIPMEA, TIPNEU)	20.7	33.4	31.2	31.8
	Axial Offset (%)	-3.60	-10.03	-9.50	-9.80
	Power Peaking Factor total	2.067	1.934	1.948	1.947
	Power Peaking Factor radial	1.318	1.317	1.317	1.316
	Power Peaking Factor axial	1.397	1.321	1.326	1.329
	bypass void (%)	0.00	0.00	0.90	0.00
	core average void (%)	31.39	35.28	34.82	35.79
	bypass flow (% of total)	6.32	7.77	6.72	9.95

Table 4.5. Results of depletion cases 3, 6, 7 and 8 at end of cycle 1

At the EOC 1, the calculated core average TIP response for case 3 shows better agreement with the measured TIP response. Cases 6-8 all show the same axial shape for the TIP response, although with slightly worse agreement than for case 3. The reason for the observed deviation is the difficulty of modeling the correct burnup during cycle 1 when many startup tests were performed, as seen in Figure 4.1. In the recorded data summaries of cycle 1 (figures 63-89 in [24]) some process parameters are not recorded each day, especially not during the first six calendar months where many parameters are missing. The process parameters were estimated for these days, which imposed additional uncertainties in the results.

Taking into account the above reasons, the axial power for cases 6-8 have a reasonable deviation from the P1 edit power, and the results can be used for further calculations of cycle 2 [27].

Between cycle 1 and cycle 2, the core was shuffled, as it is described in the next section.

4.3 Core shuffling between cycles 1 and 2

Between cycle 1 and cycle 2, some fuel assemblies were discharged from the core, some assemblies were shuffled, and some fresh fuel assemblies loaded. This was modeled by using the Westinghouse code Skyffel [16]. In Skyffel, the fuel assemblies, the control rods and the detectors are shuffled. There was no information in [24] about CR or detector shuffling, so they were assumed to remain unshuffled.

After cycle 1 all fuel assemblies of type 1 were discharged from the core, along with some of type 2 and type 3 assemblies according to Table 3.1. New 8x8 fuel was loaded into the core. The core loading patterns for cycle 1 and 2 are shown in Figure 3.1 and Figure 3.2.

In order to keep track of each individual fuel assembly and their calculated histories, the fuel bundle identification maps for cycle 1 and 2 (Table 13-14 in [24]) were input to Skyffel. Skyffel uses the identification map along with a map containing which assembly type is associated with the identification number to transfer all calculated distributions from cycle 1 to cycle 2. Skyffel also initiates distributions for fresh fuel assemblies.

In [24], there was no distinction between fuel assemblies of type 4-1 and 4-2 in the fuel bundle identification map. Therefore all type 4 fuel assemblies were assumed to be of type 4-1 when reloading the core for cycle 2, since only eight assemblies of sixty-eight were of type 4-2. The only difference between fuel type 4-1 and 4-2 was the fuel box thickness, see Table 3.1.

Once the core had been shuffled using Skyffel, the depletion calculations for cycle 2 were continued in the same manner as for cycle 1.

4.4 Depletion calculations of cycle 2

For cycle 2, depletion calculations were performed using the same procedures as for cycle 1. Following the conclusions of section 4.2.2, only cases 3, 6, 7 and 8 were run in the depletion calculations for cycle 2. Case 3 was performed only as a reference to see the influence of the different SPLFIX options.

The core was depleted up to data set 37, when the last TIP measurements were collected prior to the turbine trip and stability tests. The input data used in the depletion calculations are found in Appendix 2. For all depletion calculations during cycle 1 and cycle 2 up to data set 37, equilibrium Xenon was assumed. Prior to the TT2 transient test, non-equilibrium Xenon was assumed. The depletion and Xenon calculations after data set 37 are treated separately in section 4.4.2. The results of the depletion calculations up to data set 37 are presented in the next section.

4.4.1 Results of depletion calculations cycle 2

Steady state calculations were performed at the end of cycle 2 with POLCA7, using the process parameters for data set 37 (p. 188 in [24]), which was the last TIP measurement taken prior to the tests. As for data set 24, the neutron TIP detector response was calculated by POLCA7 and compared with the measured TIP detector response from PB2 [24].

The results of depletion cases 3, 6, 7 and 8 are shown in Table 4.6, where the influence of the parameters specified in Table 4.4 is shown.

It is shown in Table 4.6 that the results of cases 6, 7 and 8 are very similar for cycle 2. This is shown well in Figure 4.11, where the calculated core average axial TIP responses for the four cases are compared with the measured TIP response. At the end of cycle 2 all calculated cases show very good agreement with the measured TIP response.

The axial offset and the power peaking factors are very similar for all cases 6-8 for TIP measurement 37. These results prove also for cycle 2 that the results of the depletion

calculations are insensitive to changes in the leakage path 1 area and loss coefficient if they are varied within the range (L1AREA between 5000-7000, and L1RC between 100-240).

TIP 37	End of Cycle 2	case 3	case 6	case 7	case 8
input	htrdit	0.030	0.023	0.023	0.023
data	SPLFIX	> 0	= 0	= 0	= 0
	L1RC	1900	240	240	100
	L1AREA at EOC2	10431.86	7000	5215	7000
results	k-effective	0.99375	0.99433	0.99465	0.99395
	Avg diff. (TIPMEA, TIPNEU)	5.9	5.8	5.8	5.8
	RMS diff. (TIPMEA, TIPNEU)	7.3	7.2	7.2	7.2
	Max diff. (TIPMEA, TIPNEU)	24.1	23.2	23.5	23.0
	Axial Offset (%)	-1.51	-3.53	-3.24	-3.60
	Power Peaking Factor total	1.805	1.852	1.844	1.844
	Power Peaking Factor radial	1.264	1.280	1.280	1.280
	Power Peaking Factor axial	1.274	1.293	1.292	1.294
	bypass void (%)	0.00	0.00	0.00	0.00
	core average void (%)	35.95	38.31	37.94	38.94
	bypass flow (% of total)	7.88	9.27	8.24	11.42

Table 4.6. Results of depletion cases 3, 6, 7 and 8 at end of cycle 2

Case 7 bypass flow is closer to the value obtained from Figure 4.7 and Figure 4.8. At the same time this case shows better agreement with TIP measurements in cycle 1 than cases 6 and 8, and almost exactly the same as these cases in cycle 2. The differences in the other parameters (k-effective, AO, PPF, radial and axial power factors) between case 7 and the other two cases are negligible.

The final depletion case used for further depletion and transient calculations was case 7.

In order to verify the depletion calculations for the entire 3D model of the core, a complete comparison of each TIP position was performed and is explained in the next section.

4.4.1.1 <u>3D core TIP response</u>

In order to check the results of the depletion calculations for the entire core, the results must be compared for each TIP position. The positions of the 43 detector strings in the core are shown in Figure 3.13 and are numbered 1-43, from left to right and top to bottom. 145 measurements were taken for each detector string. The measurements were processed and presented as 24 values axially in the data sets in [24].

For depletion case 7, a summary of the TIP comparison is presented below in Table 4.7 for data set 37.

As seen in Table 4.7, the core average radial difference show largest deviations on the core perimeter with the largest difference in string 43, where the calculated detector response is 11.6% lower than the measured. In the detectors located in the central parts of the core, the core average radial difference is less than 5%. The radial string RMS difference is 4.5%.

TIP response for measured signal and POLCA7 calculated signal at April 3, 1977, data set 37, prior to transient and stability tests.

Figure 4.11. Comparison between measured and calculated TIP response at the end of cycle 2

TIF	^o string	Average	RMS	Max	location	location of	TIP string	Average	RMS	Max	location	location of
ทเ	umber	difference	difference	difference	in core	max difference	number	difference	difference	difference	in core	max difference
		(%)	(%)	(%)	хх-уу*	node no.**		(%)	(%)	(%)	xx-yy*	node no.**
	1	4.6	5.6	-13.3	16-57	1	25	5.4	6.2	-11.9	08-25	16
	2	5.6	6.8	-17.7	24-57	1	26	4.7	6.2	13.2	16-25	22
	3	7.3	8.3	-19.6	32-57	1	27	6.0	7.0	14.6	24-25	22
	4	10.5	11.4	-17.6	40-57	16	28	6.0	7.0	-15.3	32-25	1
	5	10.0	11.4	-23.5	08-49	1	29	4.7	5.8	13.5	40-25	22
	6	8.2	9.9	17.5	16-49	9	30	5.7	6.7	-12.3	48-25	16
	7	5.2	6.6	-14.3	24-49	1	31	4.1	4.8	-9.6	56-25	16
	8	4.5	5.5	-11.4	32-49	16	32	6.0	7.3	-15.3	08-17	16
	9	7.0	8.3	-15.6	40-49	1	33	5.6	6.5	11.4	16-17	22
	10	4.5	5.4	10.2	48-49	11	34	4.5	5.8	-12.8	24-17	1
	11	6.8	8.2	-16.6	08-41	16	35	4.3	6.2	-17.0	32-17	1
	12	4.3	5.8	13.2	16-41	22	36	4.2	5.1	10.2	40-17	22
	13	3.8	4.7	-9.5	24-41	16	37	4.6	5.6	-11.1	48-17	1
	14	5.1	5.8	-12.6	32-41	16	38	4.3	5.4	-15.4	56-17	1
	15	4.2	5.2	10.3	40-41	22	39	6.5	7.0	11.8	16-09	7
	16	4.6	5.5	-12.7	48-41	16	40	7.9	9.0	17.0	24-09	7
	17	8.1	9.4	-15.8	56-41	12	41	4.7	5.5	-11.6	32-09	16
	18	4.1	5.0	9.7	08-33	24	42	7.4	8.9	17.9	40-09	7
	19	9.1	9.8	17.0	16-33	22	43	12.1	13.5	-21.9	48-09	12
	20	4.7	5.7	11.6	24-33	22						
	21	3.7	4.6	-10.1	32-33	13	core average					
	22	6.5	7.7	-17.1	40-33	16	overall	5.8	7.2	-23.5	-	-
	23	5.7	6.6	13.1	48-33	22	axially	3.6	4.3	-8.5	-	-
	24	3.9	4.8	10.3	56-33	4	radially	3.5	4.5	-11.6	- 1	-

Table 4.7. Summary of TIP comparison for each detector string

* - coordinates as in Figure 3.13

** - node 1 at core inlet and node 24 at core outlet

For the core average axial difference (plotted in Figure 4.11), the largest difference is in node 1, where the calculated TIP response is underestimated with 8.5%. The largest underestimations in the calculated TIP response occur in node 1 and 16 most frequently. The largest overestimations in the calculated TIP response occur most frequently in node 22. This can also be seen in the plot of the core average axial TIP response in Figure 4.11, where the largest differences are in node 1, 16 and 22.

The overall maximum TIP difference is in the first node of string number 5, where the calculated TIP detector response is underestimated by 23.5% as compared to the measured. The overall core average RMS difference is 7.2%.

The RMS deviations are acceptable and the results of the depletion calculations for case 7 show good agreements with the measured data from PB2, and can be used further in the calculations. During all depletion calculations up to data set 37 equilibrium Xenon distributions were assumed. Prior to the TT2 test however, the reactor did not operate at steady state for a long time period, and non-equilibrium Xenon was assumed. How this was treated is explained in the next section.

4.4.2 Depletion and Xenon calculations prior to tests

The calculated distributions of isotopes at data set 37 were used in a restart when performing depletion calculations after data set 37 up to the state prior to the TT3 test. The TT3 test was the last test performed before shutdown for refueling.

4.4.2.1 Operating conditions prior to the Turbine Trip test 2

The operating conditions for the time period between data set 37 and the TT3 test are shown in Figure 4.12. The daily average values for the core thermal power, number of inserted CR notches, flow and core inlet subcooling are given. The times for the turbine trip transient tests TT1-TT3 and the low flow stability tests PT1-PT4 are also shown.

Data summaries between data set 37 and TT3

Figure 4.12. Data summaries between data set 37 and TT3.

Prior to the seven tests, the reactor had not been operating at steady conditions for a long time. This requires that the non-equilibrium Xenon distributions had to be calculated. The Xenon concentration in the core is not at equilibrium when the plant has not been in steady state for more than 72 hours. For all depletion calculations performed for cycle 1 and cycle 2, equilibrium Xenon was assumed.

4.4.2.2 Xenon poisoning

Xenon has an extremely large absorption cross section. At stationary operation, the amount of Xenon is constant in the core, and gives a decrease in reactivity (Xenon poisoning). After a power change, there is a transient change in Xenon poisoning. After a decrease in power, there is an increase in Xenon poisoning and vice versa. An increase or decrease in Xenon strongly affects the neutron flux in the core [20]. This phenomenon is illustrated in Figure 4.13, where the transient Xenon poisoning effect is shown for different changes in core power.

Figure 4.12 and Figure 4.13 demonstrate the importance of updating the Xenon distributions, when the reactor was not operating with steady conditions prior to TT2.

Figure 4.13. Influence of core power on Xenon poisoning. [20]

4.4.2.3 Calculation steps

Two different steps were required to perform depletion and Xenon calculations prior to the tests:

- 1. The first step calculated only the burnup from data set 37 in 24 hour steps, and assumed equilibrium Xenon for all burnup steps. This is far from the truth since assuming equilibrium Xenon means that the reactor has been operating in steady state for at least 72 hours, which was not the case at any moment during this time period (see Figure 4.12). This step was necessary however in order to be able to perform step 2.
- 2. In step 2, the exposure and distributions of isotopes for the state prior to TT2 that was calculated by step 1 were used. Xenon transient calculations were then performed by going back in time 72 hours, updating only the Xenon distributions, and keeping all other distributions constant. The Xenon transient was calculated in 6 hour steps, using average flow and subcooling conditions for the time period. The CR insertion was modeled using the CR sequence groups. The Xenon non-equilibrium distributions were saved at the end of the transient calculations for further use in the next step in the 3D transient analysis methodology; initialization of the core model.

The two steps are illustrated in Figure 4.14 for the last 180 hours prior to the TT2, where firstly the burnup is calculated, and secondly the Xenon transient is calculated. The core thermal power was given only as daily average values in [24], and the power was assumed to change linearly between each daily average value in step 2. For step 1 the power was assumed to be constant during each 24 hour step. This is visualized in Figure 4.14.

4.4.2.4 <u>Result of depletion and Xenon calculations prior to Turbine Trip 2</u>

Two sets of calculations were performed with the PHOENIX CD, assuming equilibrium and non-equilibrium xenon distributions respectively. The results of the depletion and xenon transient calculations are presented in Table 4.8. The core average axial relative power is

plotted in Figure 4.15 and compared to the P1 edit from PB2 [1] and to POLCA7 calculations using PSU CD.

Figure 4.14. Methodology for calculating Xenon non-equilibrium distributions prior to TT2

Cell data	PHOENIX	PHOENIX	PSU
Xenon	non-equilib.	equilibrium	equilibrium
k-effective	0.98957	0.99360	1.00787
Power peaking factor total	2.151	2.102	2.349
Power peaking factor radial	1.417	1.417	1.460
Power peaking factor axial	1.447	1.417	1.538
Axial Offset (%)	4.91	5.69	12.74
Core avg void (%)	30.67	30.53	28.72
Bypass flow (kg/s)	736.20	735.53	737.09
Bypass outlet void (%)	0.89	1.01	0.61

Table 4.8. Results of depletion and xenon calculations for TT2 initial state

The results in Figure 4.15 show that the calculated core average axial relative power calculated with PHOENIX CD has a much better agreement with the P1 edit than the results using PSU CD. The xenon equilibrium and non-equilibrium calculations with PHOENIX CD show small differences in the axial relative power. The calculations assuming equilibrium xenon show best agreement with the P1 edit. This does not necessarily mean that these results are the best. The axial power shape produced by the P1 edit process computer is based on signals from a number of in-core power range monitors and is processed assuming equilibrium xenon. Further 3D analysis must be performed where the calculated LPRM signals are compared with the measured LPRM signals from the raw data to see which of the equilibrium or non-equilibrium xenon distributions give the best results. This however was not

performed due to time limitation, and further investigation is required before drawing final conclusions.

POLCA7 calculations with PHOENIX and PSU CD for TT2 initial state and compared with P1 edit

Figure 4.15. Comparison between calculated core average axial relative power and P1 edit at TT2 initial state.

The calculated effective multiplication factor (k-effective) is considerably lower for the PHOENIX CD compared to the PSU CD, as seen in Table 4.8. By comparing the two cases where equilibrium xenon is assumed, the difference is 1427 pcm. The difference in k-effective is 403 pcm between the equilibrium and non-equilibrium xenon distributions calculated with the PHOENIX CD. The influence of assuming non-equilibrium xenon for the TT2 initial state is thus a decrease in k-effective of approximately 400 pcm, and a small change in core average axial relative power shape.

The results in Table 4.8 and Figure 4.15 show that the results with PHOENIX CD can be trusted to use for further calculations. The non-equilibrium xenon distributions will be used in the future calculations where the core model is initialized and in the transient calculations.

4.5 Conclusions

The depletion calculations were performed using 43 depletion steps for cycle 1 and 22 steps for cycle 2 up to data set 37. During all these calculations equilibrium xenon was assumed in the core. During each burnup step the process parameters total power, flow, subcooling and number of inserted control rod notches were averaged, and kept constant during the entire burnup step.

During cycle 1, the correct burnup was difficult to model due to the many startup tests performed (see Figure 4.1). During the first six calendar months of cycle 1, many process parameters were missing in the data summaries of [24], and the parameters were estimated for these days.

The first sets of depletion calculations performed for cycle 1 predicted high outlet void in the bypass channel for some depletion steps. A sensitivity study was performed and the high bypass void was derived from setting the POLCA7 input parameter SPLFIX > 0 and using a leakage path 1 area and a loss coefficient that were too large.

The conclusion was made that the POLCA7 option SPLFIX > 0 must never be used.

When the input parameter was changed to SPLFIX = 0, no bypass void or very small bypass void was predicted in the calculation steps.

The calculated core average axial TIP signal at the end of cycle 1 was more bottom peaked than the measured core average axial TIP signal. The deviation was mainly due to the difficulties of modeling the burnup during the startup tests, and to model the amount of bypass flow.

The calculated core average TIP signal at data set 37, prior to the test performed at the end of cycle 2 showed very good agreement with the measured core average TIP signal. When looking at the 3D distribution of the TIP signals for case 7 it is shown that the largest underestimations in the calculated TIP response occurs in node 1 and 16 most frequently. The largest overestimations in the calculated TIP response occur most frequently in node 22. The overall RMS difference in the core is 7.2% between the measured and calculated TIP signals. The radial RMS difference is 4.5% and the axial RMS difference is 4.3%.

The RMS deviations are acceptable and the results of the depletion calculations for case 7 show good agreements with the measured data from PB2.

It was also concluded that varying the leakage path 1 area between 5000 and 7000 cm², and varying the leakage path 1 loss coefficient between 100 and 240 have a small influence on the results, hence any number within this range can be used.

Calculations for the TT2 initial state were performed assuming both equilibrium and nonequilibrium xenon distribution in the core respectively. The difference in the core average axial relative power shape was very small between the respective cases. The k-effective was 400 pcm smaller when calculating the non-equilibrium xenon case compared to the case assuming equilibrium xenon. Further 3D analysis must be performed where calculated LPRM signals are compared to measured LPRM signals to see if assuming non-equilibrium give better results or not before making final conclusions.

The core average axial relative power shape showed better agreement using the PHOENIX generated cross sections with the P1 edit compared to when using the PSU cross sections.

The distributions calculated by case 7 and assuming non-equilibrium xenon distributions will be used in further calculation steps of the 3D transient analysis, when the core model is initialized and in the transient calculations.

5 INITIALIZATION OF THE CORE MODEL

The initialization of the core model is the fourth step of the 3D transient analysis methodology. The reason for initializing the core model and performing steady state calculations is to test the response of the 3D core model only.

The first part of initializing the core model was performing Hot Zero Power calculations and is described in section 5.1. When the neutronics input model was initialized, Hot Full Power calculations were performed, and this is described in section 5.2.

5.1 Hot Zero Power

The Hot Zero Power (HZP) is an artificial state where the core neutronics model is initialized. The thermal hydraulic parameters are fixed in each node which means that the thermal hydraulic feedback is turned off; thus only the neutronics model is tested. The power is set to 1 % of rated power for the HZP calculations.

The control rod setting and HZP initial conditions are given in Table 5.2.3 and Figure 5.2.1 of [2], and should according to the reference produce a very near critical reactor. The control rod setting for the HZP state is shown in Appendix 3.

Three different cases were calculated to see the influence of the Xenon distributions on the HZP calculations and are described below:

- 1. Xenon non-equilibrium at 61.65% power as calculated in the depletion and Xenon transient calculations
- 2. Xenon equilibrium at 61.65% power
- 3. Xenon equilibrium at 1% power

The Power level was 61.65% of rated power for the state prior to the TT2 test, hence the reason for calculating the distributions at this power level. The PSU CD was generated by CASMO/SIMULATE assuming equilibrium xenon at 61.65% power [35]. The HZP state was calculated for both non-equilibrium and equilibrium xenon with PHOENIX CD and compared to the PSU CD for two reasons: to see the difference in results between the two sets of CD using equilibrium xenon, and to see the influence of the non-equilibrium xenon on the results.

The results of the HZP calculation are shown in Figure 5.1 and Figure 5.2, and are compared to previous POLCA7 calculations using PSU CD, and also to the average value of all participants' results in the benchmark [36].

The results are presented in three different graphs. In Figure 5.1 the core average relative axial power is shown. In Figure 5.2 the normalized axial relative power for fuel assemblies 75 and 367 are shown. These fuel assemblies were selected in [2] to show the differences for rodded and un-rodded fuel assemblies in the Hot Full Power (HFP) calculations. However, for the HZP calculations, both fuel assemblies are next to a fully inserted control rod. The locations of fuel assemblies 75 and 367 in the core are shown in Appendix 4.

Hot Zero Power calculations. Results compared with previous calculations using PSU CD

Figure 5.1. POLCA7 Hot Zero Power calculations. Comparison between Phoenix CD and previous calculations with PSU CD

The HZP core average relative power show good agreement with previous HZP calculations using PSU CD. The PSU CD is generated assuming equilibrium xenon at 61.65% power [35] so the results in the HZP calculations verify that the CD generated by PHOENIX and the depletion calculations can be used for further calculations. There is a difference in k-effective of 2125 pcm between the PSU data and the PHOENIX data assuming non-equilibrium Xenon distributions. The Xenon is a large contributor for the difference in k-effective. The difference in k-effective is 517 pcm between the cases when assuming non-equilibrium and equilibrium xenon with the PHOENIX CD at a power level of 61.65%.

For the HZP calculations, fuel assemblies 75 and 367 are next to fully inserted control rods. For fuel assembly (FA) 75, the POLCA7 result with PHOENIX CD show very good agreement with the results of the benchmark participants (see Figure 5.2). For FA 367, there is a deviation between the benchmark average calculated with PSU CD and the POLCA7 results with PHOENIX CD.

The radial power distributions for the POLCA7 HZP calculations are shown in Appendix 5 using both PHOENIX and PSU CD. In the HZP case there are significant differences in the radial power distributions between PHOENIX and PSU CD calculations.

Figure 5.2. Hot Zero Power Axial Power distributions for Fuel Assemblies 75 and 367

The calculated core average axial relative power shape show good agreement with previous calculations using PSU CD. The calculated radial power distributions show significant differences for the two different sets of CD. The differences in the radial power distribution originate from the generation of the cell data and/or the depletion calculations. The methodology and codes used differ in between the PHOENIX and PSU data. Further investigations of the differences must be performed before final conclusions are made.

The results of the HFP calculations are presented in the next section.

5.2 Hot Full Power

When the core model was initialized, Hot Full Power (HFP) steady state calculations were performed for the state prior to the TT2 test. In these calculations, the full 3D core model was tested with thermal hydraulic feedback.

The TT benchmark consisted of three different exercises. These exercises are explained in detail in [2]. Steady state calculations were performed for exercise 2 and exercise 3, which are described briefly below.

For exercise 2, steady state calculations were performed with coupled 3-D core kinetics and thermal hydraulics using core inlet and outlet boundary conditions provided by PSU.

For exercise 3, calculations were performed with coupled 3-D core kinetics and thermal hydraulics, and a 1D plant thermal hydraulics model.

The Turbine Trip 2 initial conditions are shown in Table 5.1 below. The values are taken from Table 5.2.1 in [2].

Parameter	Value
Core Thermal Power (MWt)	2030
Initial power level (% of rated)	61.65
Gross power output (MWe)	625.1
Feedwater flow (kg/s)	980.26
Reactor pressure (Pa)	6798470
Total core flow (kg/s)	10445
Core inlet subcooling (kJ/kg)	48.005
Feedwater temperature (°C)	169.16
Core pressure drop, measured (Pa)	113560.7
Core pressure drop, calculated (Pa)	83567.4
Jet pump driving flow (kg/s)	2871.24
Core average exit quality	0.097
Core average void fraction	0.304

Table 5.1. TT2 Initial conditions.

Steady state calculations were performed for the state shown in Table 5.1 with POLCA7, and with POLCA-T input models for exercise 2 and 3. The difference between the codes is that POLCA-T uses a more advanced thermal-hydraulic model than POLCA7, based on the RIGEL code [5]. POLCA-T is a transient analysis code, but performs a static calculation before the transient calculations starts. POLCA-T performs only a steady state calculation if the end time for the transient calculation is set to zero. The differences between the POLCA-T input models for exercise 2 and 3 is that in exercise 2 core inlet and outlet boundary conditions are used, and in exercise 3 a plant model that includes the reactor pressure vessel, recirculation loop, main steam line and steam bypass lines is used (see chapter 6). The POLCA-T reactor pressure vessel model nodalization of PB2 is shown in Appendix 6 [5].

The HFP core average relative power results are presented in Figure 5.3 for POLCA7 and POLCA-T exercise 2 and 3 using both PHOENIX and PSU CD. The results are compared with the P1 edit.

The calculated axial power show better agreement with the P1 edit for the Phoenix generated CD as compared to the PSU CD. All POLCA7 inputs for the core geometries are the same for all cases; it is only the CD that is different.

It is clearly shown in Figure 5.3 that the CD generated with PHOENIX gives better agreement with the P1 edit than the results with PSU CD.

The calculated values for the steady state calculations with POLCA7 and POLCA-T using both PHOENIX and PSU Cell Data are presented in Table 5.2.

One difference that is shown from the results of POLCA7 and POLCA-T is the amount of flow that goes into the bypass. The difference is approximately 180 kg/s. According to Figure 4.8 the bypass flow should be 780 kg/s. However, in the benchmark, a bypass flow of 841 kg/s was used (table 3.1.3.3 in [2]). The reason for the difference in bypass flow between the two codes is that POLCA-T models the flow through the CR guide tubes, while POLCA7 does not do it for GE reactors.

In order to see the influence of the bypass flow rate, a sensitivity study was performed where the leakage path 1 area was modified in order to get the correct bypass flow.

Figure 5.3. TT2 steady state HFP calculations with POLCA7 and POLCA-T

Code/exercise	POLCA7	POLCA-T ex2	POLCA-T ex3	POLCA7	POLCA-T ex2	POLCA-T ex3
Cell data	PHOENIX	PHOENIX	PHOENIX	PSU	PSU	PSU
L1AREA	5215	5215	5215	5215	5215	5215
Bypass flow (kg/s)	736.20	921.02	914.51	737.09	910.61	904.29
Bypass outlet void (%)	0.89	3.63	2.46	0.61	3.71	2.76
k-effective	0.98957	0.98704	0.98809	1.00787	1.00419	1.00524
PPF total	2.151	2.107	2.132	2.349	2.280	2.305
PPF radial	1.417	1.416	1.415	1.460	1.456	1.454
PPF axial	1.447	1.427	1.444	1.538	1.499	1.517
Axial Offset (%)	4.91	6.42	6.83	12.74	13.56	14.13
Core avg void (%)	30.67	32.80	31.99	28.72	30.88	30.10
Total core flow (kg/s)	10445.0	10445.0	10445.0	10445.0	10445.0	10444.5
Steam dome pressure (Pa)	6798470	-	6798470	6798470	-	6798470
lower plenum temperature (°C)	274.6	276.5	276.9	274.6	276.5	276.9

Table 5.2. TT2 steady state calculated data with POLCA7 and POLCA-T using Phoenix and PSU Cell Data

5.2.1 Sensitivity study of bypass flow rate

In order to compare POLCA7 and POLCA-T results with the same flow in the bypass, the leakage area A_{leak1} (called L1AREA in the POLCA7 input) was changed. Changing the leakage area (or any parameter in the input model) is only allowed when the input model is set up. The values used in previous validations cannot be used because other options and cross section model were used. The results of the sensitivity studies described in chapter 4 showed that changing the value of the leakage path 1 area within a certain range does not affect the results. The leakage path 1 area was changed to achieve a bypass flow about 840 kg/s, as it was stated in [2].

The results are shown in Figure 5.4 for POLCA-T exercise 2 as core average axial relative power and in Table 5.3 for all cases.

In Figure 5.4 it is shown that changing the leakage path 1 area to get the benchmark specified bypass flow does not change the shape of the axial relative power significantly. Hence the influence of the bypass flow rate is not significant for the static solution. This is further emphasized by looking at more calculated values in Table 5.3 and comparing them with the results obtained using the previous investigated bypass area presented in Table 5.2. The core average axial power shape for the cases with corrected L1AREA is plotted in Figure 5.5.

By comparing the results in Table 5.2 and Table 5.3 it is seen that for exercise 2, changing the bypass area by approximately 30%, changes the bypass flow rate by about 10%; this in turn gives a change in k-effective of only 37 pcm. This shows that the bypass flow does not significantly affect the results of the static calculations. The axial power shapes with the corrected L1AREA is shown in Figure 5.5.

The static calculations performed by the codes POLCA7 and POLCA-T show good agreement with the P1 edit core average axial relative power in Figure 5.5, where the corrected L1AREA is used.

State prior to TT2 POLCA-T calculations with different bypass path1 area (L1AREA)

Figure 5.4. Bypass flow sensitivity study with POLCA-T exercise 2 input model

POLCA7 and POLCA-T calculations with PHOENIX CD for TT2 initial state using corrected L1 AREA

Figure 5.5. Core average axial power shape using corrected L1AREA

Code/exercise	POLCA7	POLCA-T ex2	POLCA-T ex3
Cell data	PHOENIX	PHOENIX	PHOENIX
L1AREA	7025	3805	3805
Bypass flow (kg/s)	841.59	841.63	835.10
Bypass outlet void (%)	0.00	5.95	4.83
k-effective	0.98918	0.98741	0.98847
PPF total	2.140	2.114	2.140
PPF radial	1.417	1.416	1.415
PPF axial	1.439	1.432	1.450
Axial Offset (%)	4.73	6.66	7.09
Core avg void (%)	30.98	32.54	31.73
Total core flow (kg/s)	10445.0	10445.0	10445.3
Steam dome pressure (Pa)	6798470	-	6798470
lower plenum temperature (°C)	274.6	276.5	276.9

Table 5.3. TT2 steady state calculations with corrected L1AREA

5.2.2 Relative power for fuel assemblies 75 and 367

In the benchmark specifications [2] the relative power for fuel assembly (FA) number 75 and 367 were requested in order to compare different codes results for rodded and un-rodded fuel bundles. For the TT2 initial state, FA 75 is next to a fully inserted control rod, and FA 367 is next to a fully withdrawn control rod (see Appendices 3 and 4 for control rod positions and FA numbers). The relative power calculated with POLCA-T using PHOENIX CD is compared with the average value of the benchmark participants' relative power [36] using PSU CD in Figure 5.6.

Figure 5.6. Axial power distributions for fuel assemblies 75 and 367

In Figure 5.6 it is seen that for FA 75, which is next to a fully inserted control rod, the normalized relative powers are very similar. For FA 367 however, which is next to a fully withdrawn control rod, there is a difference in the normalized relative power. It has to be noted that the deviations between the POLCA-T results and the benchmark participants' average axial power for FA 367 are inside the range of the spread of the results obtained by different codes in [36]. In order to perform a complete 3D study, the radial distributions of the power must be analyzed also and this is done in the next section.

5.2.3 Radial power distributions

For the radial powers in Appendix 5, it is shown that the normalized radial powers are similar between the PHOENIX and PSU data in the HFP case. The main differences are on the core periphery where the normalized power with PHOENIX data is larger than with the PSU data.

Further analysis is required of the radial power distributions before final conclusions can be made, the time limitation of the present project does not allow such analysis to be performed. The full 3D analysis will be future work.

5.2.4 Core averaged axial void distribution

The core averaged axial void distribution for POLCA7 and POLCA-T calculations are shown in Figure 5.7 and are compared to the average values of the participants in the benchmark [36].

Figure 5.7. TT2 initial state core average axial void distribution

The void fraction between the different runs and cross sections are very similar, except at the bottom of the core where the POLCA-T calculated void is larger than the POLCA7 void and the benchmark average. The higher void at the bottom of the core is caused by the higher core inlet coolant temperature in the POLCA-T case (see Table 5.3). In the POLCA7 case, the core inlet subcooling is set as a boundary condition, while in the PB2 POLCA-T model the feed water temperature and feed water flow is a boundary condition. The larger void at the bottom of the core is the reason for the small discrepancies in axial power shape between the results of the POLCA7 and POLCA-T codes. The axial power shape calculated by POLCA-T (Figure 5.5) has a lower relative power at the bottom of the core. The higher temperature and/or void at the bottom gives lower moderator density, and hence a lower power.

5.3 Conclusions

The Hot Zero Power calculations are performed in order to initialize the neutronics model. The HZP calculations with PHOENIX CD show good agreement with the PSU data for the core average axial relative power. The value of the effective multiplication factor (k-effective) is smaller when using the PHOENIX CD with 2125 pcm. The lower k-effective is partly due to using non-equilibrium Xenon distributions in the calculations with the PHOENIX data. The radial normalized power distributions show differences in all parts of the core when using the two different sets of CD for the HZP calculations. Further analysis of the obtained radial power distributions is required.

In the Hot Full Power calculations the core average axial relative power calculated with PHOENIX CD show better agreement with the P1 edit than the results calculated with PSU CD. Also in this case, the k-effective is lower with PHOENIX CD with 1830 pcm using POLCA7 and 1715 pcm using POLCA-T, both compared to PSU CD. For the HFP calculations, the normalized radial power distributions show good agreement between the two different sets of CD. The main difference is on the core periphery where the relative power with the PHOENIX CD is larger than with PSU CD. More analysis is required for the HFP radial distributions in order to draw conclusions. These analysis will be performed in future work.

A sensitivity study on the bypass flow rate showed that varying the leakage path 1 area by 30%, which changed the bypass flow rate with 10% had a negligible effect on the overall results when using both POLCA7 and POLCA-T.

The core average axial void distributions showed good agreement with the average results of the benchmarks participants. When using POLCA-T, there is a slightly higher void at the bottom of the core. POLCA-T does also calculate a higher bypass void than POLCA7. The reason is partly due to higher core inlet temperature in the POLCA-T calculations and the modeling of the CR guide tube flow in POLCA-T.

The results from the HFP calculations with PHOENIX data show good agreement with the P1 edit for the core average relative power and better agreement than with PSU data. The results prove that the generation of the cross section data, the core depletion, the thermal hydraulic plant model and the neutronics model can be used in the final step of the transient analysis; the coupled 3D core neutron kinetics and plant systems thermal hydraulics transient analysis.

6 COUPLED 3D CORE AND PLANT SYSTEMS TRANSIENT ANALYSIS

The final step in the 3D transient analysis is to perform coupled 3D core neutron kinetics and plant systems thermal hydraulic analysis.

The scenario of the TT2 transient was modeled using the Westinghouse 3D transient code POLCA-T.

The transient analysis is performed in two steps. Firstly a 10 second zero transient calculation is run. A zero transient is a transient calculation without perturbations of any parameters. This step is made to confirm that the coupling of the core and plant models provides a stable transient solution. The second step is to perform transient calculations for the first 5 seconds of the TT2 scenario. The TT transient calculations are followed immediately after the zero transient calculations, in the same run. This means that the TT transient starts after 10.0 seconds zero transient calculations.

In the next section the POLCA-T plant model of PB2 is explained. The model was developed in previous validations ([5],[21]). The TT simulation cases that were run are explained in section 6.2. In section 6.3 the calculation procedure of the zero transient is explained along with the results. In section 6.4 the TT2 transient simulation and results are explained.

6.1 POLCA-T PB2 plant model

The POLCA-T Reactor Pressure Vessel (RPV) and plant systems model was developed in exercise 1 of the BWR TT benchmark [2]. The development and details of the RPV and plant systems are described in [5] and [21], along with results obtained of the response of the RPV and plant model. The POLCA-T RPV nodalization of PB2 is shown in Appendix 6.

No changes were made in the POLCA-T RPV and plant model for the present study. Only required changes in the POLCA7 3D core model were made to be able to use the cell data generated by PHOENIX. The core model in the present study includes the following: 764 fuel channels and 122 radial reflector channels (divided in 24 axial nodes), top and bottom reflector albedo boundary conditions.

The PB2 plant is described by: reactor pressure vessel (RPV), recirculation loop, main steam lines, and steam bypass lines models. The RPV model includes: down comer with feed water inlet and jet pump, lower plenum with control rods guide tubes, core with bypass channel, upper plenum, standpipes, steam separators and dryers, and steam dome. The recirculation loop consists of suction and discharge coolant legs, and main circulation pump. The main steam lines consist of: steam lines, safety and relieve valves, turbine stop valves (TSV) and steam head. The steam bypass system model covers the bypass chest, valves, lines and orifice, and steam condenser [5],[21].

The balance of plant is simplified to reactor pressure controller, control rods speed and position controller, SAFIR scram controller, jet pump drive flow controller, feed water controller, RPV water level controller, four groups SAFIR safety and relief valves controller, turbine control and stop valve controller and steam bypass valve controller [5],[21].

The PB2 plant model was validated ([5],[21]) using the following boundary conditions: power vs. time table, turbine controller set-point vs. time, steam bypass valve position vs. time, and feed water mass flow vs. time. The results in [5] and [21] show good agreement with measured data for steam dome and core exit pressures, RPV water level, main steam line and turbine inlet pressures.

In the next sections, the cases run for the simulation, the zero transient and TT transient simulation using POLCA-T are explained.

6.2 Description of Turbine Trip simulation cases run

Several cases were run for the transient calculations. The tested models in the study were the simplified transient cross section model vs. the full static cross section model [37], and the influence of using the spectrum interaction (SI) model or not [38]. Five cases were finally calculated and the results are presented in section 6.3.2. The cases were the following:

- Case 1: PSU cell data was used. In this case all models in POLCA7/POLCA-T for cross section corrections are disabled. The cross sections are calculated by look-up in the cross section tables using a special routine that links the PSU tables to the POLCA7/POLCA-T interpolation method.
- Case 2: PHOENIX cell data was used along with the model for spectrum interaction correction. This case was calculated with the transient cross section model.
- Case 3: PHOENIX cell data was used. The cross section correction model for spectrum interaction was disabled and the transient cross section model was used.
- Case 4: PHOENIX cell data was used along with the model for spectrum interaction correction. This case was calculated using the static cross section model.
- Case 5: PHOENIX cell data was used. The cross section correction model for spectrum interaction correction was disabled. As for case 5, the full static cross section model was used.

A summary of the cases is found in Table 6.1 below.

 Table 6.1. Summary of transient calculation cases

Case	Cell Data	Spectrum Interaction	Cross section model
1	PSU	not available	special routine
2	PHOENIX	yes	transient
3	PHOENIX	no	transient
4	PHOENIX	yes	static
5	PHOENIX	no	static

The results of the different cases are presented in the next section for the zero transient calculations. The results of the TT transient simulation are presented in section 6.4.

6.3 Zero transient calculations

Before performing TT transient analysis, zero transient calculations must be performed in order to ensure that the code's solution is stable before perturbing it to simulate the "real" transient [37]. Performing a zero transient calculation means performing a transient calculation without any intentional perturbations to the system. A small perturbation normally occurs at the transition from the static to transient calculation and the system stabilizes quickly. The sources of the initial perturbations in the transition from static to transient calculation are descried in detail in [37]. A summary of [37] which is based on results from this present study is presented in the next section.

6.3.1 Static and transient cross section models

The perturbations in static to transient transition are common for all system thermal hydraulic codes, even for codes without coupled neutron kinetics. The source of the perturbations comes from the fact that in order to obtain the steady state solution, one must assume a state of mass and energy balance in the system. The balance is reached by manipulating some inlet/outlet system parameters, often fluid flows/temperatures. After making such a manipulation in the code for the first static calculation, adjustment to the input must be made in order to avoid large perturbations when going from static to transient calculations. Although adjusting the input, one cannot avoid the numerical noise which always occurs between the static and transient solution. In order to deal with this problem, zero transient calculations without perturbations must be run, to let the transient solution stabilize, before the system is perturbed by the required action in order to simulate the "real" transient. [37]

In previous versions of POLCA-T a simplified cross section model for the transient calculations was used. The transient cross section model preserves dependencies of the parameters that are important for the transient simulation (moderator density, CR positions etc.). All other cross section terms are lumped into one residual term which dependency on moderator density is tabulated [37]. The residual cross section data is then calculated by linearly interpolating (and extrapolating) in this table.

This transient cross section model works well with previous versions of POLCA-T. In the mean time the POLCA7 static cross section model was further developed and improved to deal with isotopes tracking and spectrum interaction effects. These improvements created a gap between the static and transient cross section models. When the new POLCA7 version was merged with POLCA-T, significant power oscillations occurred in the zero transient cross section model. A new test version was created where the transient cross section model was replaced by the full static cross section model of POLCA7 [38]. The results are presented in the next section.

6.3.2 Results of Zero transient

The initial fission power perturbation was caused by reasons described in the previous section by the simplified transient cross section model. It is seen in Figure 6.1 that using the spectrum interaction (SI) model or not using it (NoSI) significantly influences the initial perturbation when the transient cross section model is used. The power perturbation in these two cases is
significant and the powers stabilize after 6-8 seconds at power levels different from the static one. In these two cases the steam dome pressure does not stabilize at all, as seen in Figure 6.2. These results cannot be used when simulating the "real" TT transient.

The transient cross section model was replaced by the full static cross section model and the results show much more stable behavior in the transition from static to transient calculations as seen in Figure 6.1. Using the static cross section model, a very small initial perturbation occurs when the SI model is used, and the system stabilizes quickly. No initial perturbation is observed when the spectrum interaction model is not used, (NoSI). The perturbation when SI is used is caused by the sensitivity of the spectrum to changes in coolant density [37]. In these two cases, the steam dome pressure is stable during the 10 second zero transient (Figure 6.2). These results can be used when simulating the TT transient, when the TT transient calculation would start from the initial, or very close to the initial values of the test.

In the case when PSU cell data is used, the transient cross section routine is not used by POLCA-T, and the same tables are used in the static and transient calculations [37]. In this case no initial perturbation is observed in the fission power, as seen in Figure 6.1.

Fission power, 10s zero transient PB2

Figure 6.1. Fission power during 10 second zero transient calculations

It is observed in Figure 6.1 and Figure 6.2 that in the calculations using the simplified transient cross section model the power stabilizes at levels different from the static one, and the pressure does not stabilize at all.

For the cases with the static cross section model and the case using PSU data, the calculations have stabilized and have after 10 seconds values very close to the static ones.

The results from these three latter cases can be used for further calculations, when the TT2 transient is calculated.

In the TT transient simulation only cases 1 and 4 were calculated for the five first seconds of the transient. The reason for selecting case 4 was to be consistent with previous calculation steps, where the spectrum interaction model was used in POLCA7. The other three cases were calculated only through the power peak of the TT transient to see their influence on the results.

Steam dome pressure, 10s zero transient PB2

Figure 6.2. Steam dome pressure during 10 second zero transient calculations

6.4 **Turbine Trip transient simulation**

The TT transient experiment was initiated by a manual closure of the turbine stop valve (TSV) by the operator. The TSV closure caused a pressure wave in the main steam line that propagated into the reactor pressure vessel and the core. The TSV closure was followed by an opening of the turbine bypass valve, causing a pressure relief in the reactor system. Normally, the reactor protection scram system would be initiated immediately from the TSV position input signal. However, for the transient experiment the reactor scram system was intentionally delayed to allow a small neutron flux transient to occur. The pressure increase in the core caused a collapse of the void, which in turn provided higher moderation of neutrons and a transient increase of neutron flux. The power increase in turn provided significant changes in void and flow distributions in the core. [2]

The TT2 scenario was simulated using POLCA-T. In the simulation, the following boundary conditions were used: turbine controller set-point vs. time, bypass valve position vs. time, and feed water mass flow vs. time. The reactor scram was initiated during the experiment when

the power reached 95% (3128.35 MW) of the rated power [1]. The same scram set point was used in the simulation by POLCA-T using the SAFIR controlled scram model.

Sensitivity studies have been performed in previous validations on several input parameters [5],[6],[8]. In this study, only one case with PHOENIX CD was run for the first five seconds of the TT transient due to the time limitation of the project. One of the models that must be tested in future runs is the STAV7 burnup dependent gas gap heat conductance model. In the present study, a constant gas gap heat transfer coefficient specified in the benchmark [2] was used.

6.4.1 Results of TT2 transient simulation

Two cases were calculated, one using PSU CD, and one using PHOENIX CD with the spectrum interaction model and the full static cross section model. The sequence of the events is presented in Table 6.2 for cases 1 and 4. The calculated results are compared to measured data from PB2 [1]. The results of the TT2 simulation include fission power, steam dome, core exit, main steam line and turbine inlet pressures and are presented in Figure 6.3 through Figure 6.8.

The sequence of the events in Table 6.2 show good agreement with the measured data for the power peak. The power peak is delayed 6 ms for the cases with PHOENIX CD, and 12 ms for the case with PSU CD and is visualized in Figure 6.3. In Figure 6.4 a more detailed plot of the power peak is shown. The maximum power is underestimated with 6.2% for case 4 using PHOENIX CD, and overestimated with 6.7% using PSU CD. Case 5 using no spectrum interaction and the static cross section model show better agreement with measured data than case 4 with SI. Further investigation of the use of the SI model is required in order to make final conclusions. Gas gap heat conductance will also affect the time and value of the power peak and need to be investigated too.

The calculated pressure responses are faster than the measured for all pressures compared in Table 6.2. The calculated turbine inlet and main steam line pressure initial response is 54 ms faster than the measured steam line A. The largest deviation is in the RPV pressure response which is 96 ms faster in the calculated case. The differences in initial response are visualized in Figure 6.5 through Figure 6.8.

The calculated steam dome pressures in Figure 6.5 show that the initial pressure peak is underestimated by approximately 50 kPa. The second and third pressure peaks are closer to the measured steam dome pressure. The calculated main steam line and turbine inlet pressures follow the measured pressures well during the first five seconds of the transient as seen in Figure 6.7 and Figure 6.8.

It has to be noted that the time delay of the measurements are not considered in the results. Moreover, the initial time response in steam lines A and D of the turbine differs with 24 ms and in the main steam line with 36 ms so the uncertainty of the time responses in the measurements has not been taken into account.

The pressures with the PSU CD are higher than with PHOENIX CD in all cases. This is caused by the higher and wider power peak in the case with PSU CD, which adds more energy into the reactor system, more coolant is boiled off, and the pressure becomes higher. The calculated pressures show close agreement with measured data.

The steam bypass valve was fully open 846 ms into the transient, and it is shown in the calculated cases that the first reduction in steam dome pressure follows immediately after the opening of the bypass valve.

		case 4	case 1
Event*	Measured	PHOENIX	PSU
	time (ms)	time (ms)	time (ms)
TSV begin to close	0	0 (48)	0 (48)
TSV closed	96	90	90
Begin bypass opening	60	60	60
Bypass full open	846	846	846
Time of scram initiation	630	576	576
Time delay prior to rod motion	120	120	120
Initiates CR insertion	750	696	696
Turbine pressure initial response	102/126**	48	48
Steam line pressure initial response	348/378**	294	294
Vessel pressure initial response	432	336	336
Core exit pressure initial response	486	438	438
Time of Power peak	726	732	738
Power peak (MW)	9190.43	8619.93	9809.62

* - Time delays of the measurements are not considered in the analyses

** - Steam lines A and D respectively

Fission power during the first five seconds of the TT2 transient

Figure 6.3. Fission power during the first five seconds of the TT2 transient

Fission power during the power peak of the TT2 transient

Figure 6.4. Fission power during the power peak of the TT2 transient

Figure 6.5. Steam dome pressure for the first five seconds of the TT2 transient

Figure 6.6. Core exit pressure for the first five seconds of the TT2 transient

Figure 6.7. Main steam line pressure for the first five seconds of the TT2 transient

Figure 6.8. Turbine inlet pressure for the first five seconds of the TT2 transient

6.5 Conclusions

The results from the zero transient calculations show that the simplified transient cross section model in POLCA-T give large initial perturbations in the transition from static to transient calculations. The power stabilized at levels different than the initial, and the steam dome pressures did not stabilize at all when the transient cross section model was used.

When the full static cross section model was used in the zero transient calculations, very small or no initial perturbations were shown for the cases using spectrum interaction (SI), and no spectrum interaction respectively. In the case with SI the system stabilized quickly at a state very close to the initial static state.

The results of the POLCA-T Turbine Trip 2 transient simulations are in good agreement with measured results for the fission power, steam dome, core exit, main steam line and turbine inlet pressures. The results when using the cell data generated with PHOENIX (using static cross section model and SI model) showed better agreement with the measured power than the results obtained when using the PSU cell data. The power peak is slightly underestimated by POLCA-T when using PHOENIX cell data, and overestimated when using PSU cell data.

Further analysis is required of the sensitivity of the results to the SI model. The SI model was used in these calculations to be consistent with POLCA7 calculations in previous steps of the 3D transient methodology.

Further 3D analysis of the power redistribution in the core during the transient is also required. Future analysis will be performed of this phenomenon by comparing measured and calculated

LPRM signals during the transient. The time limitation of the present project did not allow such analysis.

Further analysis will also be performed where the Westinghouse STAV7 burnup dependent gas gap heat conductance model is used.

A summary of all steps and the results obtained during the 3D transient analysis are summarized in the next chapter.

7 SUMMARY

Westinghouse coupled 3D core neutron kinetics and plant systems thermal hydraulics transient code POLCA-T was validated against Peach Bottom 2 end of cycle 2 turbine trip test 2.

Five steps of 3D transient analysis were applied in this validation as follows:

- Cross section data generation
- Core depletion calculations
- Transient thermal hydraulics analysis only: initialization of plant model
- 3D core steady state analysis: initialization of 3D core model
- Coupled 3D core neutron kinetics and plant systems thermal hydraulics transient analysis.

The cross section data was generated using Westinghouse neutron transport theory and depletion code PHOENIX. Cross section data generated by PHOENIX are tabularized with dependencies in the three state parameters: exposure, coolant density, and coolant density history.

Core depletion calculations were performed for cycle 1 and cycle 2 using Westinghouse two group 3D nodal core simulator POLCA7. Core depletion calculations were performed in order to model the correct distributions of isotopes in the core for the state of the transient test.

Steady state calculations were performed with POLCA7 at the end of cycle 1 and cycle 2 in order to check the results of the depletion calculations. The calculated neutron TIP detector response was compared with measured neutron TIP detector response from Peach Bottom 2. When comparing the TIP distributions, a good overview of the neutron flux in the core is obtained. At the end of cycle 2 prior to the turbine trip tests, the calculated TIP response showed good agreement with the measured TIP response.

The plant systems model was developed in previous validations, and it is independent of the cross section model used. Hence this step was not repeated in the present validation. However, in order to study and understand the observed power perturbations in the zero transient calculations a case with thermal hydraulic plant analysis has been run too. Only required changes in the POLCA7 3D core model were made to be able to use the cell data generated by PHOENIX.

The core model was initialized by performing Hot Zero Power calculations. The results from the Hot Zero Power calculations showed good agreement with previous calculations using PSU cross section data for the core average axial power shape.

Hot Full Power calculations were performed using both POLCA7 and POLCA-T for the Turbine Trip 2 initial state. The results obtained with POLCA7 and POLCA-T showed better agreement with the P1 edit when using PHOENIX cross section data compared to when using PSU cross section data. Differences between POLCA7 and POLCA-T bypass flow rates were obtained, and the main reason was that POLCA-T models flow through the control rod guide

tubes, while POLCA7 does not do it for GE reactors. The effects of these differences showed negligible effect on the obtained results. The radial power distributions showed better agreement than in the Hot Zero Power case between the two different cell data; further analysis of the radial power distributions are required however.

Transient analysis with POLCA-T was the final step, and different cases were run in order to see the influence of different cross section models and cross section correction options. The results from the zero transient calculations show that the simplified transient cross section model in POLCA-T give large initial perturbations in the transition from static to transient calculations, and it does not show consistency with the full static cross section model. The transient cross section model was replaced by the full static cross section model, and the perturbations caused in the transition from static to transient calculations were negligible in this case.

The results of the POLCA-T Turbine Trip 2 transient simulations are in good agreement with measured results for the fission power, steam dome, core exit, main steam line and turbine inlet pressures. The results with PHOENIX cell data showed better agreement with the measured power than with PSU cell data. The power peak is slightly underestimated by POLCA-T when using PHOENIX cell data, and overestimated when using PSU cell data.

Further 3D analysis of the power redistribution in the core during the transient will be performed by comparing measured and calculated LPRM signals. The time limitation of the present project did not allow such analysis.

Further analysis will also be performed where the Westinghouse STAV7 burnup dependent gas gap heat conductance model is used. In the present project a constant value for the gas gap heat conductance specified in the benchmark [2] was used.

8 **REFERENCES**

- EPRI NP-564, Research Project 1020-1, Topical Report, June 1978
 Transient and Stability Tests at Peach Bottom Atomic Power Station Unit 2 at End of Cycle 2
 L.A. Carmichael, R.O. Niemi
- [2] OECD Nuclear Energy Agency Nuclear Science Committee DOC(2001)1 Boiling Water Reactor Turbine Trip Benchmark Vol. I: Final specifications, Revision.1 October 2001 J. Solis et. Al
- [3] Westinghouse Atom AB Report BTU 02-038, Rev 0
 POLCA-T: Validation against Peach Bottom 2 End of Cycle 2 Low-Flow Stability Tests
 D. Panayotov
- [4] Nuclear Mathematical and Computational Sciences: A Century in Review, A Century Anew; Gatlinburg, Tennessee, April 6-11, 2003
 POLCA-T CODE VALIDATION AGAINST PEACH BOTTOM 2 END OF CYCLE 2 LOW-FLOW STABILITY TESTS
 D. Panayotov, M. Thunman
- [5] PHYSOR 2002; Seoul, Korea, October 7-10, 2002
 OECD/NRC BWR TURBINE TRIP BENCHMARK: SIMULATION BY POLCA-T CODE D. Panayotov
- [6] TOP FUEL 2003
 POLCA-T Consistent BWR Core and Systems Modeling
 D. Panayotov, U. Bredolt, P. Jerfsten
- [7] PHYSOR 2004; Chicago, Illinois, April 25-29, 2004
 POLCA-T Simulation of OECD/NRC BWR Turbine Trip Benchmark Exercise 3 Best Estimate Scenario TT2 Test and Four Extreme Scenarios
 D. Panayotov
- [8] Nuclear Science and Engineering, Vol. 148 pp. 247-255, October 2004 OECD/NRC BWR Turbine Trip Benchmark: Simulation by POLCA-T Code D. Panayotov
- [9] Westinghouse Atom AB Report BTU 01-149, Rev 0 Computer Code description, BWR application F. Schliephacke
- [10] Westinghouse Atom AB Report UR 90-323, Rev 8 IFIGEN – User's manual to the input generator for PHOENIX Ö. Hammarström
- [11] Westinghouse Electric Sweden AB Report BTF 01-157, Rev 1 Standardized BWR cell data generation for CM2 W. Linderoth

- [12] Westinghouse Atom AB Report UR 90-216, Rev 6 Cell-data files – the service program TABBE J. Bujak
- [13] Westinghouse Electric Sweden AB Report BR 95-924, Rev 22 POLIN - Input Processor of POLCA7 S-Ö Lindahl
- [14] Westinghouse Atom AB Report BR 94-1061, Rev 3
 POLCA7 Data and Calculational Flow
 S-Ö Lindahl
- [15] Westinghouse Atom AB Report BCM 97-246, Rev 6 POLDIS – Distribution file service program for POLCA7 K. Tammemäe
- [16] Westinghouse Atom AB Report BCM 98-113 Rev. 2
 SKYFFEL Shuffling program for POLCA7
 K. Tammemäe
- [17] Westinghouse Atom AB Report SES 02-061, Rev 1 POLCA-T User Guide U. Bredolt
- [18] Westinghouse Atom AB Report SES 03-019, Rev 1 POLCA-T, Input Reference Manual U. Bredolt
- [19] Westinghouse Atom AB Report BCM 98-040 CoreLink Methodology E. Müller
- [20] Study material, Royal Institute of Technology (KTH), Stockholm, 2003/2004
 Fission and Reactor Physics
 P. Persson
- [21] OECD/NRC BWR Turbine Trip Benchmark Third Workshop, Dresden, Germany, May 28-29, 2002
 OECD BWR TT Benchmark Exercise 1: Final Results obtained with POLCA-T code D. Panayotov
- [22] ABB Atom AB Report UR 85-194, Rev 5 PHOENIX – USER's guide R. Stamm'ler
- [23] ABB Atom AB Report BR 92-054, Rev 1 Standardization of PHOENIX calculations A. Larsson
- [24] EPRI NP-563, Research Project 1020-1, Topical Report, June 1978 Core Design and Operating Data for Cycles 1 and 2 of Peach Bottom 2 N.H. Larsen

[25]	ABB Atom AB Report BCM 97-166, Rev 0 Cell Data Block – Newsletter W. Lipiec
[26]	Private communication 2004 Dr. Waldemar Lipiec, BTU, Westinghouse Electric Sweden AB
[27]	Private communication 2004 Dr. Dobromir Panayotov, BTU, Westinghouse Electric Sweden AB
[28]	Private communication 2004 Dr. Erwin Müller, BTU, Westinghouse Electric Sweden AB
[29]	Westinghouse Atom AB Report BTU 03-015 Rev 0 Generic BWR Nodal Reflector Data E. Müller
[30]	Westinghouse Atom AB Report BR 94-715, Rev 3 POLCA7 – Fuel Depletion S-Ö Lindahl
[31]	Study material, Royal Institute of Technology (KTH), Stockholm, 2004 Lectures on Applied Reactor Technology and Nuclear Power Safety H. Anglart
[32]	ABB Atom AB Report BCM 98-139, Rev 0 POLCA7 – Thermal Hydraulics Correlations S-Ö Lindahl
[33]	Westinghouse Atom AB Report BR 94-700, Rev 2 POLCA7 – BWR Thermal Hydraulics Model S-Ö Lindahl
[34]	Westinghouse Atom AB Report BTA 03-128, Rev 0 Thermal-Hydraulic input data to POLCA7 in the CM2 environment – general advises P. Wiman
[35]	Private Communication 2004 Prof. Kostadin N. Ivanov, Pennsylvania State University
[36]	OECD/NRC BWR Turbine Trip Benchmark – Fifth Workshop, Barcelona, Spain Content and Format of the Final Report on EXERCISE 2 & Comparative Analysis of the Final Results of EXERCISE 2 B. Akdeniz, J. Vedovi, Pennsylvania State University
[37]	Westinghouse Electric Sweden AB Memorandum BTU 04-104, Rev 0 POLCA-T Transient XS Model: Problems and Solutions D. Panayotov
[38]	Westinghouse Atom AB Report BR 94-712, Rev 5 POLCA7 Cross Section Model S-Ö Lindahl

APPENDIX 1 – PROCESS PARAMETERS FOR CYCLE 1 AND CYCLE 2

date	Power	Flow (w)	Flow (w)	subcooling	subcooling	# of notches	date	Power	Flow (w)	Flow (w)	subcooling	subcooling	# of notches
	MWt	Mlb/hr	kg/s	Btu/lb	kJ/kg	inserted		MWt	Mlb/hr	kg/s	Btu/lb	kJ/kg	inserted
740112	0	41	5166	15	34.89	> 4500	740504	1483.5	38	4788	32.5	75.595	1211
740114	546	41	5166	15	34.89	> 4500	740505	1856	38	4788	45	104.67	684
740115	537	41	5166	15	34.89	> 4500	740506	2111	53.5	6741	33	76.758	590
740116	557	41	5166	15	34.89	> 4500	740507	2366	67	8442	28	65.128	590
740118	579	41	5166	15	34.89	> 4500	740508	2600	88	11088	24.5	56.987	590
740119	0	41	5166	15	34.89	> 4500	740509	2433	94	11844	22	51.172	590
740214	0	41	5166	15	34.89	> 4500	740510	1944	43	5418	39.5	91.877	488
740215	156	41	5166	15	34.89	> 4500	740511	2156	50	6300	37	86.062	488
740216	212	41	5166	15	34.89	> 4500	740512	2388	66	8316	30.25	70.3615	488
740217	222	41	5166	15	34.89	> 4500	740513	2611	72.5	9135	28.5	66.291	488
740218	535	41	5166	15	34.89	> 4500	740514	2933	105.5	13293	22.5	52.335	488
740219	757	51	6426	15	34.89	1910	740515	2679	109.5	13797	22	51.172	488
740220	757	63	7938	12	27.912	1910	740516	2067	59.5	7497	28.5	66.291	488
740221	757	40.5	5103	18	41.868	1910	740517	1656	58	7308	29	67.454	600
740222	757	39.5	4977	17	39.542	1910	740518	422	41.5	5229	24	55.824	> 4500
740223	902	63.5	8001	14	32.564	1844	740519	444	41.5	5229	24	55.824	2333
740224	1023	76	9576	12.5	29.075	1844	740520	1711	51	6426	31	72.106	1060
740225	1023	80.5	10143	11.5	26.749	1844	740521	2181	56.5	/119	33.75	78.5025	/11
740226	1023	87	10962	11	25.586	1844	740522	2137	46	5796	39	90.714	578
740227	1136	94	11844	10.5	24.423	1834	740523	2455	59.5	7497	34.25	79.6655	560
740228	1136	101.5	12789	9.5	22.097	1844	740524	2810	80.6	10155.6	27.75	64.5465	544
740301	1110	102	12652	9	20.934	1800	740525	3110	98	12348	25	58.15	544
740302	1118	99.5	12537	9.5	22.097	1528	740526	3032	105	13230	23	53.498	544
740303	1002	28.5 71	7371	17.5	40.705	1194	740527	911	20.5	3339	54.5 17.2	120.707	544 1700
740304	646	70	0940	13.5	31.401	1044	740520	711	00.5	03/9	17.3	40.2390	1790
740305	040	70	9020	11	25.500	1044	740529	0	66.5	03/9	17.3	40.2390	> 4500
740300	0	10	5544	19.5	42 021	> 4500	740530	0	42.4	52424	21.2	40.2390	> 4500
740309	238	44	5544	18.5	43.031	2244	740604	144	42.4	5342.4	21.3	49.5438	2322
740310	600	30.5	38/3	16.5	38 370	2066	740606	1644	65 75	8284 5	21.5	52 335	1622
740312	218	38	4788	14	32 564	2000	740607	2380	67	8442	30.4	70 7104	678
740312	356	38	4788	12.5	29.075	2344	740608	2855	73	0108	30.4	70.7104	544
740314	56	38	4788	16.25	37 7975	> 4500	740609	3167	98	12348	23 75	55 2425	544
740315	735	41	5166	20	46 52	2022	740610	1640	103.5	13041	23.25	54 0795	544
740316	1122	67	8442	15	34.89	1867	740611	1530	60	7560	30.5	70 943	800
740317	1325	42	5292	26	60 476	1018	740612	2190	63	7938	29.75	69 1985	778
740318	1269	73.5	9261	17 75	41 2865	1018	740613	2567	66 25	8347.5	31.25	72 6875	555
740319	0	73.5	9261	17.75	41,2865	> 4500	740614	2877	80	10080	28	65.128	555
740328	0	69	8694	19	44,194	> 4500	740615	2710	70.25	8851.5	28.5	66.291	555
740329	167	69	8694	19	44,194	> 4500	740616	3209	103.5	13041	25	58.15	586
740330	958	69	8694	19	44.194	> 4500	740617	3261	107	13482	23	53,498	586
740331	1301	69	8694	19	44.194	> 4500	740618	3255	107	13482	22.5	52.335	586
740401	1556	69	8694	19	44.194	910	740619	3255	106.25	13387.5	22.5	52.335	586
740402	1720	87.25	10993.5	16.5	38.379	910	740620	3133	99.5	12537	24.5	56.987	586
740403	1862	105.5	13293	14.5	33.727	910	740621	2800	100	12600	24	55.824	> 4500
740404	1844	105.5	13293	13.5	31.401	910	740622	0	41.5	5229	25.25	58.7315	> 4500
740405	1733	105.5	13293	13.5	31.401	910	740623	867	41.5	5229	25.25	58.7315	2144
740406	1611	78	9828	15.5	36.053	910	740624	2011	58.25	7339.5	30.25	70.3615	1144
740407	1544	75	9450	17.5	40.705	910	740625	2555	59.5	7497	33.5	77.921	883
740408	0	75	9450	17.5	40.705	> 4500	740626	2844	77.75	9796.5	29.5	68.617	622
740409	0	52	6552	8	18.608	> 4500	740627	3156	93	11718	26.5	61.639	586
740410	284	52	6552	8	18.608	2422	740628	3278	98.5	12411	25.6	59.5456	586
740411	940	43	5418	22.5	52.335	1844	740629	3300	99.75	12568.5	25	58.15	586
740412	1596	69	8694	21	48.846	930	740630	3293	101	12726	25	58.15	586
/40413	1698	86	10836	16.5	38.379	910	/40701	3293	99	12474	24.5	56.987	586
740414	1800	105	13230	14.5	33.727	930	740702	3190	97.75	12316.5	25	58.15	586
740415	1433	97.5	12285	14	32.564	1033	740703	2020	58.75	/402.5	30	69.78	860
740416	3/8	20.5	3591	27	62.802	1033	740705	2/90	15	9450	2ŏ.5 20 ⊑	66.291	044 600
740417	1122	20.0 52.5	6741	21	02.002	24500	740705	3010	00.5	10143	20.5	60.291 FC 40FF	611
740418	1655	03.0 31.5	3060	20.5 37 5	41.003	1049 771	740700	3203	90.20	12121.0	24.20	56 097	611
740419	1000	31.5 AA E	5607	37.5	70 004	642	740707	3276	07.75	12316.5	24.0	56 097	611
740420	2022	44.0 83.5	10521	27.5	63 065	642	740700	3220	97.75	12010.0	24.0	57 5685	611
740421	2022	74.5	0327	27.5	54 661	642	740710	3203	96.5	12150	255	50 313	645
740422	2411	90 91	11340	23.5	50 000	642	740710	3270	96 75	12100 5	25.5	59 313	645
740424	2580	107	13482	18.5	43 031	642	740712	3278	96.25	12107.5	25.5	59 313	645
740424	2256	107	13482	18.5	43 031	642	740712	3278	97.5	12285	25.5	58 7315	678
740426	2367	100	12600	19	44 104	642	740714	3287	97.5	12285	25.25	58 7315	678
740427	1933	27.5	3465	48	111 648	642	740715	3286	96.25	12127 5	25 25	58 7315	678
740428	633	80	10080	25	58 15	> 4500	740716	3286	96 25	12127.5	25 25	58,7315	678
740429	133	60.25	7591.5	21,625	50.29975	> 4500	740717	3290	96.25	12127.5	25.25	58,7315	678
740430	582	40.5	5103	18.25	42.4495	2150	740718	3290	96.25	12127.5	25.25	58.7315	678
740501	333	43	5418	25.5	59.313	> 4500	740719	3290	96.25	12127.5	25.25	58.7315	678
740502	189	43	5418	25.5	59.313	> 4500	740720	3033	88.625	11166.75	28.5	66.291	678
740503	1111	43	5418	25.5	59.313	1878	740721	2871	81	10206	28.5	66.291	678

date	Power	Flow (w)	Flow (w)	subcooling	subcooling	# of notches	date
740700	MWt	Mib/nr	Kg/S	Btu/Ib	KJ/Kg	inserted	744005
740722	2807	93.5 56.75	7150.5	25.5 21.25	59.313 49.4275	> 4500	741005
740723	2167	56.75	7150.5	21.25	49.4275	1988	741007
740725	2167	57.625	7260.75	29	67.454	1422	741008
740726	2176	58.5	7371	32	74.432	910	741009
740727	2176	82.5	10395	27	62.802	910	741010
740728	2176	90	11340	25.5	59.313	910	741011
740729	2789	103.75	13072.5	23.5	54.661	910	741012
740730	3290	104.5	13293	22.5	52.335	910	741013
740801	3207	107	13482	22.25	51.7535	910	741015
740802	3082	106.5	13419	22.25	51.7535	910	741016
740803	2494	69	8694	34.25	79.6655	900	741017
740804	2722	70	8820	34.25	79.6655	900	741019
740805	2000	90.25	0940	34.25	79.0055 67.454	900	741020
740807	3238	99	12474	26	60.476	910	741021
740808	3250	102	12852	25	58.15	910	741023
740809	3274	101.5	12789	25	58.15	910	741024
740810	3293	100.75	12694.5	25	58.15	910	741025
740811	3293	100.75	12694.5	25.25	58.7315	910	741026
740812	3293	102.75	12940.5	24.5 24.5	56.987	930	741027
740814	3290	102	12032	23.75	55.2425	930	741020
740815	3293	103	12978	23.75	55.2425	930	741030
740816	3293	102.5	12915	24	55.824	930	741031
740817	3292	103.1	12990.6	23.8	55.3588	984	741101
740818	3293	103.5	13041	23.75	55.2425	984	741102
740819	3293	104.5	13167	23.75	55.2425	984	741103
740820	3275	103 5	13041	23.75	55 2425	984	741104
740822	3275	102	12852	23.75	55.2425	984	741108
740823	3275	103.25	13009.5	23.75	55.2425	984	741109
740824	3270	101.75	12820.5	24.5	56.987	984	741110
740825	3221	98.25	12379.5	25.25	58.7315	984	741111
740826	3238	98 65.25	12348	26	60.476 83.736	984 1050	741112
740828	2967	79.75	10048.5	32.25	75.0135	1070	741113
740829	3178	94.5	11907	27.5	63.965	1070	741115
740830	3202	102.75	12946.5	24.5	56.987	1070	741116
740831	3269	103	12978	24.75	57.5685	1070	741117
740901	3290	101.75	12820.5	24.75	57.5685	1080	741118
740902	3290	100.75	12694.5	25	58 15	1080	741119
740904	3293	100.25	12631.5	25	58.15	1115	741120
740905	3290	100.5	12663	24.75	57.5685	1115	741122
740906	3293	100.75	12694.5	25	58.15	1115	741123
740907	3293	101	12726	25.5	59.313	1115	741124
740908	3293	100.75	12694.5	25	58.15	1115	741125
740909	3275	99.75 101	12508.5	25	56 987	1115	741120
740911	3275	100.75	12694.5	24.5	56.987	1144	741128
740912	3280	100.5	12663	24.75	57.5685	1144	741129
740913	3212	100	12600	25	58.15	1144	741130
740914	588	74.5	9387	25	58.15	> 4500	741201
740915	530	74.5 74.5	9387	25 13.25	58.15 30.8105	> 4500 2617	741202
740917	1845	63.25	7969 5	28.5	66.291	1592	741203
740918	2340	62.5	7875	31	72.106	1447	741205
740919	2611	77.75	9796.5	27	62.802	1441	741206
740920	2723	83.25	10489.5	26	60.476	1347	741207
740921	2725	87.25	10993.5	25.25	58.7315	1347	741208
740922	1280	87.25	10962	25 25.25	58 7315	1347	741209
740924	2133	63.25	7969.5	32	74.432	1547	741210
740925	2667	73	9198	32	74.432	1470	741212
740926	2800	85	10710	28.5	66.291	1481	741213
740927	2800	89.5	11277	27	62.802	1481	741214
740928	2511	59	/434	37	86.062	1470	741215
740929	2527	01.5 74.75	9418 5	32 5	03.730 75.595	1414 1440	741216
741001	2788	74.5	9387	31.5	73.269	1440	741218
741002	2822	77.5	9765	32.5	75.595	1440	741219
741003	2716	79	9954	31	72.106	1440	741220
741004	2756	78.5	9891	35	81.41	1440	741221

date	Power	Flow (w)	Flow (w)	subcooling	subcooling	# of notches
	MWt	Mlb/hr	kg/s	Btu/lb	kJ/kg	inserted
741005	1978	58.8	7408.8	31	72.106	1487
741006	2745	76.5	9639	31.5	73.269	1440
741007	2790	75 70	9450	32	74.432	1385
741000	3110	88.5	11151	29.5	68 617	1385
741010	3160	93	11718	29	67.454	1403
741011	3060	96	12096	28.5	66.291	1403
741012	2430	61	7686	33.75	78.5025	1403
741013	2910	78.5	9891	31.25	72.6875	1403
741014	3150	89.5	11277	29	67.454	1403
741015	1507	94.5 57.5	7245	29	67.454	1403
741010	0	57.5	7245	29	67 454	> 4500
741019	Ő	60	7560	37.5	87.225	> 4500
741020	1865	60	7560	37.5	87.225	2260
741021	2310	60	7560	32.5	75.595	1626
741022	2850	79.5	10017	27.75	64.5465	1560
741023	1865	99.5 42.5	12537	24	55.824	1560
741024	2430	43.5 64.5	8127	24.5	66 291	1804
741025	2955	93	11718	24.5	56.987	1592
741027	2890	93.5	11781	24	55.824	1592
741028	2677	62	7812	32.5	75.595	1514
741029	2656	67.5	8505	31.5	73.269	1537
741030	2682	72	9072	30	69.78	1548
741031	3033	86.5	10899	27.5	63.965	1548
741101	3240	101	12726	23.5	54.661	1548
741102	3280	104	13324.5	23	53 498	1548
741103	3289	105.75	13324.5	23	53,498	> 4500
741105	0	60	7560	23	53.498	> 4500
741108	0	60	7560	19.75	45.9385	> 4500
741109	225	60	7560	19.75	45.9385	> 4500
741110	1378	60	7560	19.75	45.9385	2521
741111	1890	59.25	7465.5	27	62.802	2038
741112	2390	58 60 5	7308	30	69.78	1703
741113	2040	69.5 86	0/5/ 10836	26.5	61 639	1592
741114	3225	95.5	12033	20.5	58 15	1574
741116	1744	51.25	6457.5	34	79.084	1574
741117	1930	59.75	7528.5	27.5	63.965	1904
741118	2875	70.75	8914.5	30.75	71.5245	1574
741119	3120	86.75	10930.5	26.5	61.639	1574
741120	3240	99	12474	23.5	54.661	1574
741121	3266	102.5	12915	23.5	54.661	1574
741122	3278	104	13104	23.5 23.5	54.661	1574
741123	3280	104.25	13135.5	23.5	54 661	1574
741125	3280	104	13104	23.5	54.661	1574
741126	3280	103.25	13009.5	23.5	54.661	1574
741127	3285	103	12978	23.5	54.661	1574
741128	3290	102.5	12915	23.5	54.661	1574
741129	2922	102.5	12915	23.5	54.661	1574
741130	U	102.5	12915	∠3.5 10	04.001 44.104	> 4500
741201	644	49 75	6268.5	19	44,194	2850
741203	2149	59.5	7497	23.5	54.661	2427
741204	2231	79	9954	23.25	54.0795	1971
741205	2313	89.5	11277	21.75	50.5905	1904
741206	1996	48.75	6142.5	35.5	82.573	1714
741207	1767	40	5040	37.5	87.225	1804
/41208	1996	44.5	5607	37	86.062	1/70
741209	∠386 2733	57.25 75.5	1213.5 0513	32.5 28 5	10.595	1712
741210	3064	97.5	12285	20.0	55 824	1712
741212	3255	104.5	13167	22.75	52.9165	1712
741213	3255	106.5	13419	22.75	52.9165	1712
741214	3255	107	13482	22.75	52.9165	1712
741215	3250	106.25	13387.5	22.75	52.9165	1712
741216	3000	106.5	13419	22.75	52.9165	1712
741217	2900	92	11592	25.25	58.7315	1712
741218	3188	102.5	12915	23.5	54.661	1/12
741219	∠118 3227	70.25	0001.5 8851 5	20.0 28.5	66 201	n/2
741221	2889	70.25	8851.5	28.5	66,291	n/a
				_0.0		

date	Power	Flow (w)	Flow (w)	subcooling	subcooling	# of notches	Γ
	MWt	Mlb/hr	kg/s	Btu/lb	kJ/kg	inserted	
741222	2322	70.25	8851.5	28.5	66.291	n/a	
741223	3044	84.5	10647	27.75	64.5465	1/12	
741224	3230	98.5	12411	24.75	57.5085	1712	
741225	3267	104	13230	23 25	54 0795	1712	
741220	3267	104 5	13167	23.25	54 0795	1712	
741228	3267	104.5	13167	23.5	54.661	1712	
741229	3267	105	13230	23.5	54.661	1712	
741230	3277	104	13104	23.5	54.661	1712	
741231	3277	103.5	13041	24	55.824	1712	
750101	3214	100.5	12663	24	55.824	1712	
750102	3191	99	12474	23.75	55.2425	1712	
750103	2735	91	11466	26	60.476	1712	
750104	2568	53.25	6709.5	34.5	80.247	1712	
750105	3202	90.5 102.5	12411	25.25	55 2425	1712	
750100	3280	102.5	13041	23.75	55 2425	1712	
750108	3280	103	12978	23.75	55.2425	1712	
750109	3280	102.25	12883.5	24	55.824	1712	
750110	3280	101.5	12789	24	55.824	1712	
750111	3270	101.75	12820.5	23.75	55.2425	1712	
750112	3224	101	12726	24	55.824	1712	
750113	3273	101.5	12789	24	55.824	1712	
750114	2780	101	12726	24	55.824	1712	
750115	0	44	5544	24	55.824	> 4500	
750123	079	44	5544	17	39.542	> 4500	
750124	2035	60.25	7591 5	28.25	65 7095	2327	
750126	2486	62.5	7875	32.5	75 595	1710	
750127	2735	70	8820	31	72.106	1710	
750128	3013	85	10710	27.25	63.3835	1680	
750129	3224	101.5	12789	24	55.824	1710	
750130	3247	101.5	12789	24	55.824	1710	
750131	3224	101	12726	24.5	56.987	1710	
750201	3275	101.75	12820.5	24	55.824	1710	
750202	3275	104	13104	24	55.824	1/10	
750203	3275	103.5	131041	24	55 2425	1710	
750204	3275	104 25	13135.5	23.75	55 2425	1710	
750206	3275	104	13104	23.75	55.2425	1710	
750207	3275	104	13104	24	55.824	1710	
750208	3275	104	13104	24	55.824	1710	
750209	3280	104	13104	24	55.824	1710	
750210	3144	98.5	12411	24	55.824	n/a	
750211	2982	93	11718	24	55.824	n/a	
750212	0	46.25	5827.5	24	55.824	> 4500	
750220	756	40.20	5827.5	25	58.15	2051	
750221	2011	56 75	7150.5	31	72,106	2171	
750223	2471	66.5	8379	31	72.106	1737	
750224	2922	76.5	9639	31	72.106	1637	
750225	3200	92.5	11655	26.25	61.0575	1637	
750226	3267	101.5	12789	24.5	56.987	1660	
750227	3278	99.5	12537	24.5	56.987	1660	
750228	3289	101.25	12757.5	24.5	56.987	1660	
750301	3293	100.5	12003	24	55.824	1660	
750302	3293	100.75	12094.5	24	55 824	1660	
750303	3293	100 75	12694 5	24	55.824	1660	
750305	3293	101.25	12757.5	24	55,824	1660	
750306	3293	101.75	12820.5	24	55.824	1660	
750307	3293	102.25	12883.5	24	55.824	1660	
750308	3293	101.25	12757.5	24	55.824	1660	
750309	3293	101.5	12789	24	55.824	1660	
750310	3293	101.75	12820.5	24	55.824	1660	
750311	3293	101.75	12820.5	24	55.824	1660	
750312	3293	102.25	12003.0	24	55 824	1660	
750314	3293	102.0	12883.5	24	55 824	1660	
750315	3293	104	13104	24	55.824	1660	
750316	3293	103	12978	24	55.824	1660	
750317	3293	103.5	13041	24	55.824	1660	
750318	1312	103.25	13009.5	24	55.824	1660	
750319	1556	58.25	7339.5	26.5	61.639	3496	
750320	2367	55.5	6993	34.5	80.247	1804	L

date	Power	Flow (w)	Flow (w)	subcooling	subcooling	# of notches
750221	2629	NIID/IIF 62.75	Kg/S	22.25	KJ/Kg	1714
750321	2020	81.5	10269	28.5	66 291	1714
750323	3157	92.5	11655	25.75	59.8945	1714
750324	3250	102	12852	23.5	54.661	1726
750325	3300	103.5	13041	23.5	54.661	1737
750326	3295	104.5	13167	23.5	54.661	1737
750327	3293	104.5	13167	23.5	54.661	1740
750328	3293	104.5	13167	23.5	54.661	1740
750329	3293	104.5	13167	23.5	54.001	1740
750331	3293	104.5	13167	23.5	54.661	1740
750401	3293	104	13104	23.5	54.661	1740
750402	3270	105.5	13293	23.5	54.661	1740
750403	3256	105.5	13293	23.5	54.661	1740
750404	3256	105.5	13293	23.5	54.661	1740
750405	3256	105.5	13293	23.75	55.2425	1740
750406	3256	92.25	12978	20 23.75	55 2425	1740
750408	3293	104.75	13198.5	23.5	54.661	1728
750409	3293	105.5	13293	23.5	54.661	1728
750410	3293	105.5	13293	23.5	54.661	1728
750411	3293	105.5	13293	23.5	54.661	1728
750412	3293	105.5	13293	23.5	54.661	1728
750413	3260	105.5	13293	23.5	54.661	1728
750414	3260	105.5	13293	23.5	54.001	1728
750416	3260	105.5	13293	23.5	54.661	1728
750417	3233	105.5	13293	23.5	54.661	1728
750418	3233	105.5	13293	23.5	54.661	1728
750419	3233	106	13356	23	53.498	1728
750420	3233	106	13356	23	53.498	1728
750421	3222	106	13356	23	53.498	1728
750423	3222	106	13356	23	53 498	1728
750424	3215	106	13356	23	53.498	1728
750425	3131	105.5	13293	23	53.498	1728
750426	2356	58.5	7371	33.25	77.3395	1692
750427	2656	63	7938	33	76.758	1670
750428	2200	74.5 60	9387 7560	29.25	48 846	2840
750430	2723	67.5	8505	31.75	73.8505	1668
750501	2908	78	9828	29.25	68.0355	1668
750502	3187	97.5	12285	24.75	57.5685	1668
750503	3288	103	12978	24	55.824	1668
750504	3261	104.75	13198.5	23.5	54.661	1668
750505	3247	104.5	13293	23.5	53 498	1668
750507	3232	105.5	13293	23	53.498	1668
750508	3227	105.25	13261.5	23	53.498	1668
750509	3218	105.5	13293	23	53.498	1668
750510	3210	105.5	13293	23	53.498	1668
750511	3198	105.5	13293	23	53.498	1668
750512	3172	105.5	13293	23	53,498	1668
750514	3160	105	13230	23	53.498	1668
750515	3154	104.75	13198.5	23	53.498	1668
750516	3031	105	13230	23	53.498	1668
750517	0	67	8442	20.5	47.683	2238
750607	U 440	45 45	5670	25.75 25.75	59.8945	> 4500 2006
750608	2044	62 25	7843.5	20.75 28	65,128	2049
750609	1889	94.5	11907	20	46.52	1982
750610	1833.5	43	5418	31	72.106	1826
750611	1778	62.625	7890.75	30.5	70.943	2020
750612	1256	82.25	10363.5	23	53.498	1926
750613	0	45.75 45.75	5764.5	23 32.5	53.498 75 505	> 4500
750615	1067	45.75	5764.5	32.5	75,595	2356
750616	2289	75	9450	25	58.15	1893
750617	2010	46.5	5859	38.25	88.9695	1525
750618	2476	59	7434	33.75	78.5025	1525
750619	2422	71.5	9009	30.5	70.943	1503
750620	0	44.9 44 9	5657.4	34 25	79 6655	> 4500
750625	1473	44.9	5657.4	34.25	79.6655	2372

NWYC MID/P Kays Etunio Kays Inserted 750626 2444 10.5 5229 29.5 68.617 1971 750628 2289 64.5 8127 34.25 79.6655 1470 750629 2678 69.25 8725.5 33.3 76.758 1470 750701 3265 92.25 77.585 57.5685 r/a 750703 3271 98.25 12379.5 24.75 57.5685 r/a 750704 3156 86.19 10.899.94 25.75 59.8945 r/a 750707 1666 50 6300 28.75 66.8725 r/a 750708 1642 50 6300 28.75 69.1985 1740 750701 1622 49.5 6237 29.75 69.1985 1740 750714 1622 50 6300 28.75 69.1985 1740 750714 1622 50 6300 29.75 <th>date</th> <th>Power</th> <th>Flow (w)</th> <th>Flow (w)</th> <th>subcooling</th> <th>subcooling</th> <th># of notches</th>	date	Power	Flow (w)	Flow (w)	subcooling	subcooling	# of notches
750627 7111 41.5 5229 29.5 66.617 1971 750627 7111 41.5 5229 29.5 66.617 1971 750628 2289 64.5 8127 34.25 79.6655 1470 750629 2678 69.25 723.5 33 77.58 1470 750702 3227 98.25 12379.5 24.75 57.5685 n/a 750704 3166 86.19 10659.94 25.75 59.894.6 n/a 750706 2266 82.06 7819.56 27.75 64.5465 n/a 750707 1642 50 6300 28.75 69.1985 1170 75071 1622 49.5 6237 29.75 69.1985 1740 75071 1622 50 6300 29.75 69.1985 1740 75071 1622 50 6300 29.75 69.1985 1740 750714 1636 49.5	750000	MWt	MID/nr	Kg/S	Btu/Ib	KJ/Kg	Inserted
750628 2289 64.5 8127 92.65 33 76.758 1470 750629 2678 69.25 8725.5 33 76.758 1470 750620 2277 9702 30.25 75.7585 1470 750701 3226 92.55 12379.5 24.75 57.5685 n/a 750703 3227 98.25 12379.5 24.75 57.5685 n/a 750704 156 86.19 10859.94 25.75 59.8945 n/a 750705 2722 74.13 9340.38 28.75 66.2205 n/a 750706 1633 49.5 6237 29.75 66.1985 1707 75071 1622 50 6300 29.75 69.1985 1717 750712 1622 50 6300 29.75 69.1985 1717 750714 1622 50 6300 29.75 69.1985 1717 750771 1636 50	750620	2444	102.5	5220	20.5	47.083	1915
TS0629 2878 69.25 872.5 33 T6.758 1470 750630 3022 77 9702 30.25 70.3615 1470 750703 3227 98.25 12379.5 24.75 57.5685 n/a 750704 3156 86.19 10859.94 25.75 58.845 n/a 750704 3156 86.19 10859.94 25.75 58.845 n/a 750706 2266 82.06 7819.56 27.75 64.5465 n/a 750707 1642 50 6300 28.75 66.8725 n/a 750708 1642 50 6300 29.75 69.1985 1740 750711 1624 45.5 6237 29.75 69.1985 1740 750714 1622 50 6300 29.75 69.1985 1740 750714 1636 49.5 6237 29.25 68.0355 1740 750714 1636 50	750628	2280	64.5	8127	29.5	79 6655	1470
750830 3022 77 6702 30.25 70.3815 1470 750701 3256 98.25 12379.5 24.75 57.5685 n/a 750703 3267 98.25 12379.5 24.75 57.5685 n/a 750704 3156 86.19 10859.94 25.75 68.25 n/a 750705 2722 74.13 9340.38 28.75 66.8725 n/a 750706 12226 62.00 7819.56 27.75 69.1985 1688 750701 1624 48.5 6111 29.75 69.1985 1740 750711 1622 50 6300 29.75 69.1985 1740 750714 1622 50 6300 29.75 69.1985 1740 750716 1636 50 6300 29.75 69.1985 1717 750716 1636 50 6300 29.75 69.1985 1717 750721 1633 50	750629	2678	69.25	8725.5	33	76,758	1470
750701 3266 98.25 12379.5 24.75 57.6865 n/a 750702 3267 98.25 12379.5 24.75 57.6865 n/a 750704 3156 86.19 10859.94 25.75 59.8945 n/a 750705 7222 74.13 9340.38 26.75 66.8725 n/a 750706 1642 50 6300 28.75 66.8725 n/a 750707 1642 49.5 6237 29.75 69.1985 1740 750711 1622 49.5 6237 29.75 69.1985 1740 750714 1622 50 6300 29.75 69.1985 1740 750716 1622 50 6300 29.75 69.1985 1717 750716 1636 49.5 6337 29.25 68.0355 1706 750718 1636 50 6300 29.75 69.1985 1717 750721 1636 50.5	750630	3022	77	9702	30.25	70.3615	1470
750702 3271 98.25 12379.5 24.75 57.5685 n/a 750703 3267 98.25 12379.5 24.75 59.8945 n/a 750705 2722 74.13 9340.38 25.75 59.8945 n/a 750705 2722 74.13 9340.38 25.75 68.8725 n/a 750707 1656 50 6300 28.75 68.4867 n/a 750709 1633 49.5 6237 29.75 69.1985 1717 750711 1622 49.5 6237 29.75 69.1985 1714 750714 1622 50 6300 29.75 69.1985 1717 750716 1636 49.5 6237 29.25 68.0355 1706 750718 1636 50 6300 29.75 69.1985 1717 750721 1636 50.5 6363 29.75 69.1985 1717 750721 1636 50.	750701	3256	98.25	12379.5	24.75	57.5685	1470
750703 3267 98.25 12379.5 24.75 57.5685 n/a 750704 3156 86.19 10859.94 25.75 66.4265 n/a 750705 2222 74.13 9340.38 26.75 66.4725 n/a 750706 1625 50 6300 28.75 66.8725 1672 750707 1623 49.5 6237 29.75 69.1985 1740 750711 1622 49.5 6237 29.75 69.1985 1740 750714 1622 50 6300 29.75 69.1985 1740 750715 1622 50 6300 29.75 69.1985 1717 750716 1636 49.5 6237 29.25 68.0355 1706 750717 1636 50 6300 29.75 69.1985 1717 750721 1636 50.5 6332 29.75 69.1985 1717 750721 1633 50.5 </td <td>750702</td> <td>3271</td> <td>98.25</td> <td>12379.5</td> <td>24.75</td> <td>57.5685</td> <td>n/a</td>	750702	3271	98.25	12379.5	24.75	57.5685	n/a
750704 3156 86.19 10859.94 25.75 59.8945 n/a 750706 2226 62.06 7819.56 27.75 64.5466 n/a 750707 1656 50 6300 28.75 66.8725 1672 750709 1633 49.5 6237 30 69.78 1706 750710 1622 49.5 6237 29.75 69.1985 1717 750711 1622 49.5 6237 29.75 69.1985 1717 750713 1622 50 6300 29.75 69.1985 1717 750714 1622 50 6300 29.25 68.0355 1717 750718 1636 50 6300 29.75 69.1985 1717 750721 1633 50.5 6330 29.75 69.1985 1717 750721 1633 50.5 6330 29.75 69.1985 1706 750722 1645 50	750703	3267	98.25	12379.5	24.75	57.5685	n/a
750706 2222 74.13 9340.38 28.75 62.75 64.5465 na 750707 1656 50 6300 28.75 66.8725 na 750708 1642 50 6300 28.75 66.8725 na 750709 1633 49.5 6237 29.75 69.1985 1688 750711 1622 49.5 6237 29.75 69.1985 1740 750711 1622 50 6300 29.75 69.1985 1740 750715 1622 50 6300 29.75 69.1985 1740 750716 1632 50 6300 29.75 69.1985 1717 750719 1636 50 6300 29.75 69.1985 1717 750721 1633 50.5 6383 29.75 69.1985 1717 750721 1633 50.5 6330 29.75 69.1985 1706 750721 1633 <td< td=""><td>750704</td><td>3156</td><td>86.19</td><td>10859.94</td><td>25.75</td><td>59.8945</td><td>n/a</td></td<>	750704	3156	86.19	10859.94	25.75	59.8945	n/a
JbU/06 Z266 62.06 619.56 Z7.75 64.3455 Inal 750707 1656 50 6300 28.75 66.8725 1672 750708 1633 49.5 6237 30 69.78 1706 750701 1622 49.5 6237 30 69.78 1706 750711 1622 49.5 6237 29.75 69.1985 1740 750714 1622 50 6300 29.75 69.1985 1717 750716 1636 49.5 6237 29.25 68.0355 1717 750716 1636 50 6300 29.75 69.1985 1717 750721 1633 50.5 633 29.75 69.1985 1706 750721 1633 50.5 6330 29.75 69.1985 1706 750721 1633 50.5 6330 29.75 69.1985 1706 750723 1620 50 63	750705	2722	74.13	9340.38	26.75	62.2205	n/a
TSD/TO 1042 SO 6300 22.75 66.8725 1672 750709 1633 49.5 6237 29.75 60.985 1770 750710 1627 49.5 6237 29.75 60.985 1740 750711 1622 49.5 6300 29.75 69.1985 1740 750714 1622 50 6300 29.75 69.1985 1740 750715 1636 49.5 6237 29.25 80.0355 1717 750716 1636 50 6300 29.75 69.1985 1717 750719 1636 50 6300 29.75 69.1985 1706 750721 1633 50.5 6363 29.75 69.1985 1706 750723 1620 50 6300 29.75 69.1985 1706 750724 1622 49 6174 29.75 69.1985 1706 750725 1589 49.75 <td< td=""><td>750700</td><td>2250</td><td>62.06</td><td>6200</td><td>27.75</td><td>64.5465 66.9725</td><td>n/a</td></td<>	750700	2250	62.06	6200	27.75	64.5465 66.9725	n/a
1500 1633 49.5 6237 29.75 69.1895 1688 750710 1627 49.5 6237 30 69.78 1770 750711 1622 49.5 6237 29.75 69.1985 1740 750713 1622 50 6300 29.75 69.1985 1740 750714 1622 50 6300 29.75 69.1985 1740 750715 1632 49.5 6237 29.25 68.0355 1777 750719 1636 50 6300 29.75 69.1985 1706 750721 1633 50.5 6363 29.75 69.1985 1707 750721 1633 50.5 6363 29.75 69.1985 1706 750722 1643 50 6300 29.75 69.1985 1706 750724 1622 49 6174 29.75 69.1985 1706 750725 1589 49.75 62	750707	1642	50	6300	28.75	66 8725	1672
750710 1627 49.5 6237 30 69.78 1706 750711 1622 49.5 6237 29.75 69.1985 1740 750712 1622 50 6300 29.75 69.1985 1740 750713 1622 50 6300 29.75 69.1985 1740 750715 1622 50 6300 29.75 69.1985 1717 750716 1636 50 6300 29.75 69.1985 1717 750719 1636 50 6300 29.75 69.1985 1717 750721 1633 50.5 6363 29.75 69.1985 1717 750722 1645 50 6300 29.75 69.1985 1706 750723 1620 50 6300 29.75 69.1985 1706 750724 1622 49 6174 29.75 69.1985 1706 750725 1800 39.5 91.77 </td <td>750709</td> <td>1633</td> <td>49.5</td> <td>6237</td> <td>29.75</td> <td>69.1985</td> <td>1688</td>	750709	1633	49.5	6237	29.75	69.1985	1688
750711 1622 49.5 6237 29.75 69.1985 1747 750712 1622 49.5 6237 29.75 69.1985 1740 750713 1622 50 6300 29.75 69.1985 1740 750714 1622 50 6300 29.75 69.1985 1717 750715 1636 50 6300 29.75 69.1985 1717 750718 1636 50 6300 29.75 69.1985 1717 750721 1633 50.5 6363 29.75 69.1985 1717 750721 1633 50.5 6300 29.75 69.1985 1706 750722 1645 50 6300 29.75 69.1985 1706 750724 1622 49 6174 29.75 69.1985 1706 750725 1804 40.25 5071.5 37.75 87.8065 1605 750727 1722 40.5	750710	1627	49.5	6237	30	69.78	1706
750712 1622 49.5 6237 29.75 69.1985 1740 750713 1622 50 6300 29.75 69.1985 1740 750714 1622 50 6300 29.75 69.1985 1740 750716 1632 49.5 6237 29.25 68.0355 1717 750718 1636 50 6300 29.75 69.1985 1717 750719 1636 50 6300 29.75 69.1985 1717 750721 1633 50.5 6333 29.75 69.1985 1717 750722 1645 50 6300 29.75 69.1985 1706 750723 1622 49 6174 29.75 69.1985 1706 750724 1622 49.65 5103 39.5 91.877 1505 750725 1589 49.75 62.86.5 29.15 1522 750721 1800 40 5040	750711	1624	48.5	6111	29.75	69.1985	1717
750713 1622 50 6300 29.75 69.1985 1740 750714 1622 50 6300 29.75 69.1985 1717 750715 1636 49.5 6237 29.25 68.0355 1706 750717 1636 50 6300 29.75 69.1985 1717 750719 1636 50 6300 29.75 69.1985 1717 750721 1633 50.5 6363 29.75 69.1985 1706 750721 1633 50.5 6363 29.75 69.1985 1706 750723 1620 50 6300 29.75 69.1985 1706 750724 1622 49 6174 29.75 69.1985 1706 750725 1809 49.75 62.68.5 29.75 69.1985 1706 750725 1800 39.5 4977 41.5 96.529 1522 750731 1800 39.5	750712	1622	49.5	6237	29.75	69.1985	1740
750714 1622 50 6300 29.75 69.1985 1740 750715 1622 50 6300 29.25 68.0355 1717 750716 1636 50 6300 29.75 69.1985 1706 750718 1636 50 6300 29.75 69.1985 1717 750721 1633 50.5 6363 29.75 69.1985 1717 750722 1645 50 6300 29.75 69.1985 1706 750722 1645 50 6300 29.75 69.1985 1706 750725 1589 49.75 6268.5 29.75 69.1985 1706 750726 1645 40.25 5071.5 37.75 87.8065 1605 750727 1722 40.5 5040 41 95.366 1522 75073 1800 39.5 4977 41.5 96.529 1522 750801 1805 40 5	750713	1622	50	6300	29.75	69.1985	1740
750716 1636 49.5 6300 29.75 69.1985 1717 750716 1636 50 6300 29.25 68.0355 1706 750718 1636 50 6300 29.75 69.1985 1717 750720 1633 50.5 6363 29.75 69.1985 1717 750721 1633 50.5 6363 29.75 69.1985 1706 750722 1645 50 6300 29.75 69.1985 1706 750723 1622 49 6174 29.75 69.1985 1706 750726 1645 40.25 5071.5 37.75 87.8065 1605 750728 1800 40 5040 41 95.366 1522 750731 1800 39.5 4977 41.5 96.529 1522 750801 1804 40 5040 41 95.366 1522 750802 1805 40 5040 <td>750714</td> <td>1622</td> <td>50</td> <td>6300</td> <td>29.75</td> <td>69.1985</td> <td>1740</td>	750714	1622	50	6300	29.75	69.1985	1740
750/16 1636 50 6300 29.25 68.03355 1776 750717 1636 50 6300 29.75 69.1985 1717 750721 1633 50.5 6363 29.75 69.1985 1717 750721 1633 50.5 6363 29.75 69.1985 1717 750721 1620 50 6300 29.75 69.1985 1706 750723 1620 50 6300 29.75 69.1985 1706 750724 1622 49 6174 29.75 69.1985 1706 750726 1645 40.25 5071.5 37.75 87.8065 1605 750727 1722 40.5 5103 39.5 91.877 1550 750729 1800 39.5 4977 41.5 96.529 1522 750730 1800 39.5 4977 41.5 96.529 1522 750801 1805 40	750715	1622	50 40 F	6300	29.75	69.1985	1/1/
150717 1636 50 6300 29.75 69.1985 1706 750718 1636 50 6300 29.75 69.1985 1717 750721 1633 50.5 6633 29.75 69.1985 1717 750722 1645 50 6300 29.75 69.1985 1706 750723 1589 49.75 6268.5 29.75 69.1985 1706 750724 1622 49 6174 29.75 69.1985 1706 750725 1589 49.75 6268.5 29.75 69.1985 1706 750728 1800 40 5040 41 95.366 1539 750730 1800 39.5 4977 41.5 96.529 1522 750801 1805 40 5040 41 95.366 1522 750801 1805 40 5040 41 95.366 1522 750802 1805 40 5040	750710	1636	49.5	6300	29.25	68 0355	1717
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	750718	1636	50	6300	29.25	69 1985	1706
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	750719	1636	50	6300	29.75	69.1985	1717
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	750720	1633	50.5	6363	29.75	69.1985	1717
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	750721	1633	50.5	6363	29.75	69.1985	1717
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	750722	1645	50	6300	29.75	69.1985	1706
750724 1622 49 6174 29.75 69.1985 1706 750726 1645 40.75 6286.5 29.75 69.1985 1706 750726 1645 40.25 5071.5 37.75 87.8065 1605 750728 1800 40 5040 41 95.366 1522 750730 1800 39.5 4977 41.5 96.529 1522 750731 1800 39.5 4977 41.5 96.529 1522 750801 1805 40 5040 41 95.366 1522 750803 1805 40 5040 41 95.366 1522 750804 1844 40 5040 41 95.366 1470 750805 1889 40 5040 41.25 95.9475 1515 750806 100 69 8694 31 72.106 1537 750807 1544 40 5040 <td< td=""><td>750723</td><td>1620</td><td>50</td><td>6300</td><td>29.75</td><td>69.1985</td><td>1706</td></td<>	750723	1620	50	6300	29.75	69.1985	1706
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	750724	1622	49	6174	29.75	69.1985	1706
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	750725	1589	49.75	6268.5 5071 5	29.75	09.1985 97.9065	1706
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	750720	1722	40.25	5103	39.5	07.8005 01.877	1550
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	750728	1800	40	5040	41	95.366	1539
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	750729	1800	39.5	4977	41	95.366	1522
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	750730	1800	39.5	4977	41.5	96.529	1522
750801 1805 40 5040 41 95.366 1522 750802 1805 40 5040 41 95.366 1522 750803 1805 40 5040 41 95.366 1470 750805 1889 40 5040 41 95.366 1470 750806 100 69 8694 31 72.106 1537 750807 1544 40 5040 41.25 95.9475 1515 750808 1778 40 5040 41.25 95.9475 1515 750811 1811 40 5040 41.25 95.9475 1515 750811 1838 40 5040 41.25 95.9475 1515 750813 1838 40 5040 41.5 96.529 1493 750814 1858 40 5040 41.5 96.529 1472 750816 1578 40 5040 41.5 96.529 1472 750817 193 42.5 5355 17 <td>750731</td> <td>1800</td> <td>39.5</td> <td>4977</td> <td>41.5</td> <td>96.529</td> <td>1522</td>	750731	1800	39.5	4977	41.5	96.529	1522
750802 1805 40 5040 41 95.366 1522 750803 1805 40 5040 41 95.366 1470 750804 1844 40 5040 41 95.366 1470 750805 1889 40 5040 41 95.366 1883 750806 100 69 8694 31 72.106 1837 750807 1544 40 5040 41.25 95.9475 1515 750809 1793 40 5040 41.25 95.9475 1515 750811 1811 40 5040 41.25 95.9475 1515 750812 1822 40 5040 41.5 96.529 1472 750813 1838 40 5040 41.5 96.529 1472 750816 1578 40 5040 41.5 96.529 1472 750816 1578 40 5040 41.5	750801	1805	40	5040	41	95.366	1522
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	750802	1805	40	5040	41	95.366	1522
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	750803	1805	40	5040	41	95.300	1522
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	750805	1889	40	5040	41	95.366	1883
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	750806	100	69	8694	31	72.106	1537
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	750807	1544	40	5040	38.5	89.551	1537
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	750808	1778	40	5040	41.25	95.9475	1515
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	750809	1793	40	5040	41.25	95.9475	1515
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	750810	1811	40	5040	41.25	95.9475	1515
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	750811	1804	40	5040	41.25	95.9475	1515
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	750812	1838	40	5040	41.25	96 529	1515
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	750814	1858	40	5040	41.5	96.529	1493
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	750815	1851	40	5040	41.5	96.529	1472
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	750816	1578	40	5040	41.5	96.529	1472
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	750817	193	42.5	5355	17	39.542	3130
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	750818	1656	57.5	7245	21.5	50.009	> 4500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	750819	2000	72.5	9135	21.5	50.009	> 4500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	750820	2533	102.5	12915	21.5	50.009	24500 1671
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	750822	2355	86.5	10899	25.5	59.313	1593
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	750823	1800	41.75	5260.5	39.5	91.877	1548
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	750824	1844	41.75	5260.5	41	95.366	1526
750826 1860 41 5166 41.75 97.1105 1486 750827 1855 40.5 5103 41.75 97.1105 1448 750828 1855 40 5040 41.75 97.1105 1448 750829 1855 40.5 5103 41.75 97.1105 1448 750829 1855 40.5 5103 41.75 97.1105 1448 750829 1855 40.5 5103 41.75 97.1105 1426 750830 1855 40.5 5103 41.75 97.1105 1426 750901 1855 40.5 5103 42 97.692 1426 750902 1855 40.5 5103 42 97.692 1426 750903 1855 40.5 5103 42 97.692 1426 750904 1855 40.5 5103 42 97.692 1426 750905 1733 40.5 5103 </td <td>750825</td> <td>1836</td> <td>41.25</td> <td>5197.5</td> <td>40.25</td> <td>93.6215</td> <td>1504</td>	750825	1836	41.25	5197.5	40.25	93.6215	1504
750827 1855 40.5 5103 41.75 97.1105 1448 750828 1855 40 5040 41.75 97.1105 14430 750829 1855 40.5 5103 41.75 97.1105 14430 750829 1855 40.5 5103 41.75 97.1105 1448 750830 1855 40.5 5103 41.75 97.1105 1426 750821 1855 40.5 5103 41.75 97.1105 1426 750901 1855 40.5 5103 42 97.692 1426 750902 1855 40.5 5103 42 97.692 1426 750903 1855 40.5 5103 42 97.692 1426 750904 1855 40.5 5103 42 97.692 1426 750905 1733 40.5 5103 42 97.692 1426 750906 0 40.5 5103	750826	1860	41	5166	41.75	97.1105	1486
750825 1855 40 5040 41.75 97.1105 1430 750829 1855 40.5 5103 41.75 97.1105 1448 750830 1855 40.5 5103 41.75 97.1105 1426 750831 1855 40.5 5103 41.75 97.1105 1426 750901 1855 40.5 5103 42 97.692 1426 750902 1855 40.5 5103 42 97.692 1426 750902 1855 40.5 5103 42 97.692 1426 750903 1855 40.5 5103 42 97.692 1426 750904 1855 40.5 5103 42 97.692 1426 750905 1733 40.5 5103 42 97.692 1426 750906 0 40.5 5103 39 90.714 >4500 750907 1381 41 5166 <t< td=""><td>750827</td><td>1855</td><td>40.5</td><td>5103</td><td>41.75</td><td>97.1105</td><td>1448</td></t<>	750827	1855	40.5	5103	41.75	97.1105	1448
750829 1635 40.5 5103 41.75 97.1105 14426 750830 1855 40.5 5103 41.75 97.1105 1426 750831 1855 40.5 5103 41.75 97.1105 1426 750901 1855 40.5 5103 42 97.692 1426 750902 1855 40.5 5103 42 97.692 1426 750903 1855 40.5 5103 42 97.692 1426 750904 1855 40.5 5103 42 97.692 1426 750905 1733 40.5 5103 42 97.692 1426 750906 0 40.5 5103 39 90.714 >4500 750907 1381 41 5166 39 90.714 1838 750908 1860 41 5166 41.75 97.1105 1470	750828	1855	40	5040	41.75	97.1105	1430
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	750830	1855	40.5	5103	41 75	97,1105	1426
750901 1855 40.5 5103 42 97.692 1426 750902 1855 40.5 5103 42 97.692 1426 750903 1855 40.5 5103 42 97.692 1426 750903 1855 40.5 5103 42 97.692 1426 750904 1855 40.5 5103 42 97.692 1426 750905 1733 40.5 5103 42 97.692 1426 750906 0 40.5 5103 39 90.714 > 4500 750907 1381 41 5166 39 90.714 1838 750908 1860 41 5166 41.75 97.1105 1470	750831	1855	40.5	5103	41.75	97.1105	1426
750902 1855 40.5 5103 42 97.692 1426 750903 1855 40.5 5103 42 97.692 1426 750904 1855 40.5 5103 42 97.692 1426 750904 1855 40.5 5103 42 97.692 1426 750905 1733 40.5 5103 42 97.692 1415 750906 0 40.5 5103 39 90.714 >4500 750907 1381 41 5166 39 90.714 1838 750908 1860 41 5166 41.75 97.1105 1470	750901	1855	40.5	5103	42	97.692	1426
750903 1855 40.5 5103 42 97.692 1426 750904 1855 40.5 5103 42 97.692 1426 750905 1733 40.5 5103 42 97.692 1426 750905 1733 40.5 5103 42 97.692 1415 750906 0 40.5 5103 39 90.714 >4500 750907 1381 41 5166 39 90.714 1838 750908 1860 41 5166 41.75 97.1105 1470	750902	1855	40.5	5103	42	97.692	1426
/ 50904 1855 40.5 5103 42 97.692 1426 750905 1733 40.5 5103 42 97.692 1415 750906 0 40.5 5103 39 90.714 >4500 750907 1381 41 5166 39 90.714 1838 750908 1860 41 5166 41.75 97.1105 1470	750903	1855	40.5	5103	42	97.692	1426
750905 17.33 40.5 5103 42 97.692 1415 750906 0 40.5 5103 39 90.714 >4500 750907 1381 41 5166 39 90.714 1838 750908 1860 41 5166 41.75 97.1105 1470	750904	1855	40.5	5103	42	97.692	1426
750907 1381 41 5166 39 90.714 1838 750908 1860 41 5166 41.75 97.1105 1470	750006	0	40.5	5103	42	97.692 Q0 717	1415
750908 1860 41 5166 41.75 97.1105 1470	750900	1381	41	5166	39	90.714	1838
	750908	1860	41	5166	41.75	97.1105	1470

mmm muturi κμγs Exturb κμγs μ100 750091 1893 40.5 5103 42. 97.692 1403 750911 1910 40.5 5103 42. 97.692 1380 750912 1910 40.5 5103 42. 97.692 1380 750914 1910 40.5 5103 42. 97.692 1388 750915 1910 40.5 5103 42. 97.692 1330 750917 1910 40.5 5103 42. 97.692 1330 750919 1910 40.5 5103 42. 97.692 1330 750921 1910 40.5 5103 42. 97.692 1330 750922 1910 40.5 5103 42. 97.692 1330 750926 1875 40.5 5103 42. 97.692 1330 750927 1742 40.5 5103 42. <	date	Power	Flow (w)	Flow (w)	subcooling	subcooling	# of notches
13030 1013 40.5 5103 41.75 97.092 1403 750911 1910 40.5 5103 42 97.692 1403 750913 1910 40.5 5103 42 97.692 1380 750913 1910 40.5 5103 42 97.692 1388 750915 1910 40.5 5103 42 97.692 1330 750916 1910 40.5 5103 42 97.692 1330 750917 1910 40.5 5103 42 97.692 1330 750921 1910 40.5 5103 42 97.692 1330 750922 1910 40.5 5103 42 97.692 1330 750924 1910 40.5 5103 42 97.692 1330 750925 1514 40.5 5103 42 97.692 1330 750927 1742 40.5 5103 41.5 </th <th>750000</th> <th>1070</th> <th></th> <th>Kg/S</th> <th>Btu/ID</th> <th>KJ/Kg</th> <th>Inserted</th>	750000	1070		Kg/S	Btu/ID	KJ/Kg	Inserted
1.2.2. 1.2.2 <t< td=""><td>750909</td><td>1893</td><td>40.5</td><td>5103</td><td>41 75</td><td>97.092 97.1105</td><td>1403</td></t<>	750909	1893	40.5	5103	41 75	97.092 97.1105	1403
750912 1010 40.5 5103 42 97.692 1380 750913 1910 40.5 5103 42 97.692 1380 750916 1910 40.5 5103 42 97.692 1380 750917 1910 40.5 5103 42 97.692 1330 750917 1910 40.5 5103 42 97.692 1330 750919 1910 40.5 5103 42 97.692 1330 750921 1910 40.5 5103 42 97.692 1330 750922 1910 40.5 5103 42 97.692 1330 750924 1910 40.5 5103 42 97.692 1330 750925 1910 40.5 5103 42 97.692 1330 750926 1893 40.5 5103 38.5 81.41 1871 750927 71.42 40.5 5103 41.5 </td <td>750911</td> <td>1910</td> <td>40.5</td> <td>5103</td> <td>42</td> <td>97.692</td> <td>1403</td>	750911	1910	40.5	5103	42	97.692	1403
750913 1910 40.5 5103 42 97.692 1380 750915 1910 40.5 5103 42 97.692 1388 750916 1910 40.5 5103 42 97.692 1330 750917 1910 40.5 5103 42 97.692 1330 750918 1910 40.5 5103 42 97.692 1330 750921 1910 40.5 5103 42 97.692 1330 750922 1910 40.5 5103 42 97.692 1330 750922 1910 40.5 5103 42 97.692 1330 750925 1875 40.5 5103 38.5 84.51 1671 750926 1893 40.5 5103 39.5 91.877 1582 751001 1822 40.5 5103 41.5 96.529 1344 751002 1822 40.5 5103 41.	750912	1910	40.5	5103	42	97.692	1380
750014 1910 40.5 5103 42 97.692 1388 750016 1910 40.5 5103 42 97.692 1330 750917 1910 40.5 5103 42 97.692 1330 750919 1910 40.5 5103 42 97.692 1330 750921 1910 40.5 5103 42 97.692 1330 750921 1910 40.5 5103 42 97.692 1330 750923 1910 40.5 5103 42 97.692 1330 750924 1910 40.5 5103 42 97.692 1330 750925 1875 40.5 5103 38.5 89.551 1671 750927 1742 40.5 5103 39.5 91.877 1582 751001 182 40.5 5103 41.5 96.529 1344 751002 1824 40.5 5103 41.	750913	1910	40.5	5103	42	97.692	1380
750016 1910 40.5 5103 42 97.692 1338 750017 1910 40.5 5103 42 97.692 1330 750018 1910 40.5 5103 42 97.692 1330 750919 1910 40.5 5103 42 97.692 1330 750920 1910 40.5 5103 42 97.692 1330 750921 1910 40.5 5103 42 97.692 1330 750924 1910 40.5 5103 42 97.692 1330 750925 1875 40.5 5103 42 97.692 1330 750926 1893 40.5 5103 38.5 81.41 1871 750927 1742 40.5 5103 38.5 89.551 1671 750928 1514 40.5 5103 41.5 96.529 1334 751002 1822 40.5 5103 41.	750914	1910	40.5	5103	42	97.692	1388
750916 1910 40.5 5103 42 97.692 1330 750918 1910 40.5 5103 42 97.692 1330 750918 1910 40.5 5103 42 97.692 1330 750920 1910 40.5 5103 42 97.692 1330 750921 1910 40.5 5103 42 97.692 1330 750922 1910 40.5 5103 42 97.692 1330 750925 1875 40.5 5103 42 97.692 1330 750926 1875 40.5 5103 32.5 89.551 1671 750927 1742 40.5 5103 39.5 91.877 1582 751001 1820 40.5 5103 41.5 96.529 1334 751002 1822 40.5 5103 41.5 96.529 1344 751002 1824 40.5 5103	750915	1910	40.5	5103	42	97.692	1388
7.0017 1910 40.5 5103 42 97.692 1330 75019 1910 40.5 5103 42 97.692 1330 75020 1910 40.5 5103 42 97.692 1330 75022 1910 40.5 5103 42 97.692 1330 750221 1910 40.5 5103 42 97.692 1330 750222 1910 40.5 5103 42 97.692 1330 750224 1910 40.5 5103 42 97.692 1330 750226 1833 40.5 5103 38.5 81.51 1671 75022 1514 40.5 5103 38.5 89.551 1671 75022 122 40.5 5103 41.5 96.529 1334 751002 1822 40.5 5103 41.5 96.529 1344 751007 1824 40.5 5103 41.5 <td>750916</td> <td>1910</td> <td>40.5</td> <td>5103</td> <td>42</td> <td>97.692</td> <td>1370</td>	750916	1910	40.5	5103	42	97.692	1370
7.00918 1910 40.5 510.3 42 97.692 1330 750920 1910 40.5 5103 42 97.692 1330 750921 1910 40.5 5103 42 97.692 1330 750922 1910 40.5 5103 42 97.692 1330 750923 1910 40.5 5103 42 97.692 1330 750925 1875 40.5 5103 42 97.692 1330 750926 1893 40.5 5103 42 97.692 1330 750927 1742 40.5 5103 38.5 89.551 1671 750928 1525 40.5 5103 41.5 96.529 1334 751001 182 40.5 5103 41.5 96.529 1344 751002 182 40.5 5103 41.5 96.529 1344 751002 182 40.5 5103 4	750917	1910	40.5	5103	42	97.692	1330
1.00.7 1910 40.5 5103 42 97.692 1330 750921 1910 40.5 5103 42 97.692 1330 750922 1910 40.5 5103 42 97.692 1330 750923 1910 40.5 5103 42 97.692 1330 750924 1910 40.5 5103 42 97.692 1330 750925 1875 40.5 5103 42 97.692 1330 750926 1875 40.5 5103 35 81.41 1871 750927 1742 40.5 5103 39.5 91.877 1582 751002 1822 40.5 5103 41.5 96.529 1344 751002 184 40.5 5103 41.5 96.529 1344 751007 1822 40.5 5103 41.5 96.529 1344 751007 1884 40.5 5103 41	750918	1910	40.5	5103	42	97.692	1330
7.0021 1910 40.5 5103 42 97.692 1330 750922 1910 40.5 5103 42 97.692 1330 750924 1910 40.5 5103 42 97.692 1330 750924 1910 40.5 5103 42 97.692 1330 750926 1893 40.5 5103 42 97.692 1330 750927 1742 40.5 5103 35.5 91.877 1562 750928 1514 40.5 5103 39.5 91.877 1562 751001 1822 40.5 5103 41.5 96.529 1344 751002 1822 40.5 5103 41.5 96.529 1344 751004 1887 40.5 5103 41.5 96.529 1344 751005 1884 40.5 5103 41.5 96.529 1344 751006 1867 40.5 5103	750919	1910	40.5	5103	42	97.692	1330
750922 1910 40.5 5103 42 97.692 1330 750924 1910 40.5 5103 42 97.692 1330 750925 1875 40.5 5103 42 97.692 1330 750926 1893 40.5 5103 42 97.692 1330 750927 1742 40.5 5103 35.8 89.551 1671 750928 1514 40.5 5103 30.5 94.203 1489 751001 1820 40.5 5103 41.5 96.529 1378 751002 1822 40.5 5103 41.5 96.529 1344 751004 1867 40.5 5103 41.5 96.529 1344 751006 1867 40.5 5103 41.5 96.529 1344 751007 1822 40.5 5103 41.5 96.529 1289 751010 1867 40.5 5103	750921	1910	40.5	5103	42	97.692	1330
750923 1910 40.5 5103 42 97.692 1330 750924 1875 40.5 5103 42 97.692 1330 750926 1893 40.5 5103 42 97.692 1330 750926 1742 40.5 5103 32 97.692 1330 750928 1514 40.5 5103 38.5 89.551 1671 750929 1715 40.5 5103 40.5 94.203 1489 751002 1822 40.5 5103 41.5 96.529 1344 751004 1883 40.5 5103 41.5 96.529 1344 751005 1884 40.5 5103 41.5 96.529 1344 751006 1867 40.5 5103 41.5 96.529 1344 751006 1867 40.5 5103 41.5 96.529 1289 751010 1867 40.5 5103	750922	1910	40.5	5103	42	97.692	1330
750924 1910 40.5 5103 42 97.692 1330 750925 1875 40.5 5103 42 97.692 1330 750926 1893 40.5 5103 42 97.692 1330 750927 1742 40.5 5103 35.5 81.41 1871 750928 1514 40.5 5103 39.5 97.692 1378 750929 1525 40.5 5103 40.5 94.203 1489 751001 1822 40.5 5103 41.5 96.529 1344 751004 1883 40.5 5103 41.5 96.529 1344 751006 1867 40.5 5103 41.5 96.529 1333 751008 1867 40.5 5103 41.5 96.529 1289 751010 1867 40.5 5103 41.5 96.529 1289 751010 1867 40.5 5103	750923	1910	40.5	5103	42	97.692	1330
750925 1875 40.5 5103 42 97.692 1330 750926 1893 40.5 5103 42 97.692 1330 750927 1742 40.5 5103 32.5 89.551 1671 750929 1525 40.5 5103 39.5 91.877 1582 751001 1820 40.5 5103 41.5 96.529 1378 751002 1822 40.5 5103 41.5 96.529 1344 751004 1883 40.5 5103 41.5 96.529 1344 751005 1884 40.5 5103 41.5 96.529 1344 751006 1867 40.5 5103 41.5 96.529 1289 751010 1867 40.5 5103 41.5 96.529 1289 751010 1867 40.5 5103 41.5 96.529 1289 751011 1867 40.5 5103	750924	1910	40.5	5103	42	97.692	1330
7.50226 1893 40.5 5103 42 97.692 1330 750928 1514 40.5 5103 325 89.551 1671 750929 1755 40.5 5103 39.5 91.877 1562 750001 1820 40.5 5103 40.5 98.8551 1344 751002 1822 40.5 5103 41.5 96.529 1344 751002 1884 40.5 5103 41.5 96.529 1344 751006 1867 40.5 5103 41.5 96.529 1344 751006 1867 40.5 5103 41.5 96.529 1344 751007 1822 40.5 5103 41.5 96.529 1289 751010 1867 40.5 5103 41.5 96.529 1289 751011 1867 40.5 5103 41.5 96.529 1289 751011 1867 40.5 5103	750925	1875	40.5	5103	42	97.692	1330
75092/ 1142 40.5 5103 42 97.992 1330 750928 1525 40.5 5103 38.5 89.551 1671 750929 1525 40.5 5103 30.5 91.877 1582 751001 1820 40.5 5103 40.5 94.203 1489 751002 1822 40.5 5103 41.5 96.529 1344 751004 1893 40.5 5103 41.5 96.529 1344 751005 1884 40.5 5103 41.5 96.529 1344 751006 1867 40.5 5103 41.5 96.529 1289 751010 1867 40.5 5103 41.5 96.529 1289 751011 1867 40.5 5103 41.5 96.529 1289 751011 1867 40.5 5103 41.5 96.529 1289 751012 1887 40.5 5103	750926	1893	40.5	5103	42	97.692	1330
750220 1514 40.5 5103 35.5 81.41 1671 750929 1525 40.5 5103 39.5 91.877 1582 751001 1820 40.5 5103 40.5 94.203 1489 751002 1822 40.5 5103 41.5 96.529 1378 751003 1867 40 5040 42.5 98.855 1344 751005 1884 40.5 5103 41.5 96.529 1344 751006 1867 40.5 5103 41.5 96.529 1344 751007 1822 40.5 5103 41.5 96.529 1289 751010 1867 40.5 5103 41.5 96.529 1289 751011 1867 40.5 5103 41.5 96.529 1289 751011 1867 40.5 5103 41.5 96.529 1289 751011 1867 40.5 5103	750927	1742	40.5	5103	42	97.692	1330
7.05.2 7.0.5 7.0.5 7.0.3 30.3 95.301 10.1 751001 1822 40.5 5103 40.5 94.203 1489 751002 1822 40.5 5103 41.5 96.529 1378 751004 1893 40.5 5103 41.5 96.529 1344 751006 1867 40.5 5103 41.5 96.529 1344 751006 1867 40.5 5103 41.5 96.529 1333 751009 1867 40.5 5103 41.5 96.529 1289 751011 1867 40.5 5103 41.5 96.529 1289 751011 1867 40.5 5103 41.5 96.529 1289 751012 1867 40.5 5103 41.5 96.529 1289 751012 1867 40.5 5103 41.5 96.529 1289 751015 1838 40.5 5103	750928	1514	40.5	5103	38.5	01.41 89.551	1671
751001182040.5510340.594.2031489751002182240.5510341.596.5291378751003186740504042.598.8551344751004189340.5510341.596.5291344751005188440.5510341.596.5291344751006186740.5510341.596.5291344751007182240.5510341.596.5291344751008184240.5510341.596.5291289751010186740.5510341.596.5291289751011186740.5510341.596.5291289751012186740.5510341.596.5291289751013184440.5510341.596.5291289751014183340.5510341.596.5291289751015183840.5510341.596.5291277751016184440.5510341.596.5291277751016184440.551034297.692122675102182240.551034297.692122275102182240.5510341.596.529121275102182240.5510341.596.529121275102185540.5510341.5	750930	1715	40.5	5103	39.5	91,877	1582
751002 1822 40.5 5103 41.5 96.529 1378 751003 1867 40 5040 42.5 98.855 1344 751005 1884 40.5 5103 41.5 96.529 1344 751006 1867 40.5 5103 41.5 96.529 1344 751006 1867 40.5 5103 41.5 96.529 1344 751008 1842 40.5 5103 41.5 96.529 1289 751010 1867 40.5 5103 41.5 96.529 1289 751011 1867 40.5 5103 41.5 96.529 1289 751012 1867 40.5 5103 41.5 96.529 1289 751013 1844 40.5 5103 41.5 96.529 1289 751014 1833 40.5 5103 41.5 96.529 1267 751015 1838 40.5 5103	751001	1820	40.5	5103	40.5	94.203	1489
751003 1867 40 5040 42.5 98.855 1344 751004 1883 40.5 5103 41.5 96.529 1344 751006 1867 40.5 5103 41.5 96.529 1344 751007 1822 40.5 5103 41.5 96.529 1344 751000 1867 40.5 5103 41.5 96.529 1289 751010 1867 40.5 5103 41.5 96.529 1289 751011 1867 40.5 5103 41.5 96.529 1289 751012 1867 40.5 5103 41.5 96.529 1289 751013 1844 40.5 5103 41.5 96.529 1289 751015 1838 40.5 5103 41.5 96.529 1289 751016 1844 40.5 5103 41.2 97.692 1226 751017 1844 40.5 5103 42 97.692 1226 751021 1822 40.5 5	751002	1822	40.5	5103	41.5	96.529	1378
751004 1893 40.5 5103 41.5 96.529 1344 751005 1887 40.5 5103 41.5 96.529 1344 751006 1867 40.5 5103 41.5 96.529 1333 751008 1842 40.5 5103 41.5 96.529 1289 751001 1867 40.5 5103 41.5 96.529 1289 751011 1867 40.5 5103 41.5 96.529 1289 751012 1867 40.5 5103 41.5 96.529 1289 751012 1867 40.5 5103 41.5 96.529 1289 751013 1844 40.5 5103 41.5 96.529 1289 751014 1833 40.5 5103 41.5 96.529 1277 751016 1844 40.5 5103 42 97.692 1226 751017 1844 40.5 5103 42 97.692 1212 751021 1822 40.5 5	751003	1867	40	5040	42.5	98.855	1344
751005 1884 40.5 5103 41.5 96.529 1344 751006 1867 40.5 5103 41.5 96.529 1333 751009 1842 40.5 5103 41.5 96.529 1289 751010 1867 40.5 5103 41.5 96.529 1289 751010 1867 40.5 5103 41.5 96.529 1289 751011 1867 40.5 5103 41.5 96.529 1289 751012 1867 40.5 5103 41.5 96.529 1289 751012 1884 40.5 5103 41.5 96.529 1289 751014 1833 40.5 5103 41.5 96.529 1277 751015 1884 40.5 5103 41.5 96.529 1277 751016 1844 40.5 5103 42 97.692 1226 751017 1844 40.5 5103 42 97.692 1212 751021 1822 40.5 5	751004	1893	40.5	5103	41.5	96.529	1344
751006 1867 40.5 5103 41.5 96.529 1344 751007 1822 40.5 5103 41.5 96.529 1383 751009 1867 40.5 5103 41.5 96.529 1289 751010 1867 40.5 5103 41.5 96.529 1289 751011 1867 40.5 5103 41.5 96.529 1289 751012 1867 40.5 5103 41.5 96.529 1289 751013 1844 40.5 5103 41.5 96.529 1289 751015 1838 40.5 5103 41.5 96.529 1289 751015 1834 40.5 5103 41.5 96.529 1277 751016 1844 40.5 5103 42 97.692 1233 751017 1844 40.5 5103 42 97.692 1212 751020 1822 40.5 5103 41.5 96.529 1212 751021 1822 40.5 5	751005	1884	40.5	5103	41.5	96.529	1344
rs 1007 1822 40.5 5103 41.5 96.529 1333 751008 1842 40.5 5103 41.5 96.529 1289 751010 1867 40.5 5103 41.5 96.529 1289 751011 1867 40.5 5103 41.5 96.529 1289 751012 1867 40.5 5103 41.5 96.529 1289 751012 1867 40.5 5103 41.5 96.529 1289 751013 1844 40.5 5103 41.5 96.529 1267 751016 1844 40.5 5103 42 97.692 1226 751017 1844 40.5 5103 42 97.692 1212 751020 1822 40.5 5103 42 97.692 1212 751021 1822 40.5 5103 41.5 96.529 1212 751020 1822 40.5 5103	751006	1867	40.5	5103	41.5	96.529	1344
751000 1867 40.5 5103 41.5 96.529 1289 751010 1867 40.5 5103 41.5 96.529 1289 751011 1867 40.5 5103 41.5 96.529 1289 751012 1867 40.5 5103 41.5 96.529 1289 751012 1867 40.5 5103 41.5 96.529 1289 751013 1844 40.5 5103 41.5 96.529 1289 751014 1833 40.5 5103 41.5 96.529 1287 751015 1834 40.5 5103 42 97.692 1233 751016 1844 40.5 5103 42 97.692 1226 751017 1844 40.5 5103 42 97.692 1212 751020 1822 40.5 5103 42 97.692 1212 751021 1822 40.5 5103 41.5 96.529 1212 751022 1830 40.5 5103<	751007	1822	40.5	5103	41.5	96.529	1344
15103 1607 40.5 5103 41.5 96.529 1289 751010 1867 40.5 5103 41.5 96.529 1289 751012 1867 40.5 5103 41.5 96.529 1289 751012 1867 40.5 5103 41.5 96.529 1289 751014 1833 40.5 5103 41 95.366 1289 751015 1838 40.5 5103 41.5 96.529 1277 751016 1844 40.5 5103 42 97.692 1233 751018 1844 40.5 5103 42 97.692 1212 751020 1822 40.5 5103 42 97.692 1212 751021 1822 40.5 5103 41.5 96.529 1212 751021 1822 40.5 5103 41.5 96.529 1212 751021 1822 40.5 5103 41.5 96.529 1212 751022 1855 40.5 5103 </td <td>751000</td> <td>1042</td> <td>40.5</td> <td>5103</td> <td>41.5</td> <td>96.529</td> <td>1333</td>	751000	1042	40.5	5103	41.5	96.529	1333
75101 1867 40.5 5103 41.5 96.529 1289 751012 1867 40.5 5103 41.5 96.529 1289 751013 1844 40.5 5103 41.5 96.529 1289 751014 1833 40.5 5103 41.5 96.529 1277 751015 1838 40.5 5103 41.5 96.529 1267 751016 1844 40.5 5103 42 97.692 1226 751017 1844 40.5 5103 42 97.692 1226 751020 1822 40.5 5103 42 97.692 1212 751021 1822 40.5 5103 41.5 96.529 1212 751023 1840 40.5 5103 41.5 96.529 1212 751024 1866 40.5 5103 41.5 96.529 1212 751026 1855 40.5 5103	751009	1867	40.5	5103	41.5	96 529	1209
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	751010	1867	40.5	5103	41.5	96.529	1289
751013 1844 40.5 5103 41.5 96.529 1289 751014 1833 40.5 5103 41.5 96.529 1277 751016 1844 40.5 5103 41.5 96.529 1267 751016 1844 40.5 5103 42 97.692 1223 751018 1844 40.5 5103 42 97.692 1226 751020 1822 40.5 5103 42 97.692 1212 751021 1822 40.5 5103 42 97.692 1212 751021 1822 40.5 5103 42 97.692 1212 751021 1822 40.5 5103 41.5 96.529 1212 751023 1840 40.5 5103 41.5 96.529 1212 751025 1855 40.5 5103 41.5 96.529 1212 751026 1855 40.5 5103 41.5 96.529 1212 751028 1855 40.5 5103 <td>751012</td> <td>1867</td> <td>40.5</td> <td>5103</td> <td>41.5</td> <td>96.529</td> <td>1289</td>	751012	1867	40.5	5103	41.5	96.529	1289
751014 1833 40.5 5103 41. 95.366 1289 751015 1838 40.5 5103 41.5 96.529 1277 751016 1844 40.5 5103 41.5 96.529 1233 751017 1844 40.5 5103 42 97.692 1223 751018 1844 40.5 5103 42 97.692 1212 751020 1822 40.5 5103 42 97.692 1212 751021 1820 40.5 5103 42 97.692 1212 751022 1830 40.5 5103 41.5 96.529 1212 751023 1840 40.5 5103 41.5 96.529 1212 751026 1855 40.5 5103 41.5 96.529 1212 751027 1855 40.5 5103 41.5 96.529 1212 751028 1855 40.5 5103 41.5 96.529 1212 751030 1850 40.5 5103 </td <td>751013</td> <td>1844</td> <td>40.5</td> <td>5103</td> <td>41.5</td> <td>96.529</td> <td>1289</td>	751013	1844	40.5	5103	41.5	96.529	1289
751015 1838 40.5 5103 41.5 96.529 1277 751016 1844 40.5 5103 41.5 96.529 1267 751017 1844 40.5 5103 42 97.692 1223 751017 1844 40.5 5103 42 97.692 1226 751019 1822 40.5 5103 42 97.692 1212 751021 1822 40.5 5103 42 97.692 1212 751021 1830 40.5 5103 42 97.692 1212 751023 1840 40.5 5103 41.5 96.529 1212 751024 1866 40.5 5103 41.5 96.529 1212 751026 1855 40.5 5103 41.5 96.529 1212 751027 1855 40.5 5103 41.5 96.529 1212 751028 1855 40.5 5103 41.5 96.529 1212 751030 1850 40.5 5103 <td>751014</td> <td>1833</td> <td>40.5</td> <td>5103</td> <td>41</td> <td>95.366</td> <td>1289</td>	751014	1833	40.5	5103	41	95.366	1289
751016 1844 40.5 5103 41.5 96.529 1267 751017 1844 40.5 5103 42 97.692 1233 751018 1844 40.5 5103 42 97.692 1226 751019 1822 40.5 5103 42 97.692 1212 751020 1822 40.5 5103 42 97.692 1212 751021 1822 40.5 5103 42 97.692 1212 751023 1840 40.5 5103 41.5 96.529 1212 751024 1856 40.5 5103 41.5 96.529 1212 751027 1855 40.5 5103 41.5 96.529 1212 751028 1855 40.5 5103 41.5 96.529 1212 751028 1855 40.5 5103 41.5 96.529 1212 751031 1858 41 5166 41 95.366 1212 751030 0 44 5544	751015	1838	40.5	5103	41.5	96.529	1277
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	751016	1844	40.5	5103	41.5	96.529	1267
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	751017	1844	40.5	5103	42	97.692	1233
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	751010	1822	40.5	5103	42	97.092	1220
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	751019	1822	40.5	5103	42	97.692	1220
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	751021	1822	40.5	5103	42	97.692	1212
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	751022	1830	40.5	5103	42	97.692	1212
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	751023	1840	40.5	5103	41.5	96.529	1212
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	751024	1866	40.5	5103	41.5	96.529	1212
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	751025	1855	40.5	5103	41.5	96.529	1212
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	751026	1855	40.5	5103	41.5	96.529	1212
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	751027	1000	40.5	5103	41.5 41.5	90.529	1212
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	751020	1855	40.5	5103	41.5	96.529	1212
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	751030	1850	40.5	5103	41	95,366	1212
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	751031	1858	41	5166	41	95.366	1212
SHUTDOWN FOR CORE SUPPORT PLATE HOLE PLUGGING 751130 0 44 5544 38.25 88.9695 > 4500 751201 1278 44 5544 38.25 88.9695 1536 751202 1778 44 5544 38.25 88.9695 1536 751203 1944 46.5 5859 36.5 84.899 1214 751204 2322 60 7560 34.6 80.4796 n/a 751205 2673 77 9702 32.7 76.0602 n/a 751207 2167 65.5 8253 28.9 67.2214 n/a 751208 2433 81 10206 27 62.802 1158 751210 2940 103 12978 23 53.498 1158 751211 2711 108.5 5449.5 33 76.758 >4500 751212 0 43.25 5449.5 33 76.758 >4500	751101	0	41	5166	41	95.366	> 4500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SHUTDOW	N FOR CO	RE SUPPO	RT PLATE H	OLE PLUGGI	NG
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	751201	U 1279	44 44	5544 5544	38.25	88 0605	> 4500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	751201	1778	41 75	5260 5	40	93 04	1336
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	751203	1944	46.5	5859	36.5	84.899	1214
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	751204	2322	60	7560	34.6	80.4796	n/a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	751205	2673	77	9702	32.7	76.0602	n/a
751207 2167 65.5 8253 28.9 67.2214 n/a 751208 2433 81 10206 27 62.802 1158 751209 2860 90 11340 25.75 59.8945 1158 751210 2940 103 12978 23 53.498 1158 751211 2711 108.5 13671 22.5 52.335 1158 751212 0 43.25 5449.5 23 76.758 > 4500 751215 900 43.25 5449.5 33 76.758 > 4500 751216 1700 43.25 5449.5 33 76.758 > 4500 751216 1700 43.25 5449.5 33 76.758 1804 751216 1700 44 5544 36 83.736 1325 751217 2022 42.5 5355 41 95.366 1024 751218 2467 61.75 7780.5 <td>751206</td> <td>2711</td> <td>78</td> <td>9828</td> <td>30.8</td> <td>71.6408</td> <td>n/a</td>	751206	2711	78	9828	30.8	71.6408	n/a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	751207	2167	65.5	8253	28.9	67.2214	n/a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/51208	2433	81	10206	27	62.802	1158
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	751209	2860	90 102	11340	25.75	59.8945 53.400	1158
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	751210	2340	108 5	13671	22 5	52 335	1158
751214 0 43.25 5449.5 33 76.758 >4500 751215 900 43.25 5449.5 33 76.758 >4500 751215 900 43.25 5449.5 33 76.758 1804 751216 1700 44 5544 36 83.736 1325 751217 2022 42.5 5355 41 95.366 1024 751218 2467 61.75 7780.5 33.5 77.921 908 751219 2789 69 8694 31.75 73.8505 908 751220 3089 85 10710 27.25 63.3825 908	751212	0	43.25	5449.5	22.5	52.335	> 4500
751215 900 43.25 5449.5 33 76.758 1804 751216 1700 44 5544 36 83.736 1325 751217 2022 42.5 5355 41 95.366 1024 751218 2467 61.75 7780.5 33.5 77.921 908 751219 2789 69 8694 31.75 73.8505 908 751220 3089 85 10710 27.25 63.3835 908	751214	Ő	43.25	5449.5	33	76.758	> 4500
751216 1700 44 5544 36 83.736 1325 751217 2022 42.5 5355 41 95.366 1024 751218 2467 61.75 7780.5 33.5 77.921 908 751219 2789 69 8694 31.75 73.8505 908 751220 3089 85 10710 27.25 63.3825 908	751215	900	43.25	5449.5	33	76.758	1804
751217 2022 42.5 5355 41 95.366 1024 751218 2467 61.75 7780.5 33.5 77.921 908 751219 2789 69 8694 31.75 73.8505 908 751220 3089 85 10710 27.25 63.3825 908	751216	1700	44	5544	36	83.736	1325
/51218 2467 61.75 7780.5 33.5 77.921 908 751219 2789 69 8694 31.75 73.8505 908 751220 3089 85 10710 27.25 63.3825 908	751217	2022	42.5	5355	41	95.366	1024
751219 2789 09 8694 31.75 73.8505 908 751220 3089 85 10710 27.25 63.3835 008	/51218	2467	61.75	7780.5	33.5	77.921	908
	751219	2789	69 85	8094 10710	31.75 27.25	73.8505	908 908

date	Power	Flow (w)	Flow (w)	subcooling	subcooling	# of notches
	MWt	Mlb/hr	kg/s	Btu/lb	kJ/kg	inserted
751221	3256	105.5	13293	23.75	55.2425	908
751222	3278	105	13230	23.75	55.2425	908
751223	3284	108	13608	22.25	51.7535	908
751224	3293	107	5950	22	90 551	11/a
751225	3067	40.5	5059	30.5	09.551	> 4500
751220	200	40.5	5059	30.5	09.001	24500
751227	2450	40.5	56262	30.5	80.331	1012
751220	2430	30.5	5607	34.5	88 388	846
751229	2456	54.25	6835.5	37	86.062	835
751230	2430	75.5	0655.5	30.5	70.043	835
760101	2170	07	12222	24	55 824	796
760102	3245	105 75	13324 5	22.25	51 7535	796
760102	3232	106.75	13419	22.20	51 172	796
760104	3223	107	13482	22	51 172	796
760105	3210	107.5	13545	22	51 172	796
760106	3187	107	13482	22	51 172	796
760107	3176	107.5	13545	22	51 172	796
760108	0	42	5292	29.25	68.0355	> 4500
760109	1114	42	5292	29.25	68.0355	2331
760110	1895	45.25	5701.5	36.5	84.899	867
760111	2351	54.25	6835.5	34.5	80.247	712
760112	2786	68.67	8652.42	31.3	72.8038	n/a
760113	3165	83.1	10470.6	28.2	65.5932	n/a
760114	3293	97.5	12285	25	58.15	611
760115	3293	99.5	12537	24.75	57.5685	611
760116	3288	101	12726	24.5	56.987	611
760117	3221	103	12978	24	55.824	611
760118	1137	40.5	5103	20.75	48.2645	2436
760119	2340	48.75	6142.5	40.5	94.203	611
760120	2842	66	8316	34.5	80.247	611
760121	3221	91.5	11529	27.5	63.965	611
760122	3287	103.5	13041	25.5	59.313	611
760123	3272	105	13230	22.75	52.9165	611
760124	3259	103.75	13072.5	22.25	51.7535	611
760125	3259	107	13482	22	51.172	611
760126	3276	107	13482	22	51.172	611
760127	3254	107	13482	22	51.172	611
760128	3243	107	13482	22	51.172	611
760129	3225	107	13482	22	51.172	611
760130	3221	106	13356	22	51.172	611
760131	3216	107	13482	22	51.172	611
760201	3212	106.5	13419	22.5	52.335	611
760202	3208	106.75	13450.5	22.5	52.335	611
760203	3195	107	13482	22.5	52.335	611
760204	3189	107	13482	22	51.172	611
760205	3178	107 25	13482	22.5	52.335	611
760200	29/0	107.25	5220	22.5	52.335 74.422	011
760207	1900	41.5	5124 5	32	102 244	500
760200	2220	40.75	6400	44 39 E	80 551	404
760209	1067	40.75	0409 5134 5	42.5	09.001	494 567
760210	2524	56 75	7150 5	36.25	84 3175	404
760212	2822	71.5	9009	30.5	70.943	494
760213	3156	89.25	11245 5	25 25	58 7315	494
760214	2822	107	13482	23	53,498	494
760215	3011	88.5	11151	26	60.476	510
760216	3238	106 75	13450.5	22.5	52,335	510
760217	3222	107	13482	22.5	52,335	510
760218	3187	107	13482	22.5	52,335	510
760219	3169	107	13482	22.5	52.335	510
760220	3153	107	13482	22	51.172	510
760221	2000	67	8442	25.5	59.313	811
760222	2233	42	5292	50	116.3	400
760223	2556	56	7056	44	102.344	400
760224	2878	63.75	8032.5	37.75	87.8065	400
760225	3207	91.25	11497.5	32	74.432	400
760226	3273	99.25	12505.5	30	69.78	400
760227	3293	100.5	12663	29.5	68.617	400
760228	3264	101.5	12789	28.75	66.8725	400
760229	3256	102.5	12915	28.5	66.291	400
760301	3267	102.5	12915	28.5	66.291	n/a
760302	3260	102.5	12915	28.5	66.291	n/a
760303	3270	102.5	12915	28.5	66.291	n/a
760304	3258	102.5	12915	28.5	66.291	n/a

date	Power	Flow (w)	Flow (w)	subcooling	subcooling	# of notches
	MWt	Mlb/hr	kg/s	Btu/lb	kJ/kg	inserted
760305	3210	102.5	12915	28.5	66.291	n/a
760306	2860	80.5	10143	31.5	72 6875	400
760308	3205	98.5	12411	28.25	65.7095	400
760309	3260	107.25	13513.5	26.25	61.0575	400
760310	3249	107.25	13513.5	26.5	61.639	400
760311	3230	106.5	13419	26.5	61.639	400
760313	3194	107.25	13513.5	26.5	61.639	400
760314	3187	107.25	13513.5	26.5	61.639	400
760315	3171	107.25	13513.5	26.5	61.639	400
760316	3171	107.25	13513.5	26.5	61.639 61.0575	400
760318	3142	107.25	13513.5	26	60.476	400
760319	3127	107	13482	25.5	59.313	400
760320	3111	108	13608	25.5	59.313	400
760321	3105 3100	108 108	13608 13608	25.25 25	58.7315 58.15	400
760322	3086	108	13608	24.75	57.5685	400
760324	3082	108	13608	24.75	57.5685	400
760325	3071	108	13608	24.75	57.5685	400
760326	3001	108	13608	24.75	57.5685	400
760327	SHUTDO	WN FOR R	EFUELING	24.75 BETWEEN C	YCLE 1 AND	> 4500 2
760623	0	44.75	5638.5	31	72.106	> 4500
760624	604	44.75	5638.5	31	72.106	> 4500
760625	2127	44.75 51.5	5038.5 6489	36.5	72.106	1889
760627	2411	71	8946	28.75	66.8725	1432
760628	2633	85	10710	25.25	58.7315	1432
760629	1878	89.5	11277	24	55.824	1432
760630	0	44.75 43	5638.5 5418	24	55.824 61.639	> 4500 > 4500
760702	1222	43	5418	26.5	61.639	2667
760704	2022	57.25	7213.5	30.5	70.943	1533
760705	2598	69	8694	30.5	70.943	1333
760706	2878	96.5 104	12159 13104	24.5	56.987 51 7535	1333
760708	3089	104	13482	22.25	48.846	1333
760709	2978	107	13482	21.75	50.5905	1333
760710	2311	54.25	6835.5	35	81.41	1211
760711	2522	61.25	//1/.5	33.75	78.5025 66.201	1200
760712	3211	93.25	9922.5 11749.5	25.75	59.8945	1200
760714	3289	101.5	12789	24	55.824	1200
760715	3289	102.5	12915	24	55.824	1200
760716	3289	103.5	13041	23.5	54.661	1200
760718	3211	104	12978	24 24	55.824	1200
760719	3256	101	12726	24	55.824	1200
760720	3291	103.5	13041	23.5	54.661	1200
/60721	3278	103.5	13041	23.5	54.661	1200
760722	3293	105.25	13201.5	23.5	54.661	1200
760724	3293	104.5	13167	23.5	54.661	1200
760725	3293	105.5	13293	23.5	54.661	1200
760726	3293	105.5	13293	24	55.824	1200
760728	3∠93 3293	105.75	13324.5	24 24	55.824 55.824	1200
760729	3293	106.5	13419	24	55.824	1200
760730	3293	106.5	13419	24	55.824	1200
760731	3293	107	13482	24	55.824	1200
760802	3293 3293	107	13482	22	51.172 53.498	1200
760803	3293	107	13482	22.5	52.335	1200
760804	3293	107	13482	22	51.172	1200
760805	1633	107.5	13545	22	51.172	1200
760807	1211	42.25	5323.5 5491	28	05.128 01.877	1844 1277
760808	2411	60	7560	33	76.758	1133
760809	1589	65.75	8284.5	32	74.432	1067
760810	1689	43	5418	31.5	73.269	1644
760811	2200	4/ 67.5	5922 8505	39.5	91.877 72 106	1111
760813	2910	77.75	9796.5	28.5	66.291	1067

date	Power	Flow (w)	Flow (w)	subcooling	subcooling	# of notches
	MWt	Mlb/hr	kg/s	Btu/lb	kJ/kg	inserted
760814	3153	93.5	11781	24.25	56.4055	1100
760815	3278	101	12726	23	53.498	1133
760816	3145	105	13230	22.25	51.7535	1178
760817	3145	96.5	12159	24	55.824	1178
760818	982	42.25	5323.5	24	55.824	> 4500
760819	0	42.25	5323.5	24	55.824	> 4500
760820	400	42.25	5323.5	28.5	66.291	2333
760821	1493	43	5418	35	81.41	1756
760822	1933	51.5	6489	37.75	87.8065	1544
760823	2522	70.25	8851.5	38.75	90.1325	1300
760824	0	42.25	5323.5	24	55.824	> 4500
760826	0	42.5	5355	27.5	63.965	> 4500
760827	1000	42.5	5355	27.5	63.965	2388
760828	2200	53	6678	41.75	97.1105	1356
760829	2744	72.25	9103.5	38.25	88.9695	1306
760830	3044	83.5	10521	28	65.128	1178
760831	3100	99.5	12537	24	55.824	1230
760901	3270	104	13104	23.5	54.661	1230
760902	3280	104	13104	23.5	54.661	1230
760903	3280	105	13230	23.5	54.661	1230
760904	3270	105	13230	23.5	54.661	1230
760905	3238	105	13230	23.5	54.661	1230
760906	3280	106	13356	23.5	54.661	1230
760907	3240	106.25	13387.5	23.5	54.661	1230
760908	3240	106.25	13387.5	23.5	54.661	1230
760909	3280	106.5	13419	23.5	54.661	1230
760910	3225	106.5	13419	23.5	54.661	1230
760911	3268	106.5	13419	23.5	54.661	1230
760912	3230	106.5	13419	23.5	54.661	1230
760913	3248	106.5	13419	23.5	54.661	1230
760914	3225	106.5	13419	23.5	54.661	1230
760915	3270	105.5	13293	23.5	54.661	1230
760916	3252	106.5	13419	23.5	54.661	1230
760917	3252	106.5	13419	23.5	54.661	1230
760918	3252	106.5	13419	23.5	54.661	1230
760919	3252	106.5	13419	23.5	54.661	1230
760920	3252	106.5	13419	23.5	54.661	1230
760921	2995	106.5	13419	23.5	54 661	1230
760922	3036	93	11718	24	55 824	1230
760923	3267	106	13356	23.5	54 661	1230
760924	2122	106	13356	23.5	54 661	1230
760925	0	42.25	5323.5	23.5	54 661	> 4500
760926	1271	42.25	5323.5	29.25	68 0355	2071
760927	2233	53.25	6709.5	35.5	82 573	1325
760928	2611	62	7812	34	79 084	11020
760020	2011	81.5	10260	20	67 454	1108
760930	2467	50.25	6331 5	35	81 41	1198
761001	2907	73	0108	30.8	71 6408	1190
761001	3200	01	11466	26	60 476	1102
761002	3279	90 75	12569 5	24.5	56 097	1109
761003	3220	08.75	12370 F	24.0	56 007	1100
761004	3279	100	12600	24.5	56 097	1100
761000	3200	101 5	12700	24.0	56 007	1100
761000	3200	101.5	12790	24.0 24.5	56 097	1100
761007	3200	101.5	12700	24.0 24.5	56 007	1100
761000	1200	101.5	5372 5	24.0	98 0605	1190
761010	1607	42.20	5260 5	30.23	00.9090	1190
761010	2011	41.75	520U.5	30	03./30	1009
761011	2011	40	00/0	30.5	09.551	1193
701012	2322	52.5	0015	3/	80.062	100
761013	2033	00.5	10205	31.5	13.269	10/7
701014	2967	82.5 02.5	10395	29.25	08.0355	1056
/61015	3252	93.5	11/81	26.5	61.639	1044
/61016	3298	68.25	8599.5	26.5	61.639	n/a
/6101/	2/6/	43	5418	26.5	61.639	> 4500
/61018	163	43	5418	26.5	61.639	> 4500
761019	933	43	5418	29.75	69.1985	2348
761020	1951	47	5922	37.75	87.8065	1178
761021	2436	57.25	7213.5	35	81.41	1078
761022	2789	68.5	8631	32	74.432	1056
761023	3133	87.5	11025	27.75	64.5465	1032
761024	3289	97.75	12316.5	25.75	59.8945	1032
761025	3293	97.75	12316.5	25.75	59.8945	1032
761026	3293	100.5	12663	24.75	57.5685	1032
761027	3293	100.5	12663	24.75	57.5685	1032
761028	3293	100.5	12663	24.75	57.5685	1032

HWY MUD/IF EQU EXU/R ISP/Ed 761029 3293 100.5 12663 247.5 57.5685 1032 761030 3289 100.25 12631.5 247.5 57.5685 1032 761101 3270 99.5 12537 247.5 57.5685 1032 761103 3270 99.5 12537 247.5 57.5685 1032 761104 3260 99.5 12537 24.75 57.5685 1032 761106 3238 101 12726 24.75 57.5685 1032 761109 3285 102.5 12915 24.5 56.4055 1032 761110 3285 102.5 12883.5 23.5 54.661 1032 761112 3293 102.25 12883.5 23.5 54.661 1032 761112 3293 102.25 12883.5 23.5 54.661 1032 761112 102.4 1288.5 13.25	date	Power	Flow (w)	Flow (w)	subcooling	subcooling	# of notches
10103 2243 101 1226 247,5 57.5685 1032 76103 3289 100.5 12633 247,5 57.5685 1032 761101 3270 99.5 12537 247,5 57.5685 1032 761102 3270 99.5 12537 247,5 57.5685 1032 761104 3260 99.5 12537 247,5 57.5685 1032 761106 3238 101 12726 247,5 57.5685 1032 761108 3240 99.5 12537 247,5 57.5685 1032 761110 3263 10.2 12833 24,5 57.5685 1032 761111 3263 10.2 1283,5 24,5 56.4055 1032 761111 3263 10.2 1283,5 24,5 56.4051 1032 761112 334 382,5 4819,5 13.25 30.8195 3322 761112 334 38	761000	MWt	MID/nr	Kg/S	Btu/Ib	KJ/Kg	Inserted
1.1.1.2 1.0.2.5 1.20.1.5 2.24 75 57.5685 1032 761101 3270 99.5 12537 24.75 57.5685 1032 761103 3270 99.5 12537 24.75 57.5685 1032 761104 3260 99.5 12537 24.75 57.5685 1032 761105 328 101 12726 24.75 57.5685 1032 761106 3280 100 12800 24.75 57.5685 1032 761108 3285 99.5 12537 24.75 57.5685 1032 761109 3285 102.5 12915 24.5 56.4055 1032 761111 3283 101.2 12833.5 24 55.824 1032 761113 3293 102.25 12833.5 24.55 64.661 1032 761113 0.51 17.93 102.5 1083.5 324 55.84 1032 761113 0.51	761029	3293 3293	101	12663	24.75 24.75	57 5685	1032
761101 3272 99.5 12537 24.75 57.5685 1032 761102 3270 99.5 12537 24.75 57.5685 1032 761104 3200 99.5 12537 24.75 57.5685 1032 761106 3238 101 12726 24.75 57.5685 1032 761106 3240 99.5 12537 24.75 57.5685 1032 761108 3240 99.5 12537 24.75 57.5685 1032 761110 3285 102.5 12915 24.5 56.4661 1032 761111 3293 102.25 12883.5 24 55.84 1032 761112 3233 102.25 12883.5 24.5 54.661 1032 761112 3233 102.25 1283.5 23.5 54.661 1032 761113 3243 38.25 4819.5 13.25 30.8195 >4500 761120 34.5	761031	3289	100.25	12631.5	24.75	57.5685	1032
761102 3270 99.5 12537 24.75 57.5685 1032 761104 3200 99.5 12537 24.75 57.5685 1032 761106 3238 101 12202 24.75 57.5685 1032 761107 3260 100 12200 24.75 57.5685 1032 761108 3244 99.5 12537 24.75 57.5685 1032 761110 3285 102.5 12815 24.5 56.087 1032 761111 3283 101.5 12789 24.25 56.4661 1032 761112 3293 102.25 1283.5 23.5 54.661 1032 761113 3293 102.25 1283.5 23.5 54.661 1032 761114 1586 4819.5 13.25 30.8195 >4500 761126 0 31.25 518.661 1032 76.768 1744 761126 2173 49.25	761101	3272	99.5	12537	24.75	57.5685	1032
761103 3270 99.5 12537 24.75 57.5685 1032 761106 3218 99.5 12537 24.75 57.5685 1032 761106 3228 100 12260 24.75 57.5685 1032 761107 3260 100 12600 24.75 57.5685 1032 761108 3240 99.5 12537 24.75 57.5685 1032 761110 3285 102.5 12915 24.45 56.807 1032 761111 3283 102.25 12883.5 23.5 54.661 1032 761112 2031 102.25 12883.5 23.5 54.661 1032 761125 0 38.25 4819.5 13.25 30.8195 >4500 761126 34 38.25 4819.5 13.25 30.8195 3322 761127 714.4 155 522.9 30.25 70.3615 1167 761120 2466	761102	3270	99.5	12537	24.75	57.5685	1032
/61104 3280 99.5 12537 24.75 57.5685 1032 761106 3238 101 12726 24.75 57.5685 1032 761107 3260 100 12600 24.75 57.5685 1032 761108 3240 99.5 12537 24.75 57.5685 1032 761109 3285 190.5 12517 24.75 57.5685 1032 761110 3285 102.5 12813.5 2.4 55.824 1032 761113 3293 102.25 12883.5 2.4 55.824 1032 761126 0 38.25 4819.5 13.25 30.8195 > 4500 761126 334 38.25 4819.5 13.25 30.8195 3322 761126 334 38.25 4819.5 13.25 30.8195 3322 761126 334 38.25 4819.5 13.25 30.8195 3424 761126 324	761103	3270	99.5	12537	24.75	57.5685	1032
761106 3216 99.3 1237 24.75 57.5885 1032 761107 3280 100 12260 24.75 57.5885 1032 761108 3240 99.5 12537 24.75 57.5885 1032 761110 3285 102.5 12817 24.75 57.5885 1032 761111 3285 102.25 12883.5 23.5 54.661 1032 761112 3293 102.25 12883.5 23.5 54.661 1032 761112 0 51 6426 23.5 54.661 1032 761126 0 38.25 4819.5 13.25 30.8195 >4500 761127 154.7 41.25 519.75 33 76.768 1764 761120 2466 59.5 7497 34.5 80.247 986 761204 30.82 95.5 1203 20.5 61.639 986 761204 3182 95.5	761104	3260	99.5	12537	24.75	57.5685	1032
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	761105	3238	99.5 101	12537	24.75	57 5685	1032
761108 3240 99.5 12537 24.75 57.5685 1032 761109 3285 190.5 12537 24.75 57.5685 1032 761110 3285 102.5 12915 24.5 56.867 1032 761111 3293 102.25 12883.5 23.5 54.661 1032 761114 1558 102.25 12883.5 23.5 54.661 1032 761115 0 51 642.5 23.5 54.661 > 4500 761126 0 38.25 4819.5 13.25 30.8195 > 4500 761128 1860 41.5 52.9 30.25 70.3615 1167 761120 2486 59.5 7497 34.5 80.247 986 761201 2486 76 9576 30.5 70.443 986 761202 316 87 10962 27.5 63.965 986 761202 288 62.225	761107	3260	100	12600	24.75	57.5685	1032
761100 3285 99.5 12537 24.75 57.5685 1032 761110 3285 102.5 12815 24.55 56.4055 1032 761112 3293 102.25 12883.5 23.5 54.661 1032 761114 1558 102.25 12883.5 23.5 54.661 1032 761112 0 38.25 4819.5 13.25 30.8195 >4500 761127 1547 41.15 5197.5 33 76.758 1744 761128 1660 41.5 5229 30.25 70.3615 1167 761120 2486 59.5 7497 34.5 80.247 986 761202 3182 95.5 12033 26.5 61.639 986 761202 327.8 80 10080 28 65.128 986 761203 3182 95.5 12233 26.5 31 72.106 986 761204 307.7	761108	3240	99.5	12537	24.75	57.5685	1032
761110 3285 102.5 12915 24.5 56.987 1032 761111 3283 102.25 12883.5 23.5 54.661 1032 761113 3293 102.25 12883.5 23.5 54.661 1032 761114 1568 102.25 12883.5 23.5 54.661 > 4500 761125 0 38.25 4819.5 13.25 30.8195 > 4500 761126 334 38.25 4819.5 13.25 30.8195 > 4500 761127 1547 41.25 5197.5 33 76.758 1744 761128 1860 41.5 522.9 30.25 70.3615 11167 761120 2868 76 9576 30.5 70.943 986 761201 2868 76 955 12033 26.5 61.639 986 761203 3182 95.5 12033 26.5 61.639 986 761204 3078 92.4 11642.4 27 62.802 986 761204 <td>761109</td> <td>3285</td> <td>99.5</td> <td>12537</td> <td>24.75</td> <td>57.5685</td> <td>1032</td>	761109	3285	99.5	12537	24.75	57.5685	1032
An1111 3203 101.5 12789 24.25 56.44055 1032 761112 3293 102.25 12883.5 23.5 54.661 1032 761114 1558 102.25 12883.5 23.5 54.661 >4500 761126 0 38.25 4819.5 13.25 30.8195 >4500 761126 334 38.25 4819.5 13.25 30.8195 >4500 761128 34 38.25 6205.5 39.5 91.877 986 761129 2173 49.25 6205.5 39.5 91.877 986 761201 2886 76 9576 30.5 70.943 986 761203 3182 95.5 7497 31 72.106 986 761204 2878 80 10080 28 65.128 986 761204 2873 59.5 7497 31 72.106 1011 761205 2878 80	761110	3285	102.5	12915	24.5	56.987	1032
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	761111	3263	101.5	12789	24.25	56.4055	1032
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	761112	3293	102.25	12883.5	23.5	55.824	1032
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	761114	1558	102.25	12883.5	23.5	54.661	1032
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	761115	0	51	6426	23.5	54.661	> 4500
761126 334 33.25 4819.5 13.25 30.8195 3322 761127 1547 41.25 5197.5 33 76.758 1744 761128 1860 41.5 5229 30.25 70.3615 1167 761120 2486 59.5 7497 34.5 80.247 986 761201 2858 76 95.5 12033 26.5 61.639 986 761203 3182 95.5 7497 31 72.106 986 761204 3078 92.4 11642.4 27 62.802 986 761204 3078 92.4 11642.4 27 62.802 986 761205 2878 80 100080 28 66.128 986 761206 2573 59.5 7497 31 72.106 986 761207 2268 52.25 658.35 37 86.062 986 761210 3287 100.5 12789 23.5 54.661 986 761211 3287 1	761125	0	38.25	4819.5	13.25	30.8195	> 4500
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	761126	334	38.25	4819.5	13.25	30.8195	3322
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	761127	1547	41.25	5197.5	30.25	70.758	1744
761130 2486 59.5 7497 34.5 80.247 986 761201 2858 76 9576 30.5 70.943 986 761202 3166 87 10962 27.5 63.965 986 761203 3182 95.5 12033 26.5 61.639 986 761205 2878 80 10080 28 66.128 986 761206 2873 59.5 7497 31 72.106 986 761206 2867 75 9450 31 72.106 986 761209 3256 97.5 12285 25 58.15 986 761210 3287 100.25 12631.5 24 55.824 986 761211 3229 100.5 12663 23.5 54.661 986 761213 3229 100.25 12215 23.5 54.661 986 761214 3278 101.5 12789 23.5 54.661 986 761215 3300 102.5 12215 23.5 54.661 986 761216 3280 101.5 12789 23.5 54.661 986 761213 3223 103.75 13041 23.5 54.661 986 761243 3233 103.51 13167 23.5 54.661 986 761224 3267 104.5 13167 23.5 54.661 986 761223 3293 <td< td=""><td>761120</td><td>2173</td><td>49.25</td><td>6205.5</td><td>39.5</td><td>91.877</td><td>986</td></td<>	761120	2173	49.25	6205.5	39.5	91.877	986
761201 2858 76 9576 30.5 70.943 986 761202 3156 87 10962 27.5 63.965 986 761203 3182 95.5 12033 26.5 61.639 986 761204 3078 92.4 11642.4 27 62.802 986 761205 2878 80 10080 28 65.128 986 761207 2268 52.25 6583.5 37 86.062 986 761203 3267 70.9 9450 31 72.106 10111 761210 3287 100.25 12631.5 24 55.824 986 761213 3291 100.5 12789 23.5 54.661 986 761213 3229 100.25 12631.5 23.5 54.661 986 761214 3278 101.5 12789 23.5 54.661 986 761213 3203 104.15 12789 23.5 54.661 986 761213 3213 96.75	761130	2486	59.5	7497	34.5	80.247	986
761202 3156 87 10962 27.5 63.965 986 761203 3182 95.5 12033 26.5 61.639 986 761204 3078 92.4 11642.4 27 62.802 986 761205 2878 80 10080 28 65.128 986 761206 2573 59.5 7497 31 72.106 986 761208 2967 75 9450 31 72.106 10111 761209 3256 97.5 12285 25 58.15 986 761213 3287 100.5 12789 23.5 54.661 986 761213 3229 100.5 12789 23.5 54.661 986 761214 3278 101.5 12789 23.5 54.661 986 761214 3280 101.5 12789 23.5 54.661 986 761217 3233 103.75 13072.5 23.5 54.661 986 761220 3293 103.5 130	761201	2858	76	9576	30.5	70.943	986
761203 3182 95.5 12033 26.5 61.639 986 761204 3078 92.4 11642.4 27 62.802 986 761205 2878 80 10080 28 65.128 986 761206 2573 59.5 7497 31 72.106 986 761208 2967 75 9450 31 72.106 1011 761209 3256 97.5 12285 25 58.15 986 761211 3287 100.25 12631.5 24 55.824 986 761213 3229 100.25 12663.5 23.5 54.661 986 761213 3229 100.25 12915 23.5 54.661 986 761213 3280 101.5 12789 23.5 54.661 986 761216 3280 101.5 12789 23.5 54.661 986 761218 3213 96.75 12190.5 23.5 54.661 986 761221 3293 103.5 <	761202	3156	87	10962	27.5	63.965	986
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	761203	3182	95.5	12033	26.5	61.639	986
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	761204	2878	92.4 80	1042.4	27	65 128	986
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	761205	2573	59.5	7497	31	72.106	986
761208 2967 75 9450 31 72.106 1011 761209 3256 97.5 12285 25 58.15 986 761210 3287 100.25 12631.5 24 55.824 986 761211 3289 100.25 12631.5 23.5 54.661 986 761213 3229 100.25 12631.5 23.5 54.661 986 761214 3280 101.5 12789 23.5 54.661 986 761216 3280 102.5 12915 23.5 54.661 986 761216 3280 103.75 13072.5 23.5 54.661 986 761218 3213 96.75 12190.5 23.5 54.661 986 761220 3293 103.5 13041 23.5 54.661 986 761221 3293 104.5 13167 23.5 54.661 986 761223 3293 104.5 13167 23.5 54.661 986 761224 3293 10	761207	2268	52.25	6583.5	37	86.062	986
761209 3256 97.5 12285 25 58.15 986 761210 3287 100.25 12631.5 24 55.824 986 761211 3287 100.5 12663 23.5 54.661 986 761213 3229 100.25 12631.5 23.5 54.661 986 761213 3229 100.25 12831.5 23.5 54.661 986 761213 3209 102.5 12915 23.5 54.661 986 761216 3280 101.5 12789 23.5 54.661 986 761217 3293 103.75 13072.5 23.5 54.661 986 761219 3253 101 12726 23.5 54.661 986 761220 3293 103.5 13041 23.5 54.661 986 761221 3278 104 13104 23.5 54.661 986 761223 3293 104.5 13167 23 53.498 986 761224 3267 104.5 13167 23 53.498 986 761225 3280 105 13230 23 53.498 986	761208	2967	75	9450	31	72.106	1011
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	761209	3256	97.5	12285	25	58.15	986
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	761210	3287	100.25	12631.5	24	55.824 54.661	986
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	761211	3267	101.5	12663	23.5	54 661	986
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	761213	3229	100.25	12631.5	23.5	54.661	986
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	761214	3278	101.5	12789	23.5	54.661	986
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	761215	3300	102.5	12915	23.5	54.661	986
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	761216	3280	101.5	12789	23.5	54.661	986
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	761217	3293	96 75	12190 5	23.5 23.5	54.001 54.661	986
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	761219	3253	101	12726	23.5	54.661	986
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	761220	3293	103.5	13041	23.5	54.661	986
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	761221	3278	104	13104	23.5	54.661	986
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	761222	3293	104	13104	23.5	54.661	986
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	761223	3293	104.5	13167	23.5	54.661 53.408	986
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	761224	3280	104.5	13230	23	53.498	986
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	761226	3293	106	13356	23	53.498	986
761228 3293 105 13230 23 53.498 986 761229 3273 106 13356 23.5 54.661 986 761230 3189 100.5 12663 23.5 54.661 986 761231 3207 99.75 12568.5 23.5 54.661 986 770101 3218 99.75 12568.5 23.5 54.661 986 770102 0 50 6300 23.5 54.661 986 770109 0 40.25 5071.5 28.75 66.8725 >4500 770110 702 40.25 5071.5 28.75 66.8725 3260 770110 702 40.25 5071.5 28.75 82.573 1422 770111 1738 43.5 5481 35.5 82.573 1422 770112 2028 43 5418 42.25 98.2735 1228 770114 2653 65.75	761227	3270	104.5	13167	23	53.498	986
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	761228	3293	105	13230	23	53.498	986
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	761229	3273	106	13356	23.5	54.661 54.661	986
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	761230	3207	99 75	12568.5	23.5 23.5	54,661	986
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	770101	3218	99.75	12568.5	23.5	54.661	986
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	770102	0	50	6300	23.5	54.661	> 4500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	770109	0	40.25	5071.5	28.75	66.8725	> 4500
770111 17.30 43.5 34.0 35.5 82.57.3 1422 770112 2028 43 5418 42.25 98.2735 1228 770113 2318 56.5 7119 34.5 80.247 1033 770114 2653 65.75 8284.5 33 76.758 978 770115 2988 76 9576 30.25 70.3615 948 770116 3244 94.5 11907 26 60.476 948 770118 3280 100 12600 24.5 56.987 1000 770119 3280 101.5 12789 24.5 56.987 948 770120 3280 101.75 12852 24.5 56.987 948 770121 3280 102 12852 24.5 56.987 948 770123 3280 102 12852 24.5 56.987 948 770123 3280 102.5 12915 24.5 56.987 948 770124 3256 103.5	770110	/02	40.25	50/1.5	28.75	66.8725	3260
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	770111	2028	43.5 43	5481 5418	35.5 42.25	o∠.5/3 98 2735	1422
770114 2653 65.75 8284.5 33 76.758 978 770115 2988 76 9576 30.25 70.3615 948 770116 3244 94.5 11907 26 60.476 948 770118 3277 97.75 12316.5 25.5 59.313 955 770118 3280 100 12600 24.5 56.987 1000 770119 3280 101.5 12789 24.5 56.987 948 770120 3280 101.75 12820.5 24.5 56.987 948 770121 3280 102 12852 24.5 56.987 948 770123 3280 102 12852 24.5 56.987 948 770123 3280 102.5 12915 24.5 56.987 948 770124 3256 103.5 13041 24.5 56.987 948 770124 3256 103.75 1	770113	2318	56.5	7119	34.5	80.247	1033
770115 2988 76 9576 30.25 70.3615 948 770116 3244 94.5 11907 26 60.476 948 770117 3277 97.75 12316.5 25.5 59.313 955 770118 3280 100 12600 24.5 56.987 1000 770119 3280 101.5 12789 24.5 56.987 948 770120 3280 101.75 12820.5 24.5 56.987 948 770121 3280 102 12852 24.5 56.987 948 770123 3280 102 12852 24.5 56.987 948 770123 3280 102 12852 24.5 56.987 948 770123 3280 102.5 12915 24.5 56.987 948 770124 3256 103.5 13041 24.5 56.987 948 770125 3280 103.75 13	770114	2653	65.75	8284.5	33	76.758	978
770116 3244 94.5 11907 26 60.476 948 770117 3277 97.75 12316.5 25.5 59.313 955 770118 3280 100 12600 24.5 56.987 1000 770119 3280 101.5 12789 24.5 56.987 948 770120 3280 101.75 12820.5 24.5 56.987 948 770121 3280 102 12852 24.5 56.987 948 770123 3280 102 12852 24.5 56.987 948 770123 3280 102 12852 24.5 56.987 948 770123 3280 102.5 12915 24.5 56.987 948 770124 3256 103.5 13041 24.5 56.987 948 770124 3256 103.75 13072.5 24 55.824 948 770125 3280 103.75 <td< td=""><td>770115</td><td>2988</td><td>76</td><td>9576</td><td>30.25</td><td>70.3615</td><td>948</td></td<>	770115	2988	76	9576	30.25	70.3615	948
//U11/ 32// 9/./5 12316.5 25.5 59.313 955 770118 3280 100 12600 24.5 56.987 1000 770119 3280 101.5 12789 24.5 56.987 948 770120 3280 101.75 12820.5 24.5 56.987 948 770121 3280 102 12852 24.5 56.987 948 770123 3280 102 12852 24.5 56.987 948 770123 3280 102 12852 24.5 56.987 948 770123 3280 102 12852 24.5 56.987 948 770124 3256 103.5 13041 24.5 56.987 948 770125 3280 103.75 13072.5 24 55.824 948 770125 3280 103.75 13072.5 24 55.824 948 770126 3280 103.75 13072.5 54.661 948	770116	3244	94.5	11907	26	60.476	948
770110 3280 101.5 12700 24.5 56.987 1000 770119 3280 101.5 12789 24.5 56.987 948 770120 3280 101.75 12820.5 24.5 56.987 948 770121 3280 102 12852 24.5 56.987 948 770122 3280 102 12852 24.5 56.987 948 770123 3280 102 12852 24.5 56.987 948 770123 3280 102.5 12915 24.5 56.987 948 770124 3256 103.5 13041 24.5 56.987 948 770125 3280 103.75 13072.5 24 55.824 948 770125 3280 103.75 13072.5 54 54.861 948	770110	32/7	97.75	12316.5	25.5	59.313	955 1000
T70120 3280 101.75 12820.5 24.5 56.987 948 770121 3280 102 12852 24.5 56.987 948 770122 3280 102 12852 24.5 56.987 948 770123 3280 102 12852 24.5 56.987 948 770123 3280 102.5 12915 24.5 56.987 948 770123 3280 102.5 12915 24.5 56.987 948 770124 3256 103.5 13041 24.5 56.987 948 770125 3280 103.75 13072.5 24 55.824 948 770126 3280 103.75 13072.5 54 548 948	770118	3280 3280	101 5	12000	24.5 24.5	56.987	948
770121 3280 102 12852 24.5 56.987 948 770122 3280 102 12852 24.5 56.987 948 770123 3280 102.5 12915 24.5 56.987 948 770123 3280 102.5 12915 24.5 56.987 948 770124 3256 103.5 13041 24.5 56.987 948 770125 3280 103.75 13072.5 24 55.824 948 770126 3280 103.75 13072.5 54 661 948	770120	3280	101.75	12820.5	24.5	56.987	948
770122 3280 102 12852 24.5 56.987 948 770123 3280 102.5 12915 24.5 56.987 948 770124 3256 103.5 13041 24.5 56.987 948 770125 3280 103.75 13072.5 24 55.824 948 770126 3280 103.75 13072.5 24 55.824 948 770126 3280 104 13104 23.5 54.661 948	770121	3280	102	12852	24.5	56.987	948
770123 3280 102.5 12915 24.5 56.987 948 770124 3256 103.5 13041 24.5 56.987 948 770125 3280 103.75 13072.5 24 55.824 948 770126 3280 103.75 13072.5 24 55.824 948 770126 3280 104 13104 23.5 54.661 948	770122	3280	102	12852	24.5	56.987	948
770124 3256 103.5 13041 24.5 56.987 948 770125 3280 103.75 13072.5 24 55.824 948 770126 3280 104 13104 23.5 54.661 948	770123	3280	102.5	12915	24.5	56.987	948
770126 3280 104 13104 23.5 54.661 948	770124	3250 3280	103.5	13041 13072 F	24.5 24	55,821	948 048
	770126	3280	104	13104	23.5	54.661	948

Flow (w)	Flow (w)	subcooling	subcooling	# of notches
Mlb/hr	kg/s	Btu/lb	kJ/kg	inserted
104.5	13167	23	53.498	948
105	13230	23	53.498	948
105	13230	23	53.498	948
105	13230	23	53.498	948
105.25	13261.5	23	53.498	948
106	13356	23	53.498	948
106	13356	23	53.498	948
107.75	13576.5	23	53.498	948
103.5	13041	23	53.498	948
43	5418	22	51.172	> 4500
43	5418	22	51.172	3155
44	5544	34	79.084	1622
44.5	5607	31.5	73.269	1711
44	5544	35	81.41	1200
43	5418	31	72.106	2333
42	5292	40.25	93.6215	1067
50	6300	37.25	86.6435	978
60.75	7654.5	34.25	79.6655	933
72.5	9135	31.25	72.6875	908
94	11844	24.75	57.5685	908
102	12852	23.5	54.661	908
102.25	12883.5	23.25	54.0795	908
102.5	12915	23.5	54.661	908
103	12978	23.75	55.2425	908
103	12978	23.75	55.2425	908
103.25	13009.5	23.5	54.661	908
104.75	13198.5	23.25	54.0795	908
105	13230	23.25	54.0795	908
105	13230	23	53.498	908

	MWt	Mlb/hr	kg/s	Btu/lb	kJ/kg	inserted
770127	3256	104.5	13167	23	53.498	948
770128	3280	105	13230	23	53.498	948
770129	3271	105	13230	23	53.498	948
770130	3268	105	13230	23	53.498	948
770131	3265	105.25	13261.5	23	53.498	948
770201	3267	106	13356	23	53.498	948
770202	3270	106	13356	23	53.498	948
770203	3275	107.75	13576.5	23	53.498	948
770204	3076	103.5	13041	23	53.498	948
770205	0	43	5418	22	51.172	> 4500
770206	144	43	5418	22	51.172	3155
770207	1578	44	5544	34	79.084	1622
770208	1489	44.5	5607	31.5	73.269	1711
770209	1045	44	5544	35	81.41	1200
770210	1223	43	5418	31	72.106	2333
770211	1867	42	5292	40.25	93.6215	1067
770212	2211	50	6300	37.25	86.6435	978
770213	2500	60.75	7654.5	34.25	79.6655	933
770214	2856	72.5	9135	31.25	72.6875	908
770215	3189	94	11844	24.75	57.5685	908
770216	3277	102	12852	23.5	54.661	908
770217	3277	102.25	12883.5	23.25	54.0795	908
770218	3270	102.5	12915	23.5	54.661	908
770219	3265	103	12978	23.75	55.2425	908
770220	3238	103	12978	23.75	55.2425	908
770221	3256	103.25	13009.5	23.5	54.661	908
770222	3284	104.75	13198.5	23.25	54.0795	908
770223	3265	105	13230	23.25	54.0795	908
770224	3256	105	13230	23	53.498	908
770225	3267	107	13482	23	53.498	908
770226	3267	106.5	13419	23	53.498	908
770227	3260	107	13482	23.25	54.0795	908
770228	3231	106.5	13419	23.25	54.0795	908
770301	3256	106.75	13450.5	23.25	54.0795	908
770302	3244	107	13482	23.25	54.0795	908
770303	2100	106.5	13419	23.25	54.0795	908
770304	856	38.75	4882.5	43.5	101.181	1911
770305	1689	41.5	5229	39	90.714	1211
770300	2056	42.75	5386.5	41	95.300	802
770200	2511	53.75	7942.5	37.25	80.0435 90.247	024
770300	2500	60.25	8725.5	32.5	75 595	824
770310	2867	77 75	9796.5	30.25	70 3615	824
770311	2856	78.5	9891	29.5	68 617	824
770312	2833	78 75	9922.5	29.5	68 617	824
770313	778	78.5	9891	29.5	68.617	824
770314	0	41.5	5229	29.5	68.617	> 4500
770316	0	41.5	5229	21	48.846	> 4500
770317	422	41.5	5229	21	48.846	2733
770318	1611	42.5	5355	34.5	80.247	1288
770319	2012	43.5	5481	41	95.366	811
770320	2295	49.5	6237	39	90.714	756
770321	2578	52	6552	38.5	89.551	732
770322	2904	79	9954	30	69.78	732
770323	3211	90.5	11403	26.25	61.0575	732
770324	3278	97.25	12253.5	25.75	59.8945	732
770325	3278	99	12474	25.5	59.313	732
770326	3267	99.5	12537	25	58.15	732
//0327	3267	101	12726	24.75	57.5685	/32
770328	3250	100	12600	24.5	56.987	732
770229	32/1	102.75	12940.5	24	55.824	/ 32
770224	3250	102.5	12915	23.5 22.5	54.001	132
770401	3278	103.5	13000 5	23.5	54 661	732
770402	3278	103.23	13167	23.5	54 661	732
770403	3265	104.25	13135.5	23.5	54.661	732
	S	HUTDOWN	PRIOR TO	TT AND PT	TESTS	

Power MWt

date

APPENDIX 2 – INPUT DATA FOR DEPLETION CALCULATIONS

							Num	ber	of	not	ches	s wi	thdr	awı	n foi	r ea	ch	CR	seq	uen	ce g	rou	p (A	and	A2)	
CYCLE 1						(48 =	= fu	lly (out,	0 =	full	y in															
burn step	Explanation	Power		Accumulated	core flow	subcooling	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
time period		(MWt)	EFPH	EFPH	(kg/s)	(kJ/kg)																					
740112-740405	burn step 1, data set 1	772.10	253.22	253.22	7695.1	35.19	48 4	48	48	48	48	48	48	48	36	36	36	36	36	8	20	20	20	4	4	20	4
740405-740417	burn step 2	1106.00	88.67	341.89	8757.0	40.07	48 4	48	48	48	48	48	48	48	48	48	48	48	48	8	24	24	24	4	4	20	2
740417-740425	burn step 3, data set 2	1874.69	109.30	451.20	8697.9	59.82	48 4	48	48	48	48	48	48	48	48	48	48	48	48	36	32	36	30	10	8	30	12
740425-740508	burn step 4	1348.12	127.73	578.93	7087.5	65.91	48 4	48	48	48	48	48	48	48	48	48	48	48	48	34	30	34	28	6	8	26	10
740508-740512	burn step 5, data set 3	2256.75	65.79	644.72	8316.0	73.20	Figur	e A	.2.1	.a																	
740512-740518	burn step 6	2225.17	97.30	742.02	9633.8	61.11	Figur	e A	.2.1	.a																	
740518-740526	burn step 7, data set 4	2071.88	120.80	862.82	7975.0	69.27	48 4	48	48	48	48	48	48	48	48	48	48	48	48	26	36	30	26	26	6	26	6
740526-740530	burn step 8	1140.00	33.23	896.06	7725.4	63.53	48 4	48	48	48	48	48	48	48	48	48	48	40	40	20	26	24	20	20	6	20	4
740604-740619	burn step 9, data set 5	2337.70	255.56	1151.62	9920.2	60.79	Figur	e A	.2.1	.b																	
740619-740622	burn step 10	2520.17	55.10	1206.72	11481.8	56.11	CR n	nap	for	buri	nup	step	10	in A	ppe	ndi>	ά2										
740622-740715	burn step 11, data set 6	2901.91	486.44	1693.17	10862.7	61.42	48 4	48	48	48	48	48	48	48	48	48	48	48	48	32	40	40	32	20	6	34	10
740715-740723	burn step 12	3038.31	177.15	1870.32	11412.8	60.11	48 4	48	48	48	48	48	48	48	48	48	48	48	48	32	40	40	32	20	8	36	10
740723-740817	burn step 13, data set 7	2891.30	526.81	2397.12	11441.1	60.36	Figur	e A	.2.1	.c																	
740817-740827	burn step 14	3234.10	235.71	2632.83	12636.9	57.72	Figur	e A	.2.1	.d																	
740827-740910	burn step 15, data set 8	3225.18	329.08	2961.91	12317.6	60.52	Figur	e A	.2.1	.e																	
740910-740915	burn step 16	2429.60	88.54	3050.45	11680.2	57.68	Figur	e A	.2.1	.f																	
740915-741004	burn step 17, data set 9	2361.71	327.04	3377.49	9524.6	67.48	48 4	48	48	48	48	48	48	48	40	44	48	38	36	20	12	12	16	6	4	16	8
741004-741017	burn step 18	2528.69	239.58	3617.07	9845.4	71.21	48 4	48	48	48	48	48	48	48	40	44	48	38	36	20	14	14	18	8	4	22	4
741019-741121	burn step 19, data set 10	2377.23	519.77	4136.84	9639.0	62.75	48 4	48	48	48	48	48	48	48	34	38	34	36	32	28	12	12	10	6	6	10	4
741121-741130	burn step 20	3058.44	200.61	4337.46	13027.0	54.66	48 4	48	48	48	48	48	48	48	36	38	36	38	34	30	14	14	12	8	6	12	10
741201-750106	burn step 21, data set 11	2786.10	731.00	5068.46	10777.8	60.11	Figur	e A	.2.1	.g																	
750106-750115	burn step 22	3033.50	198.98	5267.44	12442.5	55.60	Figur	e A	.2.1	.ĥ																	
750123-750203	burn step 23, data set 12	2648.14	212.30	5479.74	10369.2	58.57	48 4	48	48	48	48	48	48	48	34	36	28	32	32	16	12	8	8	4	4	6	4
750203-750212	burn step 24	3046.50	199.83	5679.57	12468.8	55.63	48 4	48	48	48	48	48	48	48	36	38	32	34	34	24	14	12	10	6	6	10	10
750220-750313	burn step 25, data set 13	2969.36	454.47	6134.04	11591.3	58.73	48 4	48	48	48	48	48	48	48	36	38	32	38	32	22	10	10	8	8	6	8	6
750313-750318	burn step 26	3094.90	112.78	6246.82	12993.8	55.82	48 4	48	48	48	48	48	48	48	36	38	34	38	34	24	14	12	10	8	6	10	12
750318-750402	burn step 27, data set 14	2972.07	324.91	6571.73	11696.0	59.51	Figur	e A	.2.1	.i																	
750402-750406	burn step 28	3227.13	94.08	6665.81	13084.3	55.24	Figur	e A	.2.1	.j																	
750406-750424	burn step 29, data set 15	3248.44	426.15	7091.97	13243.1	54.43	Figur	e A	.2.1	.k																	
750424-750425	burn step 30	3173.00	23.13	7115.09	13324.5	53.50	Figur	e A	.2.1	.k																	
750425-750513	burn step 31, data set 16	2927.97	384.11	7499.21	11585.0	59.09	Figur	e A	.2.1	.1																	
750513-750517	burn step 32	2732.75	79.67	7578.87	12631.5	52.77	Figur	e A	.2.1	.m																	
750606-750725	burn step 33, data set 17	1845.70	591.88	8170.75	7556.2	67.41	48 4	48	48	48	48	48	48	48	38	44	44	38	38	10	10	6	6	4	0	4	8
750725-750816	burn step 34, data set 18	1704.43	273.29	8444.04	5229.7	93.37	48 4	48	48	48	48	48	48	48	42	44	44	40	40	16	22	18	8	4	6	8	8
750816-750927	burn step 35, data set 19	1807.10	553.16	8997.20	5733.0	90.10	48 4	48	48	48	48	48	48	48	44	44	44	44	38	16	22	22	8	4	4	10	18
750927-751031	burn step 36, data set 20	1823.91	451.96	9449.16	5102.1	95.88	Figur	e A	.2.1	.n																	
	·		core sup	port plate hole	plugging																						

Number of notches withdrawn for each CR sequence group (A and A2) (48 - fully out, 0 - fully in)

CYCLE 1							(48 =	: ful	ly o	out,	0 =	fully	/ in)					•		Ŭ	•	•			·	
burn step	Explanation	Power	EFPH	accumulated	subcooling	1 2	2 :	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
time period		(MWt)		EFPH	(kg/s)	(kJ/kg)																					
			core sup	port plate hole	plugging																						
751130-751224	burn step 37, data set 21	2284.02	366.22	9815.38	9037.6	70.85	Figure	e A.	2.1.	0																	
751224-760108	burn step 38	2529.90	276.58	10091.96	9886.8	67.82	Figure	e A.	2.1.	р																	
760108-760115	burn step 39, data set 22	2321.50	118.44	10210.40	8307.4	70.36	Figure	e A.	2.1.	q																	
760115-760207	burn step 40	3037.72	509.21	10719.60	12178.2	56.54	Figure	e A.	2.1.	r																	
760207-760214	burn step 41, data set 23	2381.57	121.50	10841.11	7645.5	81.24	48 4	8 4	48 4	48	48	48	48	48	48	48	48	48	48	38	38	40	36	36	30	18	24
760214-760221	burn step 42	3055.86	155.90	10997.01	12784.5	53.91	48 4	8 4	48 4	48	48	48	48	48	48	48	48	48	48	38	38	40	34	34	28	16	22
760221-760326	burn step 43, data set 24	3096.72	767.36	11764.37	12386.0	66.95	48 4	8 4	48 4	48	48	48	48	48	48	48	48	48	48	40	40	42	36	40	36	26	32
CYCLE 2																											
760623-760628	burn step 1, data set 25	1533.90	55.90	55.90	6977.3	72.28	48 4	8 4	48 4	48	48	48	48	48	18	10	6	4	2	40	40	42	38	32	44	48	26
760628-760709	burn step 2	2221.50	161.91	217.80	9913.1	59.63	48 4	8 4	48 4	48	48	48	48	48	18	10	6	4	2	40	40	42	38	34	44	48	28
760709-760714	burn step 3, data set 26	2870.00	83.67	301.47	9800.4	68.33	Figure	e A.	2.2.	а																	
760714-760806	burn step 4	3169.52	531.30	832.77	13074.6	54.81	Figure	e A.	2.2.	b																	
760806-760901	burn step 5, data set 27	2072.06	362.44	1195.21	8180.8	70.51	48 4	8 4	48 4	48	48	48	48	48	24	18	8	8	10	34	40	40	40	34	48	48	42
760901-760925	burn step 6	3120.38	545.81	1741.02	13120.4	54.71	48 4	8 4	48 4	48	48	48	48	48	28	20	10	10	14	38	40	40	40	38	48	48	42
760925-761008	burn step 7, data set 28	2738.15	259.43	2000.45	9945.5	65.49	48 4	8 4	48 4	48	48	48	48	48	26	16	8	10	16	38	40	40	40	38	48	48	42
761008-761010	burn step 8	2129.00	31.03	2031.48	7174.1	79.67	48 4	8 4	48 4	48	48	48	48	48	22	12	6	8	16	36	40	40	40	36	48	48	42
761010-761028	burn step 9, data set 29	2571.14	337.30	2368.78	8869.9	69.25	Figure	e A.	2.2.	с																	
761028-761115	burn step 10	3084.81	404.69	2773.47	12500.3	56.97	Figure	e A.	2.2.	d																	
761125-761216	burn step 11, data set 30	2662.19	407.45	3180.92	9727.7	63.56	48 4	8 4	48 4	48	48	48	48	48	36	44	48	48	48	24	32	32	10	6	24	26	10
761216-761228	burn step 12, data set 31	3276.04	286.52	3467.44	13027.9	54.22	48 4	8 4	48 4	48	48	48	48	48	40	44	48	48	48	28	36	36	12	10	28	28	14
761228-770102	burn step 13	2906.70	105.92	3573.36	12184.2	54.54	48 4	8 4	48 4	48	48	48	48	48	40	44	48	48	48	28	36	36	12	10	28	28	14
770109-770119	burn step 14, data set 32	2386.80	173.95	3747.32	8670.4	71.38	Figure	e A.	2.2.	е																	
770119-770126	burn step 15, data set 33	3276.57	167.16	3914.48	12928.5	56.65	Figure	e A.	2.2.	f																	
770126-770202	burn step 16, data set 34	3268.86	166.77	4081.25	13243.5	53.58	Figure	e A.	2.2.	f																	
770202-770205	burn step 17	2662.00	58.20	4139.45	12001.5	53.11	Figure	e A.	2.2.	f																	
770205-770223	burn step 18, data set 35	2366.75	310.49	4449.94	9327.5	65.69	Figure	e A.	2.2.	g																	
770223-770304	burn step 19	2993.50	196.35	4646.29	12937.8	56.50	Figure	e A.	2.2.	h																	
770304-770311	burn step 20, data set 36	2277.00	116.17	4762.46	7305.8	83.40	48 4	8 4	48 4	48	48	48	48	48	30	34	36	10	20	38	40	42	44	48	48	48	48
770311-770314	burn step 21	1679.67	36.73	4799.18	9124.5	68.62	48 4	8 4	48 4	48	48	48	48	48	32	34	36	14	24	38	40	42	44	48	48	48	48
770316-770403	burn step 22, data set 37	2741.14	359.60	5158.79	10392.4	64.09	48 4	8 4	48 4	48	48	48	48	48	30	30	34	14	32	36	36	42	44	48	48	48	48

LEGEND: - = fully withdrawn, 0 = fully inserted. (Maximum withdrawal = 48 notches)

Figure A.2.2.e	Figure A.2.2.f
18 - 2 - 32 - 32 - 2 - 18	28 - 8 - 36 - 36 - 8 - 28
- 36 44 - 44 - 44 36 -	- 38
18 - 30 - 2 - 2 - 30 - 18	28 - 36 - 6 - 6 - 36 - 28
- 36 44 - 44 - 44 36 -	- 38 38 -
18 - 2 - 32 - 32 - 2 - 18	28 - 8 - 36 - 36 - 8 - 28
Figure A.2.2.g	Figure A.2.2.h
Figure A.2.2.g	Figure A.2.2.h
Figure A.2.2.g 	Figure A.2.2.h
Figure A.2.2.g - 30 - 26 - 26 - 30 - - 44 - 44 - 44 - 44 - - 32 - 8 - 20 - 20 - 8 - 32 -	Figure A.2.2.h
Figure A.2.2.g 	Figure A.2.2.h
Figure A.2.2.g 	Figure A.2.2.h - $ -$
Figure A.2.2.g - $ -$	Figure A.2.2.h
Figure A.2.2.g - $ -$	Figure A.2.2.h - $ -$
Figure A.2.2.g 	Figure A.2.2.h -34 - 28 - 28 - 34 -34 - 44 - 44 - 44 - 44 -36 - 12 - 24 - 24 - 12 - 36 -40 - 44 - 44 44 - 44 - 40 -24 - 6 - 36 - 36 - 6 - 24 -36 36 - -34 - 36 - 8 - 8 - 8 - 36 - 34 -36
Figure A.2.2.g - $ -$	Figure A.2.2.h -34 - 28 - 28 - 34 -44 - 44 - 44 - 44 - 44 -36 - 12 - 24 - 24 - 12 - 36 - -40 - 44 - 44 44 - 44 - 40 - -24 - 6 - 36 - 36 - 6 - 24 -36 36 - -36
Figure A.2.2.g 	Figure A.2.2.h
Figure A.2.2.g 	Figure A.2.2.h
Figure A.2.2.g 	Figure A.2.2.h

APPENDIX 3 – CONTROL ROD CONFIGURATIONS FOR TT2 INITIAL STATE AND HOT ZERO POWER STATE

Legend:48 – Fully withdrawn control rod 0 – Fully inserted control rod

Control Rod configuration for Turbine Trip 2 Initial State

Y/X	02	06	10	14	18	22	26	30	34	38	42	46	50	54	58
59					48	48	48	48	48	48	48				
55				48	48	34	48	36	48	34	48	48			
51			48	48	0	48	26	48	26	48	0	48	48		
47		48	48	40	48	36	48	32	48	36	48	40	48	48	
43	48	48	0	48	26	48	4	48	4	48	26	48	0	48	48
39	48	34	48	36	48	48	48	48	48	48	48	36	48	34	48
35	48	48	26	48	4	48	32	48	32	48	4	48	26	48	48
31	48	36	48	32	48	48	48	48	48	48	48	32	48	36	48
27	48	48	26	48	4	48	32	48	32	48	4	48	26	48	48
23	48	34	48	36	48	48	48	48	48	48	48	36	48	34	48
19	48	48	0	48	26	48	4	48	4	48	26	48	0	48	48
15		48	48	40	48	36	48	32	48	36	48	40	48	48	
11			48	48	0	48	26	48	26	48	0	48	48		
07				48	48	34	48	36	48	34	48	48			
03					48	48	48	48	48	48	48				

Control Rod configuration for Hot Zero Power artificial state

Y/X	02	06	10	14	18	22	26	30	34	38	42	46	50	54	58
59					0	48	0	48	0	48	0				
55				0	48	0	48	0	48	0	48	0			
51			0	48	0	48	0	48	0	48	0	48	0		
47		0	48	0	48	0	48	0	48	0	48	0	48	0	
43	0	48	0	48	0	48	0	48	0	48	0	48	0	48	0
39	48	0	48	0	48	0	48	0	48	0	48	0	48	0	48
35	0	48	0	48	0	48	0	48	0	48	0	48	0	48	0
31	48	0	48	0	48	0	48	0	48	0	48	0	48	0	48
27	0	48	0	48	0	48	0	48	0	48	0	48	0	48	0
23	48	0	48	0	48	0	48	0	48	0	48	0	48	0	48
19	0	48	0	48	0	48	0	48	0	48	0	48	0	48	0
15		0	48	0	48	0	48	0	48	0	48	0	48	0	
11			0	48	0	48	0	48	0	48	0	48	0		
07				0	48	0	48	0	48	0	48	0			
03					0	48	0	48	0	48	0				

APPENDIX 4 – ASSEMBLY NUMBERS MAP FOR PEACH BOTTOM 2 IN POLCA7

Radial reflector regions are labeled with zeros. Fuel assemblies are numbered from 1 to 764 with coordinates according to [24]

Y/X	••	01	03	05	07	09	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45	47	49	51	53	55	57	59	
									0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0								
60								0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	0	0							
58						0	0	0	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0	0	0					
56						0	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	0					
54					0	0	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	0	0				
52			0	0	0	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	0	0	0		
50			0	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	0		
48		0	0	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	0	0	
46	0	0	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	0	0
44	0	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	0
42	0	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	0
40	0	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	0
38	0	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	0
36	0	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	0
34	0	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	0
32	0	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	0
30	0	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	0
28	0	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	0
26	0	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	0
24	0	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	0
22	0	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	0
20	0	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	0
18	0	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	0
16	0	0	593	594	595	596	597	598	599	600	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	0	0
14		0	0	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	0	0	
12			0	647	648	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	667	668	669	670	671	672	0		
10			0	0	0	673	674	675	676	677	678	679	680	681	682	683	684	685	686	687	688	689	690	691	692	693	694	0	0	0		
08					0	0	695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	0	0				
06						0	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	0					
04						0	0	0	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	0	0	0					
02								0	0	751	752	753	754	755	756	757	758	759	760	761	762	763	764	0	0							
									0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0								

APPENDIX 5 – RADIAL POWER DISTRIBUTIONS PRIOR TO TT2

HZP calculations with POLCA7 using PSU Cell Data

* POWER *	Assembly avg distribution Ur						nit= -			Scal	powe:	r = -3	3																		
				Av Ma Mi	vg val 1x val .n val	ue = ue = ue =	1000. 2011. 127.	.00 .19 .44	Assy Assy	7 = 20 7 = 60	5/29)/43																				
Y/X 01	1	03	05	07	09	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	3 45	4	49	9 51	. 53	3 55	57	59	••
 60							0	0 0	0 127	0 217	0 396	0 431	0 291	0 303	0 478	0 477	0 303	0 290	0 427	0 399	0 217	0 127	0 0	0							
58 56 54				0	0	0 151 312	0 207 406	242 359 588	330 772 832	472 794 911	698 694 742	808 682 776	573 1111 1052	623 980 1050	880 705 812	878 700 805	622 975 1037	575 1108 1048	809 689 772	694 696 745	473 797 928	330 772 826	242 354 588	0 207 409	0 151 316	0	0				
52 50		0 0 1	0 L53	0 317	198 400	393 610	856 877	865 995	788 808	779 859	1296 1192	1141 1212	951 923	870 927	1397 1225	1395 1223	861 909	948 922	1146 1220	1305 1208	787 876	795 822	873 1015	867 895	399 623	201 404	0 323	0 156	0 0		
48 (46 0 (44 0 13))) 2.	02 503	211 369 700	414 602	868 882 910	885 1010	821 824	820 884	1367 1222	1213 1248	1042 988	964 1010 1395	1517 1350	1295 1367	959 1040 1723	957 1037 1722	1281 1349	1520 1367	976 1029	1065 1012	1251 1322	1414 1274 1107	842 923	845 855	907 1040 851	887 902 830	422 614 972	216 377 820	0 253 352	0 0	0
44 0 132 42 0 226 40 0 414	5 4 4 7:	92 8 26 7	328 727	962 772	808 1348	891 1231	1250 1080	1289 1022	1017 1645	1050 1447	1410 1208	1416 1099	1088 1731	1097 1470	1464 1102	1466 1111	11113 1485	1097 1757	1423 1442 1119	1448 1229	1073 1470	1045 1688	1354 1058	1309 1120	919 1275	833 1398	988 802	853 753	508 753	235 434	0
38 0 449 36 0 305 34 0 323	98	52 7 11 11	728 183	814 1120	1190 1011	1269 978	1003 1593	1051 1416	1445 1210	1477 1124	1120 1772	1135 1528	1511 1291	1506 1189	1170 1924	1175 1928	1532 1199	1538 1311	1157 1560	1136 1806	1482 1146	1479 1242	1085 1460	1041 1643	1313 1006	1244 1045	845 1162	755 1228	886 636	468 321	0 0
34 0 323 32 0 510) 9	41 7	757	869	1507	1322	1031	1093	1804	1522	1143	1200	1962	1657	1213	1213	1660	1977	1218	1170	1576	1860	1130	1070	1373	1568	910	786	984	535	0
30 0 504 28 0 323	49 36	41 7 67 10	758	874 1126	1500 928	1311 986	1019 1371	1101 1430	1811 1128	1544 1157	1156 1549	1218 1588	1981 1236	1674 1259	1226 1689	1226 1685	1671 1247	1988 1239	1226 1603	1177 1574	1575 1197	1870 1173	1141 1495	1085 1449	1392 1058	1578 982	910 1182	793 1105	989 702	537 341	0
26 0 310 24 0 455	0 6 5 8	13 11 61 7	L89 736	1127 825	1015 1214	986 1311	1619 1031	1444 1084	1240 1496	1158 1530	1832 1167	1593 1194	1351 1605	1249 1628	2011 1239	2005 1233	1242 1602	1353 1604	1607 1199	1863 1191	1184 1575	1285 1550	1508 1129	1701 1085	1040 1370	1074 1291	1186 873	1254 778	650 913	328 482	0
22 0 420 20 0 231 10 120 120) 7 1 5	38 7 02 8	741 349	789 988	1384 830	1272 924	1125 1324	1068 1376	1718 1068	1509 1104	1267 1497	1162 1500	1838 1149	1573 1169	1174 1574	1176 1560	1563 1170	1850 1167	1185 1554	1302 1548	1562 1145	1783 1115	1114 1434	1179 1385	1349 972	1467 882	840 1049	786 902	783 534	446 245	0
18 0 133 16 0 0	53)2	53 8 55 3 0 2	323 381 219	879 624 430	840 920 906	863 1060 928	1477 878 868	1332 948 874	1135 1321 1464	1345 1309	1054 1112	1479 1073 1024	1234 1429 1606	1137 1435 1368	1836 1110 1028	1844 1110 1036	1475 1392	1258 1460 1644	1098 1046	1749 1082 1141	1383 1336	1353 1507	1384 980 900	910 903	905 1110 972	889 968 952	942 661 453	401 231	376 274 0	0	0
12 10		0 1	L59 0	330 0	414 207	640 412	918 900	1053 912	856 833	921 823	1268 1371	1285 1200	978 1005	996 923	1317 1499	1323 1507	1012 936	1004 1033	1324 1243	1306 1418	950 851	888 864	1093 948	964 940	670 436	434 217	347 0	167 0	0	0	
08 06 04				0	0 0	328 160 0	427 220 0	618 373 254	870 812 347	978 839 496	780 732 729	815 727 852	1101 1175 608	1104 1046 666	872 767 949	872 770 952	1125 1058 673	1123 1194 617	837 737 870	805 754 755	1013 867 513	901 841 359	642 386 263	445 225 0	343 166 0	0 0	0				
02					5	0	0	0	134 0	228 0	416 0	449 0	306 0	324 0	515 0	517 0	327 0	311 0	460 0	428 0	235 0	138 0	0	0	5	5					

HZP calculations with POLCA7 using PHOENIX Cell Data

******	* * * *	*																														
* POWEF	۹ ۱۰۰۰	*	As	ssemb	ly avo	g dist	tribu	tion	Ui	nit= -	-		Scal	power	r = -3	3																
******	****	*														-																
					A	vg val	lue =	1000.	.00																							
					Ma	ax val	lue =	1664.	.79	Assy	y = 18	3/47																				
					M:	in val	lue =	212.	.28	Assy	7 = 60)/17																				
Y/X		01	03	05	07	09	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45	47	49	51	53	55	57	59	
									0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0								
60								0	Õ	212	329	618	662	431	444	721	724	452	440	678	643	345	221	Õ	0							
58						0	0	0	390	437	628	949	1096	735	801	1156	1162	814	755	1127	979	657	457	409	0	0	0					
56						0	255	296	457	1016	1021	864	831	1393	1222	808	818	1247	1417	853	900	1084	1066	476	315	274	0					
54					0	0	453	510	739	1060	1125	843	853	1236	1233	852	857	1233	1259	880	870	1199	1107	781	545	492	0	0				
52			0	0	0	304	488	1088	1088	914	838	1446	1247	1000	863	1451	1460	875	1024	1296	1512	880	969	1168	1179	532	329	0	0	0		
50			0	265	462	502	748	1077	1190	855	879	1249	1253	861	851	1219	1226	857	881	1313	1322	922	909	1288	1187	817	528	492	278	0		
48		0	0	305	518	1103	1082	927	849	1464	1249	1009	872	1409	1196	826	837	1211	1438	898	1065	1348	1598	947	1026	1201	1196	555	322	0	0	
46	0	0	404	467	757	1108	1194	857	878	1246	1225	875	856	1212	1221	834	833	1209	1231	883	909	1355	1370	979	963	1325	1189	804	497	428	0	0
44	0	219	451	1055	1093	939	868	1486	1272	991	880	1425	1220	952	843	1402	1398	831	959	1251	1478	922	1077	1408	1642	943	1004	1147	1115	480	230	0
42	0	342	653	1083	1190	869	907	1278	1283	894	889	1235	1210	830	819	1144	1143	809	826	1233	1269	921	948	1417	1418	977	926	1254	1138	690	363	0
40	0	640	978	901	868	1510	1303	1050	906	1472	1275	969	824	1320	1107	753	770	1119	1335	832	987	1314	1545	971	1126	1393	1605	916	949	1036	682	0
38	0	682	1140	872	892	1310	1345	921	896	1280	1283	847	810	1118	1101	770	774	1111	1135	830	855	1285	1329	946	959	1392	1397	941	912	1202	723	0
36	0	441	776	1466	1302	1061	922	1491	1275	989	852	1348	1128	890	782	1329	1330	785	908	1170	1387	871	1018	1314	1538	950	1105	1359	1530	813	471	0
34	0	470	852	1305	1306	929	914	1278	1267	869	840	1130	1108	792	799	1128	1114	790	812	1171	1178	863	891	1277	1305	946	953	1341	1351	878	475	0
32	0	760	1230	876	918	1557	1311	878	877	1467	1194	785	795	1373	1155	762	769	1152	1375	807	812	1239	1505	896	906	1344	1596	937	885	1254	780	0
30	0	760	1232	879	921	1561	1302	880	880	1478	1217	811	819	1397	1193	774	777	1159	1379	808	806	1232	1516	906	915	1363	1595	916	876	1251	780	0
28	0	473	862	1327	1333	932	922	1293	1288	888	869	1186	1174	827	837	1205	1184	806	816	1168	1181	878	922	1329	1348	954	955	1331	1328	871	483	0
26	0	459	794	1506	1338	1082	935	1534	1317	1029	890	1420	1199	951	844	1430	1418	828	944	1204	1433	906	1053	1352	1571	961	1103	1354	1515	805	469	0
24	0	702	1175	902	921	1354	1396	963	944	1354	1355	885	875	1210	1222	837	833	1199	1216	871	909	1373	1381	963	971	1392	1381	920	905	1193	720	0
22	0	665	1014	936	901	1575	1366	1123	971	1577	1353	1031	876	1420	1199	827	830	1193	1434	895	1058	1396	1618	989	1140	1391	1596	911	942	1027	672	0
20	0	358	684	1133	1255	908	973	1414	1421	965	951	1334	1297	875	872	1250	1232	877	897	1349	1367	996	1010	1472	1444	979	927	1236	1118	687	360	0
18	0	230	484	1125	1173	1009	942	1637	1415	1100	959	1550	1320	1010	881	1497	1504	900	1035	1342	1588	994	1129	1446	1665	954	1017	1174	1121	485	235	0
16	0	0	432	507	819	1210	1324	951	981	1421	1407	954	932	1283	1258	878	891	1300	1312	941	975	1428	1420	1001	958	1327	1216	822	509	434	0	0
14		0	0	327	563	1207	1198	1018	941	1638	1404	1107	941	1499	1254	873	884	1288	1540	962	1136	1419	1659	945	1028	1195	1211	567	329	0	0	
12			0	282	502	544	818	1166	1304	931	964	1354	1368	917	908	1295	1312	930	958	1429	1418	998	959	1319	1196	827	544	502	283	0		
10			0	0	0	333	539	1187	1187	996	901	1554	1334	1063	915	1550	1561	930	1098	1411	1633	956	1034	1219	1217	554	337	0	0	0		
08					0	0	497	555	804	1152	1237	890	906	1305	1287	915	921	1296	1334	937	933	1310	1201	831	570	508	0	0				
06						0	284	326	494	1106	1118	924	888	1480	1305	873	879	1326	1507	911	963	1173	1150	508	331	289	0					
04						0	0	0	424	473	674	1000	1158	783	857	1234	1239	865	797	1196	1048	701	488	436	0	0	0					
02								0	0	229	353	655	694	446	472	766	768	477	455	715	678	365	235	0	0							
••									0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0								

HFP state prior to TT2 test, POLCA7 calculations using PSU Cell Data

*********** * POWER * Assembly avg distribution *****	Unit= - Scal power = -3	
Avg value = 1000.00 Max value = 1460.35 Min value = 293.52) 5 Assy = 30/25 2 Assy = 56/49	
Y/X 01 03 05 07 09 11 13	15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0	0 0 0 0 0 0
32 0 662 1161 1118 1143 1361 1147 1091 10	J31 1187 1036 1116 1199 1457 1288 1284 1284 1288 1458 1199 1118 1046 1188 1031 1094 1153 1363 1153 1113 1166 666	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	143 790 808 1093 1199 1195 1229 1281 1288 1216 1191 1195 1089 812 795 1047 1106 1104 1105 1168 1164 1167 659 161 889 822 1277 1189 1353 1197 1460 1457 1191 11347 1183 1272 817 800 1065 1287 1074 1240 1155 1309 1006 616 105 1296 1147 1339 1148 1203 1003 110 1115 1086 1269 1146 1301 1110 1242 1055 1185 1018 1053 963 575 1141 1055 1075 1144 1093 813 805 1043 1033 803 813 1097 1148 1084 1068 1118 1051 758 733 971 972 952 512 1193 1053 1291 1074 1293 1063 1105 1085 1071	

HFP state prior to TT2 test, POLCA7 calculations using PHOENIX Cell Data

****	* * * * * *	*																														
* POWI	ER * * * * * *	*	As 	Assembly avg distribution Unit= -								Scal	powe	r = -	3																	
					A M M	vg vai ax vai in vai	lue = lue = lue =	1000 1417 393	.00 .46 Assy = 30/25 .82 Assy = 12/05																							
Y/X		01	03	05	07	09	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45	47	49	51	53	55	57	59	
									0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0								
60								0	0	487	609	686	736	766	782	790	787	778	760	730	689	613	488	0	0							
58						0	0	0	564	767	989	993	1135	1090	1189	1186	1186	1190	1095	1134	989	990	767	565	0	0	0					
56						0	397	566	744	1026	982	1144	1077	1312	1175	1108	1110	1178	1310	1079	1146	990	1027	745	569	400	0					
54					0	0	598	807	1014	913	972	1004	1066	1140	1164	1124	1118	1141	1142	1065	1010	978	919	1015	812	604	0	0				
52			0	0	0	602	793	1052	917	761	695	1169	1091	1180	1053	1312	1311	1041	1178	1091	1170	689	763	931	1062	794	606	0	0	0		
50			0	398	598	797	1066	981	981	693	712	1032	1095	1016	1031	1106	1106	1017	1012	1102	1035	713	690	991	1001	1075	792	599	400	0		
48		0	0	566	807	1051	979	1157	1013	1163	1018	1195	1070	1234	1068	1030	1030	1067	1235	1066	1199	1027	1174	1017	1168	1000	1060	811	569	0	0	
46	0	0	559	738	1009	910	976	1003	1050	1062	1071	1066	1049	1024	1019	981	981	1021	1037	1050	1065	1101	1074	1058	1016	992	925	1015	747	564	0	0
44	0	478	758	1020	905	758	689	1155	1064	1128	1010	1250	1046	831	727	1139	1139	725	833	1048	1251	1008	1137	1074	1168	690	762	919	1028	770	486	0
42	0	604	982	987	971	692	712	1010	1075	1017	1035	1113	1073	752	742	1002	1003	743	751	1075	1114	1034	1011	1096	1032	714	690	976	993	989	613	0
40	0	677	980	1142	1000	1170	1026	1198	1071	1255	1123	1297	1115	1224	1047	1061	1087	1056	1230	1117	1298	1125	1260	1069	1202	1033	1177	1009	1146	989	688	0
38	0	720	1127	1083	1062	1090	1111	1071	1056	1053	1083	1119	1157	1141	1138	1152	1158	1159	1148	1161	1123	1083	1058	1056	1067	1106	1098	1068	1081	1133	729	0
36	0	742	1090	1307	1133	1189	1036	1243	1041	836	755	1227	1139	1271	1137	1404	1406	1138	1276	1148	1232	757	837	1030	1237	1023	1186	1142	1310	1094	758	0
34	0	771	1186	1175	1160	1063	1048	1079	1025	730	746	1051	1145	1140	1183	1259	1242	1178	1141	1166	1054	747	730	1003	1079	1044	1052	1152	1177	1188	765	0
32	0	773	1183	1117	1131	1323	1118	1041	986	1147	1006	1088	1169	1414	1258	1255	1268	1258	1413	1165	1090	1023	1147	985	1044	1120	1321	1130	1110	1183	785	0
30	0	773	1182	1114	1132	1320	1114	1037	987	1148	1023	1097	1169	1417	1261	1245	1262	1258	1413	1169	1089	1008	1149	987	1046	1125	1322	1113	1109	1185	788	0
2.8	0	771	1186	1174	1161	1047	1041	1072	1020	730	750	1061	1164	1146	1186	1255	1264	1162	1140	1160	1058	748	7.3.4	1025	1076	1049	1065	1161	1175	1189	782	0
2.6	0	755	1087	1309	1144	1182	1018	1237	1028	836	757	1234	1149	1282	1146	1416	1412	1140	1275	1146	1234	758	838	1034	1243	1028	1188	1150	1311	1096	765	0
24	Õ	717	1126	1082	1059	1084	1106	1069	1057	1055	1084	1118	1161	1153	1169	1175	1166	1166	1145	1161	1121	1085	1059	1060	1071	1105	1098	1052	1083	1134	734	Õ
22	0	678	978	1140	996	1166	1019	1200	1071	1260	1122	1298	1117	1232	1060	1092	1096	1054	1231	1118	1302	1131	1266	1072	1205	1042	1176	1003	1144	988	685	0
20	0	606	983	984	970	682	711	1027	1091	1013	1041	1114	1075	752	747	1017	1008	747	754	1075	1120	1046	1034	1107	1034	718	694	973	984	989	613	0
18	0	484	773	1023	907	757	684	1162	1077	1140	1012	1255	1051	832	725	1140	1141	728	833	1046	1256	1022	1145	1082	1166	689	763	916	1029	777	486	0
16	0	0	560	742	1010	913	980	1011	1051	1091	1105	1068	1059	1022	1009	975	977	1017	1022	1049	1073	1103	1073	1054	1008	982	919	1017	749	567	0	0
14		0	0	564	808	1052	990	1157	1013	1174	1040	1201	1071	1232	1063	1024	1025	1063	1235	1063	1200	1026	1171	998	1158	994	1055	810	569	0	0	
12			0	394	595	793	1066	975	979	685	714	1031	1095	1010	1034	1111	1115	1041	1028	1106	1034	718	697	983	993	1070	792	598	398	0		
10			0	0	0	603	792	1050	913	756	680	1160	1080	1173	1038	1314	1317	1045	1182	1100	1170	694	763	918	1057	800	605	0	0	0		
08					0	0	596	805	1007	902	968	994	1054	1124	1139	1135	1124	1140	1129	1058	1000	977	908	1013	810	599	0	0				
06						0	399	565	737	1020	982	1138	1078	1305	1172	1111	1113	1177	1307	1076	1142	988	1023	743	565	400	0					
04						0	0	0	561	762	981	976	1123	1086	1187	1183	1183	1186	1086	1127	987	982	759	561	0	0	0					
02								0	0	482	604	677	720	743	772	778	778	771	740	720	677	603	477	0	0							
									0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0								

APPENDIX 6 – PEACH BOTTOM 2 RPV NODALIZATION IN POLCA-T

The RPV model was developed and verified in [5] and [21].