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Abstract

Multiphase dynamics and characteristics of slug flow in micro channels are investigated

computationally by means of advanced numerical simulation methods. Although, due

to its importance in many engineering and biomedical applications, the topic has been

studied previously, methods for robust and accurate simulation of slug flow remain elu-

sive. Evaluation of current state-of-the-art Computational Multi Fluid Dynamics (CMFD)

technology depicts deficiency with advanced computational methods (Volume of Fluid

(VOF), Level Set, Adaptive Mesh Refinement (AMR)), which fail to deliver physically

sound results. The separation of temporal and spatial length scales in the thin liquid film,

formed between the channel surface and the gas bubbles, verifies the foreseen multiscale

nature in the slug flow. This indicates that perturbations from the micro-scale can effec-

tively propagate up scale, rendering the macro-scale description (CMFD) inadequate. A

Sub-Grid Scale model was developed for the treatment of micro-scale thin liquid film dy-

namics based on the Long Wave Theory. A novel multiscale-coupling between a Sub-Grid

Scale (SGS) thin film model and a CMFD code is proposed to preserve the micro-scale

perturbations on the macro-scale and to enable high-fidelity simulations without a dra-

matic sacrifice of computational time. First-of-a-kind ”multiscale-simulations” for the

treatment of the microscopic lubricating thin film show unique physical results.



Abstract

Dynamikken i flerfase og dens typiske karakteristikk av slug strømning i mikrokanaler, er

utforsket med avanserte simuleringsmetoder for numeriske beregninger. Til tross for dens

viktige betydning for ingeniør og biomedicinsk anvendelse, samt emnet har vært studert

tidligere, er robuste metoder og nøyaktig beregning for slug strømning unnvikende. Eval-

ueringen av dagens teknologi, the state-of-the-art, Computational Multi Fluid Dynamics

(CMFD), viser mangler i avanserte beregningsmetoder (Volume of Fluid (VOF), Level Set,

Adaptive Mesh Refinement (AMR)), og svikter i å levere fysiske resultater. Separasjon av

lengde og tids skalaer i den tynne væskefilmen, formet mellom kanalveggen og bobleover-

flaten, bekrefter den forutsette multiskala-naturen i slug strømning. Dette indikerer at

perturbasjoner fra micro-skalaen effektivt kan spre seg opp-skala, og gjør macro-skala

(CMFD) beskrivelsen utilstrekkelig. En Sub-Grid Skala (SGS) modell var utviklet for

beskrivelse av den tynne væskefilmens dynamikk, basert p̊a Long Wave Theory (LWT).

En ny multiskala-kobling mellom en Sub-Grid Skala (SGS), en tynn film-modell og en

makroskopisk CMFD kode er foresl̊att for å bevare mikro-skala perturbasjoner p̊a makro-

skalaen, og for å kunne gjennomføre nøyaktige simuleringer uten en dramatisk økning i

dens beregningstid. First-of-a-kind resultater fra multiskala simuleringer med behandling

av en mikroskopisk lubrikerende film, viser unike fysiske resultater.
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Chapter 1

Introduction

Multiphase flow dynamics and characteristics of slug flow in a micro channel are in-

vestigated by means of advanced numerical simulation methods. Micro channels inherit

features that make them feasible for numerical simulations compared with larger channels.

Flow patterns are more stable, as an effect of the capillary force, with modest separation

of length scales and the computational domain is substantially reduced with the same

mesh resolution.

Micro channels play an important part in many natural processes and industrial ap-

plications. They are especially suitable for heat transfer processes due to their large area

to volume ratio. The flow patterns in these channels often consist of two or three phases,

a multiphase flow. In many processes it can be crucial to determine the nature of the flow

pattern.

Elongated bubbles or slug flow is subject of study in this thesis. Slug flow is often en-

countered or used in engineering applications: micro-components, biomedical and oil and

gas industry. It inherits a nature that makes it appropriate for heat and mass transport.

The bounding liquid film, formed between the pipe surface of the pipe and the bubble

interface, is the determining parameter for heat transfer. The importance of qualitative

knowledge about the flow phenomenon can be illustrated by the case of a cooling debris

bed. In a hypothetical severe reactor accident, hot liquid melt is released into a pool

of cooling liquid. This forms a debris bed in the lower reactor plenum. To ensure that

we determine the risk of, and develop mitigative measures to deal with a sever reactor

accident (core melt-down), it is crucial to determine its coolability. The debris bed is a

porous media, consisting of cooling channels of arbitrary shape. Many of these channels

are micro channels with a multiphase slug flow pattern.

1



Figure 1.1: Picture from DEFOR experiment, showing high porosity and different internal

cooling channels in the debris bed, printed with permission from T. N. Dinh.

The determining parameter for heat removal in slug flow is the thin film formed be-

tween the pipe surface and the bubble interface. The thin film can rupture for cases of

high heat flux, generating a burnout. It implies that the gaseous phase is in direct contact

with the solid surface, making the debris bed un-coolable. Burnout is an important aspect

also for other engineering applications. It is a critical safety aspect for cooling application

as well as the limiting factor in performance enhancement.

Different topics have been studied in the open literature in accordance with the focus

of this work: experimental and numerical study on slug flow in micro channels, thin film

dynamics and intermolecular forces, multiscale coupling. There exist a vast amount of

literature, and key papers are sought within each topic with the aim to notice previous

hinders as well as model and method limitations.

Volume of Fluid (VOF) and Level Set are two of the most widely applied interface tracking

methods and current state-of-the-art for multiphase flow simulations. For the investiga-

tion of the slug flow phenomenon two Computational Multi Fluid Dynamics (CMFD)

codes have been applied, FLUENT (VOF) and TransAT (Level Set). Our first goal is to

evaluate the capabilities and performance of the two methods and codes to adequately

describe the slug flow phenomenon. By comparing their performance we want to depict

numerical artifacts and suggest mitigative strategies.

We know that a thin film will be formed between the pipe wall and bubble interface,

for a certain parameter domain. This occurs when the surface tension forces are domi-
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nating, low Capillary (Ca) number;

Ca =
µU

σ
. (1.1)

We suspect that the thin film slug flow phenomenon inherits a multiscale nature.

Our second goal is to verify this hypothesis from simulation results, and develop a novel

technology for the multiscale coupling between a Sub-Grid Scale (SGS) thin film model

and a CMFD code.

With this basis the thesis is structured into five major parts:

1. Literature review.

2. Theoretical basis and numerical methods.

3. Evaluation of existing computational technology.

4. Evaluation of a mechanistic micro-scale model for thin film dynamics.

5. Development of a platform for a novel multiscale coupling of a Sub- Grid Scale thin

film model to a CMFD code.
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Chapter 2

Literature review

In such a complex phenomenon as slug flow many different topics can be studied in depth.

In this literature review emphasis is directed on:

1. Experimental and numerical study on slug flow in micro channels.

2. Thin film dynamics and intermolecular forces.

3. Multiscale coupling.

The different topics are selected in accordance with the focus of this work, the coupling

between slug flow and thin film dynamics. As mentioned earlier there is a discrepancy

between studies of slug flow and thin film: even though they are closely related to each

other, they are usually studied separately. Experimentalist holds on to the already de-

veloped correlations for film height or they intend to modify them. It is not possible to

quantify features in the film (down to nm) from experiments, as a consequence of mate-

rial refraction index and optical limitations. Numerical simulations for very thin films in

slug flow are non-existing and this author was unable to identify any report in the open

literature about slug flow simulation with treatment of microscopic thin film. For very

thin film high mesh resolution comes with the cost at a high computational time, and

the thin film is often not resolved. Different avenues for the investigation of thin films

have been sought. Usually these films are initially stagnant and planar on a semi-infinite

plate. Effects of the intermolecular forces on the film are modeled in different attempts.

Also a separation of the different effects is used to define what are the forces that govern

the film topology. Coupling these two separate phenomena is also a question of coupling

two different scales in both time and space. This is where the multiscale coupling enters.

Recent progress and methods are reviewed and the most promising ones for the slug flow

simulation are described. The review of multiscale coupling is not developed in depth:

the multiscale methodology is in this thesis a promising tool for the elaborated coupling
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of separated scales, but the focus here is not on developing or extending this methodology.

There is a vast amount of literature on slug flow, numerical simulations of slug flow in

micro channels and thin film dynamics. Figure 2.1 depicts a topical structure, by which

published papers and reports were sought and analyzed.

Mapping of literature review:

Thin film dynamics and intermolecular forces:

3D numerical simulations

Experimental results, regime mapping

2D numerical simulations

Phase field modeling, molecular dynamics simulation

Linear stability analysis and non linear long wave theory

Experimental and analytical results

Multiscale methods:

Slugflow in micro channels:

Heterogeneous multiscale method

Recent results in multiscale coupling

Figure 2.1: Map of the topics reviewed in literature.
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2.1 Experimental and numerical studies on slug flow

in micro channels

2.1.1 Experimental studies

In 1960 two papers were published [45], [8] which still stand today as a fundament for

research on long bubbles in tubes, slug flow. Both these papers followed a publication by

Fairbrother and Stubbs [17]. They proposed a relationship between the non-dimensional

ratio of the difference in bubble velocity and the mean velocity ahead of the bubble, m =
U−Um

Um
, with the capillary number eq.(1.1), m = Ca

1
2 . Taylor [45] performed experiments

on different fluids and criticized the validity of the correlation for m. His experiments

were valid for a valid for a broad range of capillary number, 10−4 < Ca < 1.9, and the

results did not match Fairbrother and Stubbs correlation. Taylor also sketched different

streamline patterns for slug flow for different values of m.

Figure 2.2: Sketched streamlines in bubble reference frame, upper figure m > 0.5, lower

figure m < 0.5 , from [45].

Bretherton [8] studied two cases of elongated bubbles in tubes, first case where bubbles

travel in a small horizontal tube and second bubbles in a vertical tube. He approached

the problem analytically and proposed a correlation for the height of the deposited liquid

film on the wall. Some simplifications were made in his analysis, Bo � 1, Re � 1,

We � 1. He also divided the bubble area into different regions, visualized in Figure

2.3 and assumed that the film section is planar in the transition region. With these

assumptions he used lubrication theory, a simplification of Navier-Stokes equations, to
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Figure 2.3: Section of bubble in horizontal tube, from [8].

Figure 2.4: Transition region, from [8]

obtain the following thin film correlation:

δ

r
= 1.337

(µU

σ

) 2
3 = 1.337Ca

2
3 (2.1)

where δ is the film height. He validated his correlation by experiments, but he already in

1960 pointed out a discrepancy for very thin films and pointed on disjoining pressure as

a possible new governing force in the film. The validity of Bretherton‘s correlation was

studied experimentally in [3] and numerically in [25]. Remarkably, validity of Bretherton’s

correlation was found to be limited to the range of Ca number between 10−4 < Ca < 10−2.

It is assumed that with increasing Ca the assumption of negligible inertia forces no longer

hold. A quite recent publication on the topic of deposition of liquid film on a wall was

published by Quèrè and Aussillous [3]. They used the results from Taylor‘s experiments

and by scaling law extended the correlation from Bretherton to be valid for a larger limit

of Ca numbers (10−4 < Ca < 100). The film forms in the dynamic meniscus of a thickness

δ and length λ. The flow takes place due to the difference in curvature in the meniscus

and static film, defined by the Laplace pressure difference, ∆p = σ/r. This yields then for

the balance of the viscous forces and the pressure gradient, µU
δ2 ∼ 1

λ
σ
r
. By using the fact

that the Laplace pressure is constant at the interface, or that the spherical part matches

the curvature at the transition region,

−σ

r
− σδ

λ2
∼ −2

λ

σ

r
. (2.2)

The unknown in these equations is the length of the transition region, and with the

classical scaling law λ =
√

σr we obtain ∼ eq.(2.1). As Ca increases Quèrè, claims that r

must be replaced with r− δ for the deposition scaling law. Both eq.(2.1) and scaling law

fit well with Taylor‘s results, a fit of the data with the new scaling of the film thickness
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in the visco-capillary regime gives Taylor‘s law:

δ

r
=

1.337Ca
2
3(

1 + 2.5 · 1.337Ca
2
3

) (2.3)

which is valid for higher Ca than eq.(2.1).

Figure 2.5: Taylor‘s law eq.(2.3) (-) compared against eq.(2.1) (··) and experimental data,

from [3].

Quèrè divides the slug flow into three different regimes: visco-capillary deposition,

visco-inertia and viscous boundary, to point out discrepancies with the Taylor law. The

visco-capillary regime is already discussed above. In the visco-inertia regime (relative

high velocity) it was found that the effect of inertia thickens the film, and Taylor‘s law

under predicts the film height. A threshold of U = 1m/s was found for the validity of

eq.(2.3). In the viscous boundary layer regime the deposited film can be limited by a

viscous boundary layer, which develops in the liquid drop (between the slugs) as it moves.

The thickness can be then derived from the balance between inertia and viscosity, which

yields the classical Prandtl law:

δ ∼
(µL

ρU

) 1
2 (2.4)

where L is liquid drop length.

Bico and Quèrè [5] experimentally looked at different liquid trains in tubes to examine the

effects of different hydrophobic and hydrophilic liquids. Different effects and promising

results were shown: deposition of multiple film layers for coating and determining mass

transport of slugs.

The flow regimes observed in micro channels differ in some extent from the ones ob-

served in larger channels. Ghiaasian et al. [2] used previously published experimental

results to categorize the flow regimes in micro channels. Previously the micro channel

regimes have been divided into three different ones, surface tension dominated, inertia

dominated and transition. An additional flow regime was proposed, inertia dominated
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(zone 1 and zone 2). The four different zones are mapped by the non-dimensional Weber

number with the superficial gas and liquid velocity.

Figure 2.6: Transition zones for near circular channel with Dh < 1mm, from [2].

Pan et al. [12] experimentally investigated the flow regimes in micro channels, and

mapped the regimes with use of superficial gas and liquid velocity. Also a peculiar flow

pattern called bubble-train slug flow was reported. This flow pattern is characterized by

the presence of several bubble-trains formed by several bubbles connected together by a

liquid membrane between neighboring bubbles.

This review shows signs of the multiscale nature of deposition of thin liquid film in slug

flow. Bretherton‘s [8] correlation for film thickness in slug flow has recently been extended

by Quèrè [3] for a larger parameter domain. Although this correlation is current state-

of-the-art, it is not valid for the parameter domain where very thin films are formed (Ca

number < 10−4). This comes as a consequence, since it is not feasible to correlate very

thin films solely by hydrodynamics, as new intermolecular forces are effective.
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2.1.2 Numerical studies

The strength of numerical simulations is the possibility to investigate small details that

are impossible to observe in experiments. Some of the previous mentioned results have

been used to validate results from CFD simulations. [19], [16] performed 2D simulations

on the Bretherton problem, a gas inflow displacing a viscous fluid, both with in-house

developed codes. Heil [19] investigated the effect of inertia on the flow field in front of the

propagating bubble, pressure distribution and height of the liquid film. A strong effect on

the recirculation pattern was reported with increase of Re as well as a thickening of film

height. It was also reported that a generation of closed vortexes at the tip of the finger

significantly increases pressure rise in the region. Shyy et al. [16] used state of the art

computational techniques with an immersed boundary method on an adaptively refined

Cartesian grid. Marker based method was applied to capture the interface representa-

tion with a continuous interface method. Trailing film thickness for different Re and Ca

number were reported and validated against other publicized results, as well as results of

the pressure distribution and variation of film thickness in time. Ghiaasiaan and Akbar

[1] investigated Taylor flow or Taylor bubbles with the use of the commercial CFD code

FLUENT with a Volume of Fluid (VOF) method, 2D simulations. The initial bubble

geometry was defined at the start of the simulations. Two different simulations were per-

formed with either initial bubble radii calculated from experimental results (”type 1”) or

initial film thickness from eq.(2.3) (”type 2”). The obtained results were compared against

experimental result for bubble length and bubble velocity, comparison against the drift

flux model, and previously proposed correlations for bubble length and pressure drop. A

new correlation for the frictional pressure drop was proposed. Also a quite fair match

against results for film thickness was obtained for ”type 2” calculations. Lakehal et. al.

[26] investigated slug flow for a diabatic case with means of the Level Set method. Several

different flow patterns were observed and validated against experimental results from [12].

Physical insight was sought on the micro-channel slug flow, and a new correlation was

proposed for the bubble velocity based on break-up frequency. Heat transfer distribution

was investigated and compared with single phase flow. The overall heat-removal in two

phase flow is higher than single phase flow. Slug flow shows to dissipate more heat in the

bulk, and bubbly flow has a higher wall heat flux due blockage effects.

Some simulations have also been performed for 3D geometries, to investigate 3D effects.

2D calculations for slug flow are not a trivial task, and extending to 3D case means in-

creasing complexity and CPU time. Taha and Cui [44],[43] simulated 3D slug flow with

the commercial code FLUENT with a VOF method to study geometrical effect of a square

vertical capillary and a round vertical tube. In both cases, recirculation patterns were

reported, though it should be noted that viscosity effects are neglected. Bonometti et al.
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[35] both experimentally and numerically looked at liquid droplets moving in a circular

micro channel. The recirculation velocity pattern was obtained in both experiments and

simulations. Dye was used to show mixing within each droplet.

For a more comprehensive review on the fluid mechanical aspects in slug flow, experi-

mental and numerical results, I would recommend readers to a paper by Kreutzer et al.

[25].

VOF is the classical interface tracking method for multiphase flow simulations. It is

the most widely applied method, and is implemented in the commercial CMFD codes.

Recent advancement of the Level Set method shows promising results. The performance

of both VOF and Level Set methods are closely investigated and compared in Chapter 4.

2.2 Thin film dynamics and antagonistic governing

forces

For thin films, less than 100nm, new forces appear which are not described by macro-

scopic continuum theory in this case the Navier-Stokes equations. Different avenues of

describing film dynamics with some of the obtained results are also discussed here. The

main body in this part of the review is concerned with the lubrication theory, also called

Long Wave Theory (LWT). This is a simplification of the Navier-Stokes equations, also

discussed more in detail in 3.1.3, for thin film dynamics. Also other approaches are men-

tioned along with experimental results.

Jain and Ruckstein [23] deduced a theoretical framework with the use of Navier-Stokes

equation to study thin film dynamics. By extending the Navier-Stokes equations with

an additional body force term for the Van der Waals forces, they investigated isothermal

thin film on a semi-infinite horizontal plate bounded between a solid and a gas. The

equations were reduced by a simplification in terms of lubrication theory. Applying a

small perturbation on the interface, film ruptures occur when the perturbations grow in

time and linear stability analysis was used to determine rupture and rupture time. Also

different cases were investigated to show effects of pure film, surface active agents and

viscous film. It was shown that an initial periodic disturbance along the bounding plane

has a critical wavelength much larger than the mean height of the film. Film rupture

occur for perturbations with wavelengths larger than the critical wavelength.

Sharma and Ruckstein [39] followed the path of Jain and Ruckstein [23] to study the

instability and rupture time for films with an finite disturbance. Linear stability analysis
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predicts the effect of infinitesimal disturbances growing or decaying in the film. A finite

disturbance is accounted for in the base state of the film, the zeroth order solution ( and

brings it closer to the initial perturbation). It was shown that for large initial perturba-

tion with surfactant concentration, nonlinear effect for both the Marangoni-flow (surface

elasticity) and surface viscosity prolong the film rupture several times more than what

linear theory predicts. Also the rupture of a tear film in the external eye was studied,

and showed large qualitative discrepancy between non-linear and linear theory for large

amplitude perturbation.

Burelbach et al. [9] extended the non-linear theory developed by William and Davis [47]

for a case including evaporation, thermo-capillary, non-equilibrium effects, in addition to

disjoining pressure induced by Van der Waals forces. The numerical solution of the film

equation from long wave theory was shown for the isothermal case with Van der Waals

forces with extended discussion of the behavior near the rupture point. Also film cases for

quasi equilibrium and non-equilibrium with evaporation and condensation, taking into

account mass loss/gain, thermo capillarity and vapor recoil, were investigated. Vapor

recoil is a destabilizing force for evaporation or condensation of films, and can cause hy-

drodynamic instability. Since a fluid particle conserves its mass flux upon phase change,

a liquid particle at the interface accelerates greatly when it vaporizes. The vapor particle

has a much lower density than the liquid density. This back reaction at the interface is

called vapor recoil. Van der Waals forces, evaporation and condensation were all destabi-

lizing phenomena and caused film rupture.

Long-range apolar and polar forces in thin films have been described by Sharma with

co-workers, who have contributed to a number of milestones in thin film research by the

use of long wave theory, [36], [37], [38]. Additional polar forces as electrostatic forces have

been modeled and different effects due to these new forces have been shown. The different

topologies of the films have also been investigated and mapped as effects of change in the

free energy. They argue that the linear stability theory for long wave theory is inade-

quate in terms of rupture time. The rupture time from non-linear theory shows rupture

time that differ of several orders of magnitude comparing with linear stability theory, this

shows that the nonlinear effects are important near film rupture. In [38] the formation

of different 2D morphological patterns are shown with initial topography of ”hills” and

”valleys” for air-water interface with Van der Waals and polar forces. The evolution of

the film show different types of patterns formed depending on the initial mean film height.

For relative thick films (> 8nm) holes are formed and films (< 8nm) tend into isolated

stable droplets (pseudo wetting). These results are claimed not predictable by either lin-

ear or nonlinear 1D analysis. It is though stated that with 1D analysis it is possible to
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predict their length scales.

Stable structures have been observed in 1D film studies by Mitlin and Petviashvili [27]

who investigated a typical Lennard-Jones (3 − 9) potential for the intermolecular forces

in the frame work of long-wave theory. Kinetically stable structures were observed as

attractive and repulsive forces level each other. The structures and topography resemble

a pseudo-wetting scenario. Also Deissler and Oron [13] observed stable film structures but

by the 2D film equation, describing the 3D spatiotemporal evolution of air-liquid inter-

face of a thin film on a cooled horizontal plate, has a Lianpunov function that is strictly

non increasing in time. This is used to show existence of stable axi-symmetric structures.

Oron [29] further studied the 3D film evolution, but for the case of evaporating film with

the one sided model derived by Burelbach et at. [9] without accounting for vapor recoil

and gravity. The intermolecular forces were modeled by a Lennard-Jones potential, with

a repulsive and attractive term. Stable structures of a non-evaporating film was found

in agreement with 1D results from Mitlin and Petviashvili [27]. Temporal evolution of

the film patterns shows peak formations going into broad circular troughs, which broaden

into expansion of ”holes” that coalesce into a pattern of ”droplet” on a thin film. These

patterns are assumed to decrease due to wetting of the solid due to capillary forces not

because of evaporation. The patterns decrease until a flat stable film is formed, which

rapidly dries out almost uniformly in space.

Majumdar and Mezic discussed the influence of the Hamaker constant for both Van der

Waals, hydration, electrostatic forces and elastic strain interaction. Stability maps for

Van der Waals, DVLO (Van der Waals and electrostatic potential) based on Hamaker

constant and critical wave length were proposed. It is shown that surface tension tends

to stabilize the film, since film instabilities increase the surface area and as an effect also

surface energy. Suman and Kumar [42] also investigated the effect of Hamaker constant (

by a time periodic wettable surface). Mean Hamaker constant was reported to determine

rupture or stable patterning regardless of amplitude and frequency. Oscillations could

delay rupture of films with spatial wettability gradients are present, but not prevent rup-

ture.

In [40] a macroscopic mechanism of film rupture is described without inclusion of inter-

molecular force terms in Navier-Stokes. A similar asymptotic reduction of the equations

as in long wave theory was performed. The rupture was described by tangential stress

from the inclusion of surface tension gradient (Marangoni flow).

For a more comprehensive review on Long Wave Theory we refer to the work of Oron et
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al. [30].

From the literature on film dynamics and slug flow, one point emerges. Numerical simu-

lations on slug flow have been triggered by experimental results, the opposite is the case

for thin films. More and good experimental results are needed to validate and compare

against numerical results and theory. Some of the obtained experimental results for thin

films and intermolecular forces are here discussed.

Sharma et al.[33] experimentally investigated a thin Polydimethylsiloxane (PDMS) film

on a silicon wafer coated with a PDMS brushes, bimodal (dimethylsiloxane) (PDMS)

brush. The main advantage of using these polymers in both coating and film media is

that they allow to modify short range interaction at the film interface without having to

introduce a chemical potential between the substrate and film. Initially the PDMS film

(41nm,60nm and 80nm) is stable with air as a bounding medium. Antagonistic polar

intermolecular interaction by the long range forces was studied by placing a millimeter

water film on the PDMS film. As a consequence the effective Hamaker constant changes

from the initial configuration. This introduces a dramatic change in the morphology of

the PDMS film. The initial stable film undergoes a generic transition from ”hills” and

”valleys”, coalesce and develop stable drop patterns. By removing the water the PDMS

re-spread. Again introducing bounding water film the PDMS goes into pseudo-wetting,

so the procedure is re-healing. 2D simulations in [38] show similar film morphology. The

results were obtained by optical micrographs and show the crucial effect produced by the

change of the Hamaker constant. A similar experiment was performed in [32], with a

PDMS film with a thin layer of a polystyrene (PS) film. This structure is initially stable,

as water is introduce on top of the PS film the PDMS-PS bilayer start to destabilize

the system. By removal of the water the PDMS-PS bilayer re-spreads. It is shown that

long range forces between PDMS and water influence over the PS bilayer. However the

magnitude of the forces are unexpectedly high.

Blossey et al. [4] performed experiment of a PS film on an Si wafer with a SiO coating

layer. Experimental results for PS film morphology were compared against numerical

simulations of 2D thin film equation from lubrication theory. Similarities of the experi-

mental and simulated results were strikingly good in both time and space. Both dewetting

morphology and satellite holes were reported.

Sharma et al. [33] argue that it might not be correct to assume that long range forces

can be neglected for film distances above 100nm. Israelachvili et al. [11] reported experi-

mental findings of coalescing interfaces of both liquid-liquid and liquid-gas. These results

show long range intermolecular Van der Waals forces active for distances over 100nm.
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The distance between the media was determined by an adjacent fingers of chromatic or-

der (FECO) in a spectrogram. Coalescence of the interfaces showed compelling results as

well as the effect of Van der Waals forces for interfacial spacing of 200nm.

It should however be noted that other simulation methods for thin film dynamics have also

been applied that the one mentioned above. Two of these avenues are molecular dynam-

ics and Cahn-Hillard Navier-Stokes phase field modeling. They have received increasing

attention as the computational power grows. Hwang et al. [21] did simulate film rupture

for a Lennard-Jones fluid with molecular dynamics simulation. [48] simulated a stressed

film by phase field modeling and reported interesting stable structures within the thin film.

The literature review on thin films shows that several avenues have been tracked to de-

scribe the thin film dynamics. The Long Wave theory (LWT), developed in the late

seventies is the most studied and applied, enable simulations and analysis of thin film

dynamics. Development of accurate numerical algorithms for the film equations shows

that the theory has matured, and in [4] numerical results from the LWT match well with

experimental results. This is recognized and the LWT is exploited in present work; first

Section 3.1.3 gives a thorough description of the theory, second Chapter 5 shows results

from a developed computational platform for the film equation.

2.3 Recent theory and results on Multiscale coupling

There have been several attempts to deal with multiscale phenomena, where spatial and

temporal time scales are separated. A methodology for such multiscale coupling has been

proposed in the framework called Heterogeneous Multiscale Methods (HMM) by Engquist

and co-workers. Two key papers will in this section be discussed in HMM . For readers

with interest in details I would refer to the two papers, [15], [34].

Engquist et. al. [15] give a review of the frame work of HMM, current progress of

the different scientific fronts of multiscale coupling and a coherent summary of the status

of HMM. The name ”heterogeneous” is used to emphasize the different nature in the phe-

nomena. For many phenomena a macro scale solver may not produce accurate results or

the error in the effective models exceed the solution error. Such systems may need special

treatment, or new effective models for the microscopic scales. Treating the whole domain

with a microscopic model would be inefficient in terms of computational time. The HMM

rest on a macroscopic solver for the ”whole” domain. The microscopic model is used in a

complementary way to provide information missing on the macro-scale. Typically, one is
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not interested on the details of the micro-scale solution. Definition taken from [15].

1. ”We have to ask for less about the solutions of the micro-scale solver, e.g. we have

to be satisfied with getting only the gross behavior of the solution, not the details

everywhere.

2. We must explore possible special features of the micro-scale problem, such as scale

separation, self similarity. Therefore these methods are less general than traditional

micro-scale solvers.

One of the main challenges is to recognize such special features in a problem and make

use of it.” The use of multiscale solver is only justified if:

cost of multiscale method

cost of the micro-scale solver on the full domain
� 1. (2.5)

Multiscale problems are separated into four different types:

”Type A: These are problems that contain isolated defects or singularities such as

cracks, dislocations, shocks and contact lines. For these problems, the microscopic model

is only necessary near defects or singularities. Further away it is adequate to use some

macroscopic model. Such a combined macro-micro strategy should satisfy the minimum

requirement if the micro scale model is limited to a small part of the computational do-

main.

Type B: These are problems for which a closed macroscopic model should exist for a

properly selected set of macroscopic variables, but the macro scale model is not explicit

enough to be used directly as an efficient computational tool. The task of multiscale mod-

eling is to carry out macro scale simulations without making use of ad hoc constitutive

relations. Instead, the necessary macro scale constitutive information is extracted from

the micro scale models. The existence of a closed macroscopic model is often associated

with time scale separation, and this can be exploited in order to design multiscale meth-

ods that satisfy the minimum requirement.

Type C: These are problems that have features of both type A and type B.

Type D: These are problems that exhibit self-similarity in scales. Examples include

critical phenomena in statistical physics, fractals and turbulent transport.”

Some ”simple” multiscale examples for case A and B are discussed.

E W. and Ren W. [34] presented results from successful multiscale simulations for different
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cases. Special emphasis was put on complex fluids and micro-fluidics, and results from

type A and B problems. For case B problems atomistic-based constitutive modeling sim-

ulation results are shown by extracting the stresses from molecular dynamics simulations

and results from pressure driven Poiseuille flow and dum-bell flow with a Lennard-Jones

fluid. Also type A problems are discussed with modeling of boundary conditions. Prob-

lems with complex fluid-solid interaction (lid driven flow), surface tension, contact line

dynamics are shown with results. Molecular dynamics simulations are typically used to

extract boundary conditions in a constrained region. Below a figure shows extraction

of boundary condition for Marangoni flow at AB, from a domain decomposition. The

picture at the right in Figure 2.7 shows the setup of the molecular dynamics simulations,

from the extracted domain to the left. The strip CD is constrained by continuum velocity

field, and the boundary conditions are extracted at the sampling region.

Figure 2.7: Schematic of multiscale method for Marangoni flow taken from [34].

2.4 Remarks on the literature review

The literature study performed in this Chapter provides a systematic overview of previous

relevant works and establishes the state of the art. From the author‘s perspective, it was

important to notice previous hinders as well as model and method limitations. From the

reader‘s perspective, four important points are extracted from the review:

• Even with abundant experimental work, no one has been able to quantify

thin film physics in slug flow for low Ca-numbers. As the film height becomes

very small (h < 100nm) correlations from hydrodynamics fail, such

phenomena have a dual nature from molecular dynamics and hydrodynamics.

• VOF is the classical method for interface tracking, but new development of

the Level Set method increase its ”marked value” and use. Both methods

inherit strong geometrical (case) constrains and are computational expensive.

The author could not report any findings in literature of previous attempts

on a Sub-Grid Scale (SGS) thin film model in slug flow.
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• Thin film dynamics have been approached in a numerous different ways.

Advancement in Long Wave Theory shows it has matured, and capabilities to

capture both natures ( molecular dynamics and hydro dynamics). Since the

LWT is recognized as a prospective avenue it has been further pursued in

Chapter 5, where a SGS computational platform for the thin film equation

have been developed, for the investigation of thin film dynamics.

• Recent development and results the Heterogeneous Multiscale Method makes

it the most promising framework for a multiscale treatment. Multiscale

coupling with a SGS thin film model is discussed in Chapter 6.

Although, thin film dynamics, experiments and numerical simulations on slug flow

are separate fields of study, for the phenomenon of deposition thin film slug flow they

are closely interacting in a synthesis. Perturbations from the micro-scale thin film can

effectively propagate up-scale and influence the macro-scale slug flow, it is a multiscale

phenomenon.

We notice that the theoretical models and numerical methods are ripe: this is capitalized

on in a multiscale coupling. By applying a multiscale coupling we want to increase

accuracy in the calculations, by accounting for the micro-scale perturbations, without a

dramatic sacrifice of computational time.

N

TF - Thin Film dynamics
N - Numercial simulations

MS

Developmemt in :

E - Experimental results

synthesis

MS - Multiscale coupling

E

TF

Figure 2.8: Synthesis between the different fields of study.
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Chapter 3

Theoretical basis and numerical

methods

The objective of this thesis is to establish a qualitative knowledge of the slug flow when

the height of the liquid film formed between the wall and bubble interface is very small.

The laws of hydrodynamics govern the gross picture with slug flow in a pipe. In the parts

of the domain where the film is in the order of nano meters new forces appear between

the interface of the fluid film and the wall. These new forces are not covered by hydro

dynamics, and often referred to as a disjoining pressure. Molecular dynamics describe

these forces by the intermolecular interaction between the molecules in gas, liquid and

solid.

The fact that the theory behind hydro dynamics and molecular dynamics is well separated

they are described separately. The theoretical section is divided into three parts, where

the last subsection is devoted to the Long Wave theory for thin films. It merges both

hydro dynamics and molecular dynamics theory to capture the dual nature of thin film

dynamics.
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3.1 Theoretical basis

The structure of the theoretical basis is given:

1. Intermolecular and surface forces

- Van der Waals and repulsive intermolecular forces

- Surface forces

- Surface and adhesion energies

2. Macroscopic theory of two phase flow

- Multiphase flow phenomena

- Governing Navier-Stokes equations

- Micro-channel effects

3. Thin film dynamics

- Long Wave Theory

3.1.1 Intermolecular and surface forces

Many phenomena can be adequately explained without to the need to explicitly take into

account intermolecular forces, even though they are always present. All-important forces

should be implicitly accounted for through property and macro-representation. This does

not always hold, and the intellectual challenge lies in determining where one needs to in-

clude a microscopic model in the phenomena. The effect of micro-scale forces on a macro

scale phenomena is clearly shown in [14]. A nanoscopicly treated surface of a spherical

object released into a liquid pond, prove that the microscopic liquid-surface interaction

makes a crucial impact on the macroscopic behavior if it leaves a splash or ”plop”. The

phenomena inherits a multiscale nature.

The most important intermolecular and surface forces for thin film are discussed here.

The theories are taken from the book of Israelachvili [22] which I would like to refer to

for a more thorough and extended discussion.

3.1.1.1 Van der Waals forces and repulsive intermolecular forces

Different forces can appear between molecules, as electrostatic interaction involving charged

or dipolar molecules. These forces are influenced by orientation and charge within each
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molecule. Dispersion force is like gravity in continuum mechanics, always present be-

tween molecules even neutral ones, and plays perhaps the most important role in the Van

der Waals forces. Here some of the most important effects from the dispersion force are

summarized taken from [22]:

1. ”They are long-range forces and, depending on the situation, can be effective from

large distances (greater than 10nm) down to interatomic spacing (about 0.2nm)

2. These forces may be repulsive or attractive, and in general the dispersion forces

between two molecules or large particles does not follow a simple power law.

3. Dispersion forces not only bring molecules together but also tend to mutually align

or orient them, though this orienting effect is usually weak.

4. The dispersion interaction of two bodies in affected by the presence of other bodies

nearby. This is known as non-additive of an interaction.”

The dispersion force is originating from quantum mechanics. Consider a neutral atom,

with a zero time average dipole momentum. At an instantaneous time there exists a dipole

moment due to the shift of positions of the electrons around the nuclear proton. This

instantaneous fluctuating dipole momentum is generating an electric field, which polarizes

the nearby (neutral) atom, generating a dipole momentum in it. As a consequence the

two dipole interaction induce an instantaneous attractive force between the two atoms,

dispersion force. From quantum mechanical perturbation theory London (1937) derived

an expression for the dispersion forces or London dispersion forces,

w(r) =
−Cdisp

r6
(3.1)

r is the distance to the nearby atom. In more general terms the net Van der Waals forces

consist of three parts for interaction of polar molecules, induction forces Cind, orientation

forces Corient and dispersion forces Cdisp:

wV DW (r) = −CV DW

r6
= − [Cind + Corient + Cdisp]

r6

= −
[(u2

1α02 + u2
2α01) +

u2
1u2

2

3kT
+ 3α01α02hν1ν2

2(ν1+ν2)
]

(4πε0)2r6
.

(3.2)

Where the α0 is the polarizabilities of molecule 1 and 2, ε0 is the dielectric permittivity

u is the instantaneous dipole moment, h is Planck constant and ν is electron orbiting

frequency. London theory has two shortcomings with the assumption of just one ion-

ization potential per atom/molecule and it cannot describe molecular interaction in a
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solvent. McLachlan (1963) gathered the orientation, induction and dispersion forces in

one equation also valid for molecular interaction in solvents.

w(r) = − 6kT

(4πε0)2r6

∞∑
n=0,1,2,...

′

α1(iνn)α2(iνn)

ε2
3(iνn)

(3.3)

iνn is the imaginary frequency,
′
in the summation is for the zero frequency n = 0 that

needs to be multiplied by 0.5. This equation covers the whole spectrum of frequencies

to obtain the total polarizability effect, and it is also valid for molecular interaction in

a solvents medium. The dispersion forces are in general exceeding the dipole dependent

induction and orientation effects except for small highly polar molecules such as water.

It should also be noted that both McLachlans and London‘s theory is only valid for sep-

aration of molecules larger then atomic separation r & 0.2nm.

Retardation effects originate from the same mechanism as attractive dispersion forces.

Considering two neutral atoms with, zero time averaged dipole moment, separated by a

substantial distance. One of them has a fluctuating dipole moment and the time for the

electric field to reach the second atom and return becomes comparable to the time of the

fluctuating dipole moment. As this electric field returns the orientation of the dipole mo-

ment is changed and less favorable to an attractive interaction. This is called retardation

effect or in terms of dispersion forces, retarded force.

Repulsive forces play a dominating role at very small interatomic distances as electron

clouds overlap and strong repulsive forces arise. Usually these forces have been labeled:

exchange repulsion, hard-core repulsion, steric repulsion, Born repulsion (for ions). Un-

like dispersion forces the short range repulsion forces do not have a general description.

Instead several empirical functions have been proposed to describe their dependence with

distance. They seem all to be satisfactory as long as they have a steep rising repulsion

at small separations. By summing both attractive and repulsive forces on can obtain a

intermolecular pair potential. The most known and widely used of these pair potentials

is the Lennard-Jones potential or ”6-12” potential given;

w(r) =
A

r12
− B

r6
= 4ε[

σ

r12
− σ

r6
]. (3.4)

The σ is a cut-off length, one should note that it is different from the molecular diameter.

The first term is a repulsive (power law) potential and second term originates from the

Van der Waals dispersion forces from London‘s theory. w(r) = 0 at r = σ is the distance

where the attractive and repulsive forces are even. Minimum energy is w(r) = −ε with

contribution from the attractive Van der Waals, −2ε. Eq.(3.4) is simple and widely used,

22



even though it can not be proved as rigorously as the Van der Waals potential. It is

expected that the repulsion potential would in reality be higher than the order of 12 and

the London theory underestimate the Van der Waals term since it only accounts for a

single absorption frequency. Results from experiments on typical Lennard-Jones fluids

(apolar fluids) match the potential well.

3.1.1.2 Surface forces

The discussion so far has been limited to molecule-molecule interaction; here the analogy

is extended for forces between surfaces and interfaces. For two adjacent bodies one may

sum the energies of all atoms in one body with all the atoms in the second body to obtain

a ”two-body” potential for an atom at the surface. The Van der Waals interatomic pair

potential strongly decays between neighboring atoms, to the inverse power of six. Clearly

the Van der Waals potential between macroscopic bodies decays much slower than the

interatomic pair potential Figure 3.1 so it can be effective over larger separations and

their interaction energy is proportional to their size.

ρ1 and ρ2 are the number of atoms per volume (atom density) in the bodies, C is

the coefficient in the atom-atom pair potential and A is the Hamaker constant here in

conventional form from Hamaker(1937).

A = π2Cρ1ρ2. (3.5)

The Hamaker constant does in a large extent determine the behavior of the Van der

Waals forces between macroscopic bodies. Usually the Hamaker constant is in the order

of ∼ ±(10−19 − 10−20), by knowing its value and the distance between the bodies their

potential can be calculated. It is a puzzle that we still can not explain the Hamaker

constant in detail, strictly speaking it is never truly a constant, but changes with the

separation distance D. Still a great deal of insight is needed to explain its behavior and

then intermolecular forces.

Lifshitz (1956) proposed a theory for interacting macro bodies, which completely avoids

the problem with additive. The atomic structure is neglected and the (continuous) in-

teraction force between the two bodies is determined from continuous bulk properties

as refraction index and dielectric constant. The theory springs out from quantum field

theory, and was adopted late in the scientific community due to its complexity.

Israelachvili showed Van der Waals interaction energy between a molecule or small particle
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Figure 3.1: Non retarded Van der Waals forces for different geometries with pair wise

additive. Hamaker constant A calculated from eq.(3.5), taken from [22].

1 in a medium 3 with the surface medium 2 can readily be written as:

W (D) = −πCρ2

6D3

= −3kTa1
3

2D3

∑′

[
ε1(iνn)− ε3(iνn)

ε1(iνn) + 2ε3(iνn)
][
ε2(iνn)− ε3(iνn)

ε2(iνn) + ε3(iνn)
]

≈ −Aa1
3

3D3
.

(3.6)

The intermolecular potentials that have so far been discussed are always present in

a system. For ionic solutes or highly polar molecules also electrostatic or double layer

repulsion forces can play an important role. Electrostatic ”double layer” forces can emerge

in two different ways: either from ionization (or dissociation) of surface groups or by

adsorption (binding) of ions on the previously uncharged surface. These electrostatic

forces can be both attractive and repulsive depending on the charges of the surfaces and

24



can be dominating. Derjaguin and Landau, Verwey and Overbeek proposed a theory for

including both van der Waals and double layer repulsion forces. This is called the DLVO

theory.

3.1.1.3 Surface and adhesion energies

Several different phenomena arise from the surface energies γ between phases, where γ

is usually referred to as surface tension. Surface energies originate from intermolecular

forces between two media, for two identical media W = −A/12πd2. Consider the case

with two media and then by performing a pair wise summation of all molecules one would

obtain two additional terms:

W = −constant +
A

12πD0
2 . (3.7)

Where the first term arises from the cohesive bulk energy with the atoms of their imme-

diate neighbors. The second term, which is always positive, originates from unsaturated

”bonds” at the two surfaces. Consider the case with air suspended in water. Water

molecules feel attraction from their neighbor water molecules. At the interface there are

a reduced number of molecules for the water molecules to ”bind” with, since the amount

of liquid molecules (water) exceed the number of gas molecules (air). This process is

energetically unfavorable. Energy is needed to transport molecules from the bulk to the

interface. Creation of a new surface is energetically costly and the fluid system will try to

minimize the surface area as seen in the second term. Which is the reason for the spherical

shape of a gas suspended in a liquid. Same analogy is true for immiscible liquids.

The energy needed to separate to different media, from contact to infinity is referred to

as the work of adhesion, if they are similar it is the work of cohesion. Surface energies

are an effect of the adhesion.

The description above is a phenomenological description of surface tension. The same

description is extended mathematically by the Gibbs-Helmholz law for free energy from

thermodynamics, which is defined by the enthalpy S, temprature T and internal energy

U in the system. Gibbs law is given,

G = TS + U. (3.8)

Surface tension is defined,

γ =

(
∂G

∂A

)
T,P

(3.9)

where the temperature T and pressure p is constant. All thermo dynamical systems tend

to the equilibrium state by minimizing the free Gibbs energy in the system. As a conse-

quence the surface will try to minimize its area by creating a spherical shape.
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Three phase contact line dynamics is a problem for the interaction of multiple phases. For

instance consider a droplet lying on a surface with a surrounding vapor. This treatment

of the contact angle have been described by Young‘s or Young-Duprè‘s equation.

Young‘s equation: γ12 + γ2 cos θ0 = γ1. (3.10)

Young-Duprè‘s equation: γ2 (1 + cos θ0) = W12. (3.11)

The angle between the contact point and droplet interface is the contact angle, which

is also used as a macroscopic variable to determine if the liquids wet the solid. As is

seen from the Figure 3.2 the contact line dynamic is a microscopic problem where at the

contact point are governed by molecular interaction. As the drop does not move this is

referred to as a static contact angle. It the droplet should move in time this referred to

as dynamic contact angle.
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Figure 3.2: Static contact line from [22].

3.1.2 Theory of multiphase flow

Historically the research on single phase flow has been extensive compared to multiphase

flow. This has given us a great insight and knowledge in even complex single phase

flow phenomena like (for some cases of) turbulent flow. Qualitative knowledge of the

multiphase flow pattern can often be of crucial importance as determining turbulent

behavior in single phase flow. The multiphase flow patterns often appear where there is
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both heat and mass transfer. In the picture one can see the flow pattern in a circular

vertical pipe; from finely dispersed flow, slug flow and annular flow.

Figure 3.3: Multiphase flow pattern in a circular vertical pipe, experiments from Prasser

et al. FZR.

3.1.2.1 Governing equations single phase flow

The Navier-Stokes equations are today well accepted as the solution for macroscopic flow

phenomena in fluid mechanics. Here the discussion is limited to the case where the flow

is assumed to be incompressible, adiabatic and laminar. Incompressibility means that

the density is constant and not effected by pressure. This then neglects compressibility

effects. The cases are adiabatic which implies that there is no heat transfer. Laminar

flow is a term for flow with stable, structured flow pattern (streamlines) and with no

typical separation of time and length scales. The Reynolds number is used as a measure

to determine if the flow is laminar or turbulent:

Re =
ρuL

µ
. (3.12)

A usual threshold for laminar single phase flow in a pipe is that Re < 2300. The com-

plexity of laminar flow is incomparable with the case of turbulent flow. Phenomenological

27



the turbulent flow phenomenon is depending on geometry, it is inertia driven, the struc-

ture of the flow is partly stochastic and with a large transfer of momentum. It has an

unsteady nature (never steady state) with small and large eddies that can be separated

in both time and space. The smallest whirls (eddies) are down to the Kolmogorov dis-

sipating scales, and the largest eddies are up to several order of magnitude larger. In

the governing equations the disturbance in the flow must be accounted for. New highly

non-linear terms originate from the disturbances, where especially the Reynolds stresses

play an important role. The Reynolds stresses (6 new terms) along with the other new

terms generate a closure problem, the presence of more unknowns than equations creates

the need for turbulence modeling. In this thesis the Reynolds numbers are so small that

the flow is assumed laminar. Here are the governing equations for laminar incompressible

flow continuity and momentum conservation:

∇ · u = 0 (3.13)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p +∇ · 2µS + F. (3.14)

The S or Sij is the rate of deformation tensor also used the viscous stress tensor 2µSij:

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (3.15)

The F is typically a body force term that comes from additional body forces as the grav-

itational force or the surface tension force.

The Laplac pressure is often used to describe the pressure at the interface connected to

the constant surface tension coefficient and curvature. This is a macroscopic or measur-

able surface tension force. The pressure difference is the jump between the bubble and

surrounding pressure. Young-Laplace formula defined,

ps = p2 − p1 = ∆p = σκ (3.16)

κ is the interfacial curvature. As for the case of slug flow in a channel or a rising (buoy-

ancy driven ρb < ρl) bubble suppressed a liquid medium, there is a different curvature

between the tail and front of the bubble. As a consequence there is a different pressure

at the tail and front generated by the Laplace pressure.

Considering the change in free energy by expanding a curved surface following the analogy

of Gibbs law, one obtains the same Young-Laplace equation.
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3.1.2.2 Definitions and modeling of two-phase flow

Some of the basic concepts and terms in two phase flow will be discussed here. As well

as a short introduction to the approach on the conservation laws for two phase flow.

Usually the amount of liquid or gas that are in the domain plays an important role.

The void fraction is the variable that defines this quantity and 0 ≤ α ≤ 1. To obtain the

void fraction α different averaging operations can be performed as (also valid for other

variables): cross section averaging eq.(3.17), volumetric averaging, time averaging.

Cross section area averaging operator in space for a generic quantity, for the given phase

k:

< fk >k=
1

Ak

∫
Ak

fkdA. (3.17)

This gives then the cross section averaged void fraction for the given phases:

< αG >= αG =
AG

AL + AG

. (3.18)

There can be a number of different velocities that can be defined. The different phases

will in general not have the same velocity, so that there can be a relative velocity between

them.

True velocity or velocity uG and uL is the instantaneous velocity of the phases, which is

the actual speed they are traveling.

Superficial velocity or volumetric flux jG and jL are based on the true velocity multiplied

with the void fraction of the phase. Their physical interpretation is the velocity of each

phase as if they were flowing each alone,

jG = αG · uG. (3.19)

The total local superficial velocity is:

j = jL + jG. (3.20)

The averaged quantities are as well used, < jG >,< jL >,< uG >,< uL > Also the velocity

ratio or slip-ratio is a commonly used term given:

S =
< jG >G

< jL >L

. (3.21)

The above Section 3.1.2.1 considered the governing conservation equations for single phase

flow. There exist also an exact formulation of the two phase flow equations based on the

Navier-Stokes equations. For the two phase flow description the evolution of the fields

(velocity, pressure, temperature) are required for both phases as well as a prediction of
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the geometry of the interface. These equations are laborious and for most phenomena

unpractical. A short description of some of the modeling approaches for two phase flow

will be described: two-fluid approach, mixture model and field models. The equations

and their rigorous derivations are out of the scope of this thesis.

Two-fluid formulation is based on treating each fluid as separate media through six equa-

tions. It is based a probabilistic approach on the void fraction of the local phase. In reality

the phases are separated and interact together in a symbiosis with interfacial transfer of

momentum (shear) and energy. As in the for case of single phase turbulence described,

new closure terms are needed in the equations. These closure laws are interfacial mass,

momentum and energy exchange.

Mixture model is based on only one set of equations for the mixture. No information can

be subtracted about the interfacial geometry, and no exchange of mass, momentum and

energy over the interface are considered. This means that the evolution of the mixture is

externally set and does not evolve freely.

Multifield models are based on the conservation equations, but the idea is to divide the

flow into different fields. From the perspective of multifield model annular flow would

consist of three fields: film flow, droplet and vapor. Closure of the model is based on

the knowledge from single phase flow. The multifield model works best for flow patters

where the phases are relatively uncoupled. Closely coupled flows as bubbly flow or mist

flow needs a more complex closure relationship (interfacial shear and mass transfer). The

model predicts poorly intermittent flows as slug flow.

3.1.2.3 Micro-channel effects

At this point the discussion has not included the effect of micro channels compared to

larger channels. The term micro-channel is in it self a bit blurry, what defines the threshold

for what is or is not a micro channel? Bretherton [8] showed analytically that the rise

velocity of elongated bubbles in a sealed liquid capillary vanishes for

Bo =
ρgd2

σ
< 3.368. (3.22)

This implies that for air-water the diameter should be less than 5mm to be considered

as a micro channel. The correlation is not perfect since the geometry or viscosity is not

accounted for. Based on experimental evidence the correlation holds well as there is a

significant deviation for channels of air-water with d ∼ 5mm in agreement with eq.(3.22).

Effects from the viscous (∼ ρµ/d) and interfacial (∼ σ/d) stress are scaled by the inverse of

the diameter and considered dominating. The inertia (∼ ρu2) and gravitational (∼ ρgH)

stresses are often neglected. Gihaasen et al. [2] equivalently showed that, given the
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Laplace length scale for micro-channel

λ =
σ√
g∆ρ

(3.23)

one should not have D < 0.3λ, to be insensitive to channel orientation. The Laplace

length scale is the ratio between a capillary length scale and the gravitational length

scale.

3.1.3 Long Wave Theory

Long Wave Theory (LWT) or lubrication theory is one approach, which is explored to

describe and understand thin film dynamics. The LWT is an asymptotic expansion of

the governing equations for the study of thin film. This approach is based on reduction

of the governing equations and boundary conditions. This simplification often reduces

the equations into a single nonlinear partial differential equation formulated in terms of

local film thickness. Other unknowns like velocity, temperature and pressure are ob-

tained by functional solution of the differential equations. This simplification removes the

well-known complexity of free boundary problem. Nonetheless the asymptotic reduced

equations inherit a highly nonlinear nature with higher order spatial derivatives. A Linear

Stability Theory (LST) been applied to more easily investigate the equations. The LST

is concerned with the behavior and effect of perturbations in the equation. Initially, LWT

assumes that the instability is of long wave, which means that the length of the initial

disturbance in longitudinal direction is much larger than the film height. Consequently

the disturbance h = h0 + h′, h � h′. So the disturbances are small, compared with the

mean film height. By inserting h = h0 + h′ in the governing film equation for LWT and

linearizing in primed quantities one obtain the linear stability equation. Separate solution

for perturbations in time and space is sought by typically assuming a known nature of

the disturbance

h′ = exp(ikx + st) (3.24)

where both coefficients are independent of x and t. These are a complete set of ”natural”

modes that, that can be used to represent and believed to describe any disturbance. Using

this in the linear equations one obtain a characteristic equation for s, in terms of wave

numbers. Depending on the nature of s it is possible to predict if the perturbations will

grow or they will be damped. If they are decaying (damped) the film will obtain a steady

state and no film rupture. On the other hand, should they grow they are believed to

rupture the film. In the case of film rupture it is of interest to obtain the most unstable

wave number. This mode is presumed to be the dominant in the rupture process. The

validity of the LST have been argued in literature since there seem to be a discrepancy
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between results from the nonlinear equations compared with the results from the LST.

Nonlinearities are especially important near film rupture.

Intermolecular forces are important when the film becomes < 1000Å. Dealing with Van

der Waals, repulsive and electro static forces in the film equations means that they need

to be modeled. As discussed by [22] the distance between the solid and the interface

governs these forces. The forces appear in the film equations as new additional source

terms. The nature of the effective Hamaker constant, liquid and solid media are crucial

and determining for the effects of the intermolecular forces. A correct representation is a

bottle neck for obtaining a correct evolution of the fluid interface motion and rupture time.

Different models for electrostatic forces, Lennard-Jones potential and Van der Waals

forces are reported in literature. All usually inherit the standard Van der Waals term

from Ruckstein and Jain [23], φ = A′

6πh3 . A′ is the Hamaker constant. Long range molec-

ular forces usually imply the Van der Waals forces which are presumed important in the

rang of, 100 < h < 1000Å. It should though be noted that also electrostatic double layer

forces can also be effective over a relative long range. The dimensional film equation is

defined

µ∂th−
1

3
∂x[h

3∂x(φ− σ∂2
xh)] = 0. (3.25)

The first term is representing a pseudo viscous unsteady force, the second term is excess

intermolecular forces (modeled in φ) and the last term is stabilizing surface tension force

due to local curvature. Different ways have been approached to model φ and some are

mentioned in the review [30].
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3.1.4 Summary

The theoretical basis of intermolecular forces shows that dispersion forces are always

present between molecules, where the most important contribution is from the Van der

Waals forces. Van der Waals forces can be significant between macroscopic bodies, as the

sum of the intermolecular forces translates into an interbody force, that can either attract

or repel adjacent bodies.

A macroscopic flow phenomenon is described by the governing Navier Stoke‘s equations

i.e. hydrodynamics. Although the theoretical foundation exists, the equations are la-

borious and unsolvable without simplification and additional closure models. Different

methods have been pursued in CMFD, interface tracking methods (one fluid formulation)

are the most well developed and widely applied. Two types of interface tracking methods

are applied in this thesis: VOF and Level Set method.

Thin film dynamics (h < 100nm) inherits a nature that can be partly described by both

of the two theories: molecular dynamics and hydrodynamics. In the Long Wave Theory

(LWT) these two are merged so that effects form both theories can be accounted for. The

LWT shows maturity and is seen as an prospective avenue that is further pursued in this

thesis. Chapter 5 shows results from, a developed computational platform for the thin

film equation the LWT.

Microscopic forces

Macroscopic theory

thin film dynamics

Long Wave theory,

Figure 3.4: Basic forces and macroscopic theory are merged into LWT.
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3.2 Numerical methods

For many problems there exist a set of governing equations, which are very difficult or

impossible to solve analytically for real cases. This is the case of the Navier-Stokes equa-

tions. For such problems a discrete numerical solutions are often sought, by applying

a mesh that contains discrete points where the information is defined. By interpolating

between the points (Finite difference method) or between the faces a very close approx-

imation to the analytical solution can be obtained, depending on the mesh spacing and

the order of the scheme.

With the increase in CPU power the feasibility and use of Computational Multi Fluid

Dynamics (CMFD) have expanded. Historically the use of numerical methods has been

hindered by the CPU time, and experiments have rather been performed. In recent years

this trend has shifted into a more broadened use of numerical methods in both industry

and academy. The development and commercialization of CMFD codes have with grow-

ing CPU power shifted the economical costs as well it is now often cheaper to perform

numerical simulations than performing experiments. Numerical simulations and physical

experiments are together in a symbiosis. Good numerical simulations rest on experimental

results, since results from numerical simulations always needs validation. By validating

the results against experimental results, one can look at small scale features from the

CFD results in which could not be visible in experiments. Physical insight on what is

happening on small scale, can extend the knowledge about the large phenomena.

In this thesis, CMFD has been used as a tool to obtain insight in the slug flow phe-

nomena in a micro channel. This section is devoted to the numerical approach where

some of the basic concepts are discussed as well as methods and algorithms in multiphase

flow, Volume of Fluid 3.2.2.1 and Level Set 3.2.2.2.

3.2.1 Finite Volume Method

There are different methods for solving the conservation equations. Two methods that are

often used are: the Finite Volume Method (FVM) and Finite Element Method (FEM).

FEM is not as widely applied as FVM in CFD. The strength of the FEM is the use of

unstructured grids, which makes it easier to apply the method for complex geometries,

and the method is often used for calculation in structural mechanics. Both the codes

(FLUENT and TransAT) used in this thesis are based on the FVM, and for this reason

a short description of the method is given.
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The numerical domain consist of a grid of several discrete points, these points define

small finite Control Volumes (CV). The FVM employs the conservation equations and for

each of the finite CV in the domain. The discrete equations are conserving all variables

in the finite control volume, just as the original equations. This is done by applying an

integral form of the conservation equations for every CV and the volume integral gives us

that U (mean cell value) is represented at some point within the cell.

∫
Ω

udV = UΩ (3.26)

∂

∂t
(UΩ) +

∮
S

F (u) · ndS = 0. (3.27)

Where the F(u) is a flux tensor and corresponding scalar equation for U can be obtained.

∂

∂t
(UΩ) +

∮
S

F (u) · n dS = 0. (3.28)

3.2.1.1 Discretization schemes and time integration methods

The accuracy of the numerical solution depends strongly on the mesh spacing, order of

the scheme and time integration method. Some of the schemes that have been used are

described, for interested readers I would refer to the book by Ferziger and Pèric [18].

The order of the scheme is usually determined by a Taylor expansion to find the leading

discretization error also called the truncation error. The magnitude of the truncation

error shows the accuracy of the scheme compared to the analytical solution. By enlarging

the stencil (number of faces in the interpolation) the order of the scheme increases along

with the accuracy. To show the methodology a first order upwind scheme is explained,

for a cell centered FVM, with the flux estimated over the cell sides. The cell-value that

is used for the calculations depends on the direction of the convection (fluxes) and the

surface normal vector S. So the flux is calculated from the upstream cell (Ωi,j) over the

side AB, Figure 3.5.

fAB = f(UAB) (3.29)

with

UAB = Ui,j if (A · S) > 0 (outbound flux) (3.30)

UAB = Ui+1,j if (A · S) < 0 (inbound flux). (3.31)
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For the calculations performed higher order spatial discretization schemes have been

applied as the Quadratic Upwind Interpolation for Convective Kinetics (QUICK), Mono-

tone Upstream-Centered Scheme for Conservation Laws (MUSCL), Hybrid Linear / Parabolic

Approximation(HLPA) and Weighted Essentially Non-Oscillatory (WENO, for the Level

Set function). The QUICK scheme is a third order scheme in the convection direction,

and can inherit a small numerical overshoot. It takes three cell faces into its interpolation,

as seen below, depending if there is inbound or outbound flux. For an equidistant mesh

the stencil for the QUICK scheme:

S

stencil for A · S ≥ 0

stencil for A · S < 0
x

y

D B

AC

Ωi−1,j Ωi,j Ωi+1,j Ωi+2,j

Figure 3.5: Stencil for QUICK scheme on an equidistant mesh.

UAB =
6

8
Ui,j +

3

8
Ui+1,j −

1

8
Ui−1,j (3.32)

An implicit or also called backward Euler method has been applied for the time in-

tegration of the conservation equations for the FLUENT calculations We are considering

the solution at the new time level and it is solved through an iterative method.

ui
n+1 = ui

n + ∆tF (tn+1, ui
n+1). (3.33)

For the Volume of Fluid transport equation for void fraction is solved through an explicit

or forward Euler method.

ui
n+1 = ui

n + ∆tF (tn, ui
n). (3.34)

Also a Runge Kutta method has been applied for the calculations in TransAT. The Runge

Kutta method is using the point between tn and tn+1. The method consists of several

steps to obtain the solution at the next time step. For the 4th order Runge Kutta the first

half tn+ 1
2

predictor step is an explicit Euler, and the corrector step is an implicit Euler.

The full step tn is taken by a midpoint predictor step, followed by a Simpson‘s rule for

the corrector step.

ui∗
n+ 1

2 = ui
n +

∆t

2
F (tn, ui

n) (3.35)
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ui∗∗
n+ 1

2 = ui
n +

∆t

2
F (tn+ 1

2
, ui∗

n+ 1
2 ) (3.36)

ui∗
n+1 = ui

n + ∆tF (tn+ 1
2
, ui∗∗

n+ 1
2 ) (3.37)

ui
n+1 = ui

n +
∆t

6

(
F (tn, ui

n) + F (tn+ 1
2
, ui∗

n+ 1
2 ) + 2F (tn+ 1

2
, ui∗∗

n+ 1
2 ) + F (tn+1, ui∗

n+1)
)

.

(3.38)

Compared to multipoint methods, Runge-Kutta methods are of higher accuracy at the

same order and the method inherits a larger stability domain. The problem is that it gets

more expensive, since the derivatives of an n order scheme need to be calculated n-times

at every step, especially for higher-order schemes compared to multipoint methods.

As the integration methods have been shortly discussed special attention needs to be

devoted to the stability of these schemes. To avoid numerical instabilities it is of great

importance that the stability criterion of the scheme is not violated. A Von Neumann

stability analysis can be performed to determine the stability criteria for the different

schemes, [18]. Special attention need to be taken for the Explicit methods, which are

sensitive to time-step size. The Courant-Friedrich Leavy (CFL) number is often used as

a measure to avoid numerical instabilities. The CFL number,

CFL =
a∆t

∆x
(3.39)

express the ratio between the physical advection a and the numerical advection. For

explicit methods the CFL number is strongly restricted, CFL ≤ 1. Implicit methods can

deal with higher time stepping without having numerical instabilities. A violation of the

CFL condition occurs when the physical advection, a, is traveling numerically over more

than a cell during one time step of the calculations, Figure 3.6.

3.2.1.2 Velocity-pressure coupling

When solving the incompressible Navier-Stokes equations numerically there can occur a

problem with the coupling between of velocity and pressure. This problem with velocity

and pressure coupling can give unphysical solutions, such as an oscillating pressure field.

Part of the cause for this is that velocity is coupled in two equations, contrary to the

pressure that is appearing just in the momentum equation. So the pressure term has no

reference equation to ensure that the right pressure is obtained.
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x̄ + at

xi xi+1xi−1

t
n

t
n+1

Definition of the CFL-number

a∆t

P (xi, t
n+1)

∆x

characteristic

Figure 3.6: Sketch of CFL-number definition on a three point scheme, defining numerical

and physical advection characteristics.
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Figure 3.7: Equidistant cell centered and cell vertex meshes, (�) indicates where the

variables are defined.

To avoid a velocity-pressure coupling a staggered mesh can be applied, where the

pressure can be stored at the cell center and the velocity at the cell edges. The use of

staggered grids can make the computations more complicated, and limit the geometry

of the grid to be quadratic. The PRESsure Staggered Option (PRESTO) has been ap-

plied for the FLUENT calculation along with a Pressure-Implicit Split Operator (PISO).

TransAT calculations are performed with the use of standard dicretization and a Semi

Implicit Momentum Pressure Linked Equations (SIMPLE).
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Pressure−velocity coupling
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Figure 3.8: Staggered equidistant mesh,(→) indicates velocity in x-direction, velocity (↑)
y-direction and (�) indicates where the pressure are defined.

The velocity-pressure coupling is attained with internal iterations in the SIMPLE

algorithm, that was developed in the end of the 70‘s by Patankar. The continuity and

momentum equations are linearized with,

ui
n = ui

n−1 + ∆ui (3.40)

and neglecting the non-linear term ∆ui∆uj. By some manipulation of the equations we

obtain the equations for the pressure and velocity correction. u∗ is the intermediate so-

lution of the velocity. The corrections are defined as ui
′
= un

i − ui
n∗ and p

′
= pn − pn−1.

Below is a calculation steps for the SIMPLE algorithm, and similar methods taken from

[18].

1. ”Start the calculation for the fields at the new time tn+1 using the latest solution

ui
n and pn as starting estimates for ui

n+1 and pn+1.

2. Assemble and solve the linerarized algebraic equation systems for the velocity com-

ponents (momentum equation) to obtain un∗.

3. Assemble and solve the pressure-correction equation to obtain, p
′
.

4. Correct the velocity and pressure to obtain the velocity field ui
n, which satisfies the

continuity equation, and the new pressure pn.

For the PISO algorithm, solve the second pressure-correction equation and correct

both velocity and pressure again.

For SIMPLER, solve the pressure equation for pn after un
i is obtained above.
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5. Return to step 2 and repeat, using ui
m and pn as improved estimates for ui

n+1 and

pn+1, until all corrections are negligibly small.

6. Advance to the next time step.”

There is also other algorithms that can be used such as the SIMPLE-Revised (SIM-

PLER) or SIMLPE-Consistent (SIMPLEC), that are well known and extensively used.

3.2.2 Approaches on Computational Multi Fluid Dynamics

There are several different methodologies used to describe the evolution of multiphase

flow. The methods discussed in 3.1.2.2 have been extended to numerical simulations.

The different types of models can be separated into field models, interface tracking meth-

ods and cellular models. Field models as the multifield models (or two equation model)

solve for a void in the numerical domain, two-fluid formulation. Closure relations be-

tween the different phases or fields are crucial to correctly model and predict the transfer

of mass, energy and momentum between the phases. These models typically do not ex-

plicitly predict the evolving interface between the phases, but solve the different equations

depending on a preset field or phase. Many of these models are used in system codes as

for reactor safety in RELAP or as in the pipe flow code OLGA.

Interface tracking methods are developed in the context of one-fluid formulation where

a single set of equations are solved. These methods are applied when it is important to

qualitatively determine the topology of the interface. A scalar variable is introduced in

the numerical domain and solved in an additional transport equation, which is function-

ing as a indicator between the different phases. Consequently this means that properties

are changing through the domain depending on the phase indicator. Changes in these

properties are accounted for by the advection of the scalar variable. Exchange between

the phases as mass and capillary forces are accounted for by introducing new source term

in the equations.

Volume of Fluid, Level Set and Front-tracking are the most applied methods. VOF and

Level Set will be discussed in more detail later in this section. A front tracking or Marker

method is tracking the discrete particles (markers) that evolve with the flow. Two differ-

ent methods can be applied Volume markers (markers are present in the whole domain)

or Surface markers (at the interface). For two phase flow Surface markers are more ac-

curate, since the interface is finely resolved. Volume markers can inherit problems with

distortion of markers and may need re-meshing. Since the interface is not directly linked

to the grid spacing but the number particles, this model can handle well interfaces with
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complex geometries. What limits the accuracy is then the fact that the variable (velocity,

pressure) scales for the fine structures at the interface is not resolved without the use of

fine grids. A problem is that the particles can cluster together (need re-meshing) and that

the model is unfeasible to deal with interface separation. Interface separation would for

instance mean bubble break-up.

Lattice Boltzmann spring out from Lattice Gas Cellular Automata theory. The difference

is that the Lattice Boltzmann Method is solving for an averaged population of the parti-

cles. Particles jump and collide from site to site, and are represented by a variable. The

Lattice Boltzmann method has several attractive features as exact mass and momentum

conservation. The method is also more physical than other numerical methods (as VOF

and Level Set). Its downside is the strong restrictions in density ratio and the fact that

it can only deal with low Re number flow.

Phase field methods as Lattice Boltzman method inherit a more physical realism. The

different phases are described through a potential field or the free energy in the system.

Additional equations for the free energy is solved and linked to the NS equations. This

method has been strongly restricted by computational time earlier, but recent progress

of Cahn-Hillard NS modeling show promising results, [46].

3.2.2.1 Volume of Fluid method

Volume of Fluid (VOF) is an interface tracking method that originates from Hirt and

Nichols [20] in the early eighties, and is implemented in the CFD code FLUENT. VOF is

a one-fluid formulation, which solves a single set of conservation equations. The different

phases are distinguished by a coloring function, and is labeled volume fraction or area

fraction for 2D. The volume fraction has no physical meaning, but is rather a numerical

property. It is a scalar with the purpose to color the domain so that the different phases

can be identified. If we are in the domain of liquid c = 1 or gas c = 0, and the interface

is present between 0 < c < 1.

The VOF algorithm consists of two steps: reconstruction and propagation of the

interface. There exist different reconstruction methods for the interface. Most known are

the 1st order Simple Line Interface Calculation (SLIC, using only horizontal and vertical

lines) and 2nd order Piecewise Linear Interface Calculation (PLIC).

Of crucial importance in the reconstruction is to determine the segment orientation

in the interfacial cells. This is equivalent with calculating the unit normal vector n to

the segment. By the normal vector and the volume fraction one can uniquely specify the

straight line in the cell (PLIC). The reconstructed interface consist then of a number of
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Figure 3.9: Volume of fluid methodology, by coloring of the domain by the volume fraction.
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Figure 3.10: Interface reconstruction method, Piecewise Linear Interface Calculation

(PLIC).

aligned segments. The accuracy of the reconstruction is crucial to determine the topol-

ogy of the interface. Once the interface has been reconstructed the second step is the

propagation of the volume fraction. The interface is advected with the flow field through

the numerical domain. An additional scalar transport equation for the volume fraction is

solved.
∂c

∂t
+ u · ∇c = 0. (3.41)

It is advected along one spatial direction at time, by either a fractional step or operator

split method. This is computationally more expensive (reconstruction and solution of an

additional transport equation), if compared with single phase flow calculations.

The interface that separates the two media has a value of c between 0 and 1. This
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means that the interface is diffused or smeared over a number of computational cells, and

the sharpness of the interface strongly depends on the mesh size ∆x and ∆y. The fluid

and gas properties (µ, ν, ρ) are coupled through the void fraction in the domain. This

can either be arithmetically or harmonically averaged. The VOF method implemented in

FLUENT is using an arithmetic averaging method.

µ = c1 · µ1 + (1− c1) µ2. (3.42)

Other properties like density ρ are calculated in a similar manner. For the treatment of

the surface tension force at the interface the Continuum Surface Force (CSF) model is

implemented. This method will be discussed in more detail in 3.2.2.3.

VOF inherits a nature that has positive and negative sides. Starting with the aspects

that make VOF attractive for two-phase flow simulations, we can say that it naturally

conserves mass and topological changes like break-up does not need special treatment.

Even though it should be noted that scale separation can then be a problem. The accu-

racy of the VOF method is limited for the case where the curvature κ becomes comparable

with the grid spacing ∆x. Then all detailed information would be lost for length scales less

than ∆x. Since the interface is only depending on the local values of the volume fraction

the method can be fairly easily parallelized. Negative features: spurious velocity currents

and smearing of material properties. The spurious velocity currents are a well-known

drawback with the VOF method. They originate from the calculation of the surface ten-

sion force acting on the interface. More specifically it is an effect of the calculation of

the interfacial curvature in the CSF model. Since the interface is smeared over several

cells the curvature becomes ”wiggly” or oscillatory. As a consequence, of the local change

in curvature, spurious currents arise. The spurious currents in VOF can be reduced by

employing a smoothing kernel function which takes more cell faces in its calculations, but

it is computational expensive. Also the coupling of the material properties between the

gas and liquid acts as a drawback to the method. Averaging eq.(3.42) between the phases

implies applying incorrect material properties in the interfacial cells. This generates a

numerical error, especially sever for high density and viscosity ratios. The outcome is

incorrect shear stress between the two phases, a more thorough discussion of this problem

is given in Section 4.3. This influences the flow pattern and then topology of the gas

phase. Which then causes a global influence in the calculations.

3.2.2.2 Level Set method

As VOF the Level Set method is a one fluid model and is a similar method for interface

tracking. The Level Set method was developed by Sethian and Osher [31], and imple-
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mented in TransAT. A Level Set φ coloring function is applied to indicate the different

phases. It is a geometrical function and continuous through the computational domain.

The interface is explicitly located where the Level Set function is equal zero, φ = 0. Ma-

terial properties (µ,ρ) are based on φ and smoothed across the interface by a Heavyside

function, H(φ). This implies that there is an amount of smearing of the properties. The

φ function is advected with the velocity field and an additional transport equation for the

Level Set function must be solved.

∂φ

∂t
+ u · ∇φ = 0. (3.43)

The Level Set function is in practice a signed distance function from the interface φ = 0.

This creates a problem for the Level Set method as the φ function is advected in time.

As the topology of the interface changes in time, the Level Set function gets distorted.

To avoid the distortion of the Level Set function it is reinitialized at every time step.

Actually it is re-distancing the function near the interface φ = 0 setting the level, so that

|∇φ|φ=0 = 1. (3.44)

This re-distancing problem is solved in TransAT by satisfying (Sussman 1994):

∂d

∂t̃
− sgn(φ) (1− |∇d|) = 0

d(x, 0) = φ(x, t)

(3.45)

t̃ is a pseudo time step and sgn(φ) = 2H(x)− 1 is a sign function. The distance function

is to be iterated until |∇d| = 1 and then correct/update the φ field, d(x, ε) = φ(x, t),

where ε is the elapsed time to reach convergence(, Lakehal [41]). Since eq.(3.43) is a hy-

perbolic equation there is no problems associated with imposing new boundary conditions

(initial value) by reinitializing the φ function at every time step. This also assures that

the interfacial thickness is uniform throughout the calculations.

Surface tension forces are modeled with the CSF model, and will be discussed in more

detail in the next section.

Different aspects with the Level Set method makes it appealing for two-phase flow calcu-

lations. Since the interface is located at φ = 0 there is no complications involved with the

calculation of the curvature. This removes to a large extent the problem, as discussed for

VOF, with spurious currents. As the interface is explicitly located, and that the material

properties are smeared over few cells (1− 2), it is feasible to couple the (almost) correct

shear stress between the phases. It should though be noted that, as with VOF, even a

small amount of smearing of material properties generates a numerical error. Although
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Level Set has many appealing features, it also inherits unfavorable sides. Its most im-

portant disadvantage is mass loss. This comes as a consequence of the re-initialization of

the φ field and it needs to be monitored closely. Even a small amount of mass loss can

influence the accuracy in the simulation results. Especially cases with rapidly changing

topology, and with curvature κ ∼ ∆x can cause sever mass loss. Accuracy of the method

is limited for the case where the curvature κ becomes comparable with the grid spacing

∆x.

3.2.2.3 Continuum Surface Force model

Both FLUENT and TransAT use the surface tension forces model developed by Brackbill

et. al. [7]. Brackbill et. al. wanted to specially address the accuracy of the modeling of

the normal boundary condition at the interface between two inviscid incompressible fluids,

Fsa = F
(n)
sa . For non-inviscid cases the total surface force also consist of a tangential con-

tribution: Fsa = F
(n)
sa + F

(t)
sa . They deduced from the Young-Laplace equation eq.(3.16)

(interfacial pressure boundary condition), a normal force per unit interfacial area A at

point xs. Given for an inviscid fluids:

Fs(xs) = σκ(xs)n̂(xs) (3.46)

where n̂(xs) is the unit normal to A at the point xs. By exploiting the use of a coloring

function in multiphase flow simulations a smooth variation is obtained by interpolation.

This gives the finite width of the interface h which is comparable to the grid resolution.

This replaces the boundary condition problem into a continuous model. The surface

tension force is then reformulated into a volume force.

Figure 3.11: Schematic drawing of the transition region for the CSF model taken from

[7].

Color function contours for media 1 c1 and 2 c2, c̃ are the contours in the interfacial
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area where c1 ≤ c̃ ≤ c2. The interfacial transition region has a finite width h. The normals

(at cell vertices) n̂ = ∇c̃
|∇c̃| in the region h and the surface tension force FSV (given at cell

center) from the divergence of n̂.

FSV(x) = σκ(x)
∇c̃(x)

[c]
(3.47)

[c] is the color jump by, c2 − c1. A summary of the properties for the FSV is taken from

[7]:

1. ”The volume force in the transition region, where the color varies smoothly from

c1 to c2, is designed to simulate the surface pressure on the interface between the

fluids. Thus, the line integral of FSV across the transition region, e.g., from P1 to

P2 in Figure 3.11, is approximately equal to the conventional surface pressure xs is

the interface point on the line P1P2):∫ P2

P1

Fsv(x)d (n̂ · x)∫ c2

c1

σκ(x)n̂(x)
dc̃(x)

[c]

' σκ(xs)n̂(xs) for h > 0.

(3.48)

2. In the limit that the width of the transition region in a direction to the interface

goes to zero (h→ 0), the volume force becomes

lim
h→0

FSV(x)δ[n̂(xs) · (x− xs)], (3.49)

which yield the conventional surface pressure given ∆p = σκ ”

The curvature is evaluated by the color function so that,

κ = − (∇ · n̂) , (3.50)

where n̂ is the unit normal to the surface and the unit normal is given from the color

function in the interfacial area:

n̂(x) =
∇c̃(x)

|∇c̃(x)|
. (3.51)

So that κ ·∇c̃ = −n (∇ · ñ). ”Since ĉ is only non-zero in the transition region, the surface

volume force is non-zero only in the transition region.”

Calculations of the curvature and unit normal vector are done typically by the adja-

cent four values of c̃. FSV is introduced on the face-center or cell vertex depending on

the scheme.
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3.2.2.4 Remarks on the CMFD methods

VOF and Level Set are the two most widely applied interface tracking methods and cur-

rent state-of-the-art. To depict both methods performance two CMFD codes have been

applied, FLUENT (VOF) and TransAT (Level Set). In spite of the fact that both of

these methods have previously been applied for slug flow simulations, no comprehensive

comparison have been found reported in literature. By conducting such a comparison

we are numerically validating the codes. Our aim is to identify numerical artifacts and

suggest mitigative strategies.

Although their methodologies are similar they inherit a substantial difference, as the

Level Set creates explicitly a ”sharp” interface while VOF has no recollection of exact

interface location. Smearing of the interface in VOF generates spurious currents, which

originate form the calculation of the interfacial curvature in the CSF model. Spurious

currents are a well-known drawback with the VOF method. The most important disad-

vantage with the Level Set method is mass loss due to the re-initialization of the Level

Set function.

We notice the most attractive properties of the methods: VOF is naturally conserv-

ing mass. Level Set locates explicitly the interface. This diminishes spurious currents and

makes it more comprehensible to couple properties between the phases.

The positive and negative features in the VOF and Level Set method are summarized in

Figure 3.12.

Method: POSITIVE:

”Sharp” interface

Negligible spurious

Spurious currents

Smearing of material
properties (min 2 cells)

Conserving mass

Mass loss

Smearing of material

CPU expensive

currents
CPU expensive

properties (min 1 cell)

NEGATIVE:

Level Set

VOF

Figure 3.12: Positive and negative features with the VOF and Level Set method.
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Chapter 4

Evaluation of existing computational

technology

4.1 Technical approach used for simulations of slug

flow in a micro channel

A problem statement with gas and liquid flow in an already flowing pipe is studied with

the material properties for air and water. The reason for the chosen problem is that it

is interesting to study a case where a natural generation of slugs should appear. This

problem statement is similar to the one studied experimentally by Pan et. al. [12]. A

sketch of the initial condition for the cases used in for the simulations, Figure 4.1. The

Figure 4.1: Initial condition of the simulations.

length of the pipe is long compared to the diameter, for FLUENT L
D

= 30 and TransAT
L
D
∼ 24. This large domain is chosen to obtain a far-field effect in the axial direction. For

the simulations an equidistant grid has been applied. The Table 4.1 show the different

numerical schemes applied, like pressure-velocity (P-V) coupling methods:
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Code Time int. Momentum P-V decoupling P-V definition

FLUENT Implicit 1storder QUICK PISO PRESTO

TransAT RK 2ndorder HLPA SIMPLE standard

Table 4.1: Applied numerical schemes and methods.

The discretization and treatment of the color function (C-F) are gathered in a table.

Code C-F treatment C-F time int. Cells CFLmax

FLUENT PLIC Explicit 1storder 108000 0.1

TransAT WENO RK 2ndorder ∼ 86400 0.2

Table 4.2: Applied numerical schemes and treatment of color function (C-F), number of

cells and max CFL number.

4.1.1 Comparison of simulation results with FLUENT and TransAT

The results for the three different cases are gathered and compared in the pictures below.

What is clear is that there is a substantial difference in the result. These FLUENT calcu-

lations clearly show the needs for special treatment of the near wall cells as a numerical

dry-out occur. This dry-out is a numerical artifact as the length scale for the fluid film (h)

becomes less than the grid spacing, h < ∆x. All information about length scales less than

the grid spacing is lost. Physically the film height is ”pushed” towards the pipe wall by

the capillary forces, typically for low Ca number. As the volume fraction (for the case of

FLUENT) smears the wall a numerical dry-out occur. This effect generates a unphysical

solution, it is a numerical artifact. Figure 4.2, 4.4 clearly visualize the numerical dry-out.

Starting with the initial conditions and material properties:

Case UL [m
s
] UG [m

s
] ρG [ kg

m3 ] ρL [ kg
m3 ] µG [ kg

ms
] µl [ kg

ms
] D [m] σ[N

m
] α [-]

1 1.11 0.66 1.22 998 1.78 · 10−5 0.0010 10−3 0.0727 0.25

2 1.11 0.66 1.22 998 1.78 · 10−5 0.0010 10−3 0.0727 0.36

3 1.11 1.57 1.22 998 1.78 · 10−5 0.0010 10−3 0.0727 0.49

Table 4.3: Material properties, Case 1− 3.
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(a) T= 8.32 · 10−3s.

(b) T= 9.22 · 10−3s.

(c) T= 1.67 · 10−2s.

(d) T= 1.96 · 10−2s.

Figure 4.2: α = 0.25 FLUENT calculations, Case 1.

(a) T= 0.613 · 10−2s.

(b) T= 0.844 · 10−2s.

(c) T= 0.169 · 10−1s.

(d) T= 0.223 · 10−1s.

Figure 4.3: α = 0.25 TransAT calculations, Case 1.
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(a) T= 1.48 · 10−2s.

(b) T= 1.84 · 10−2s.

(c) T= 2.75 · 10−2s.

(d) T= 3.45 · 10−2s.

Figure 4.4: α = 0.36 FLUENT calculations, Case 2.

(a) T= 0.706 · 10−2s.

(b) T= 0.971 · 10−1s.

(c) T= 0.170 · 10−1s.

(d) T= 0.197 · 10−1s.

Figure 4.5: α = 0.36 TransAT calculations, Case 2.
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(a) T= 1.186 · 10−3s.

(b) T= 1.380 · 10−2s.

(c) T= 1.416 · 10−2s.

(d) T= 1.65 · 10−2s.

Figure 4.6: α = 0.49 FLUENT calculations, Case 3.

(a) T= 0.684 · 10−2s.

(b) T= 0.101 · 10−1s.

(c) T= 0.147 · 10−1s.

(d) T= 0.169 · 10−1s.

Figure 4.7: α = 0.49 TransAT calculations, Case 3.

4.2 Adaptive Mesh Refinement in FLUENT

FLUENT compared to TransAT has a larger extent of features implemented, which we

are capitalizing on. One of these features is mesh adaptation. The FLUENT calcula-

tions showed in Section 4 that a numerical dry-out occur. To overcome this problem an

Adaptive Mesh Refinement (AMR) method has been applied. AMR method is a classical

approach on multiscale phenomena. The AMR method is refining the mesh where the

spatial volume fraction gradient is non zero, ∂c
∂xi

= 0. So that the refined mesh is moving

with the interface motion. Since the mesh is refined only at the interface the mesh topol-

ogy are un-structured, although the mesh containing the interfacial cells is structured.

The advantage with this method is that we can obtain a much sharper interface. So that

small interfacial scales can be captured without the dramatic increase of computational
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time, it would imply on an equidistant mesh with the same mesh resolution. A higher

order spatial discretization scheme has been applied as well as a 2ndorder reconstruction

scheme.

Code C-F treatment C-F time int. Cells CFLmax

FLUENT CISAM Explicit 1storder Initial∼ 108000 0.1− 0.2

Table 4.4: Numerical schemes and treatment of color function (C-F), number of cells and

max CFL number for AMR simulations.

Code Time int. Momentum P-V decoupling P-V definition

FLUENT Implicit 1storder MUSCL PISO PRESTO

Table 4.5: Numerical schemes and methods for AMR simulations.

(a) T= 0.315 · 10−3s.

(b) T= 0.3368 · 10−3s.

Figure 4.8: FLUENT AMR results for α = 0.25, Case 1.

(a) T= 0.315 · 10−3s.

(b) T= 0.3368 · 10−3s.

Figure 4.9: FLUENT AMR results for α = 0.36, Case 2.

The results from the AMR simulations showed a disturbing effect, no slug flow is

generated. It must be concluded that the previous results obtained with FLUENT were

not converged in space. This implies that the results are mesh dependent. Slug generation

on an uniform equidistant mesh is believed to be an effect of spurious current from the

CSF model for the surface tension forces. By applying an AMR method the length scales

for the spurious currents are separated from the ”coarse” mesh. This prevents a global
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influence of the spurious currents on the simulations, and localizes the effect Figure 4.10.

Generations of spurious currents are clearly visible in the figure as small local numerical

interfacial disturbances.

Figure 4.10: Localized effects of spurious currents localized with ← ↓ in the refined

interfacial area, pressure contours.

4.2.1 AMR simulation with disturbed liquid inlet flow

A way to numerically investigate the effects of interfacial disturbances is to introduce a

disturbance in the flow at the liquid inlet. To establish if the imposed disturbance then

could generate an interfacial instability that would grow into bubble pinch-off and then

slug flow. Tbreak is the time for the first slug generation from the TransAT simulations for

Case 1, inlet liquid velocity given,

UL = 1.11 + β sin(
π · t

Tbreak

). (4.1)

FLUENT does not generate these interfacial instabilities ”naturally” which would be

physical explainable. This is believed to be an effect of the smearing of the material

properties in the interfacial cells along with the shear coupling. This will be discussed in

more detail in 4.3.
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(a) T= 1.01 · 10−2s.

(b) T= 1.50 · 10−2s.

(c) T= 1.82 · 10−2s.

(d) T= 2.22 · 10−2s.

Figure 4.11: FLUENT AMR results for α = 0.25, β = 0.1, Case 1.

(a) T= 3.68 · 10−3s.

(b) T= 9.13 · 10−3s.

(c) T= 1.26 · 10−2s.

(d) T= 1.63 · 10−2s.

Figure 4.12: FLUENT AMR results for α = 0.25, β = 0.2, Case 1.

(a) T= 3.65 · 10−3s.

(b) T= 7.01 · 10−3s.

(c) T= 1.00 · 10−2s.

(d) T= 1.30 · 10−2s.

Figure 4.13: FLUENT AMR results α = 0.25, β = 0.5, Case 1.
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4.2.2 Adaptation method in FLUENT

AMR is a promising method that for free surface flows can increase the accuracy and

sharpness of the interfacial topology without compromising too much CPU time. It

inherits some bad features, one of these is the increasing residual at every adaptation.

This influences the amount of iterations needed to make the code converge. When looking

at the adaptations done in the FLUENT calculations another small feature is noticed.

Around the interface there is supposed to be a structured mesh with spacing 0.25∆x. For

curved surfaces FLUENT is too ”cheap” in its adaptation method. A perfect adaptation

method would not only refine the interfacial cells but also the adjacent cell. This is not

required in the adaptation in FLUENT. So that for curved surfaces numerical ”spikes”

spring out from the interface. This is caused by the adaptation method, as an effect of

small interfacial cell adjacent to a large cell. A small numerical error is expected from

this. This error does not seem to grow or influence the simulation results significantly.

(a) Phase contours of curved surface. (b) Filled phase contours of curved surface.

Figure 4.14: Close up on the adaptation in FLUENT on curved surface.

4.3 Critical comments on Diffuse Interface Tracking

Methods

Both the VOF and Level Set methods belong to the family of interface tracking methods,

that smear/diffuse the material properties over an interface of finite width. As a con-

sequence, the shear stress and surface tension forces are smeared over the same region.

Even though the region might seem to be of insignificant width, it can become a source of

a plausible numerical errors. It is expected that the issue becomes severe for the problem

studied in the Thesis, namely a classical stratified flow problem, where transfer of shear
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stress is of crucial importance.

In a short communication Nourgaliev et al. [28] discussed previously published results

from stratified flow CMFD results compared against a novel sharp interface tracking

technology. Their study suggests that with the current state-of-the-art diffuse interface

methods treatment it is problematic to achieve accurate description of interfacial topolo-

gies, as correct wave number for stratified flow. They relate such outcome to the property

of diffuse interface.

A diversity in the obtained results from the CMFD codes highlight similar problems

experienced by Nourgaliev et al. [28]. As to mitigate the numerical shortcomings and

unknown artifacts the results were carefully investigated.

4.3.1 Comparison of FLUENT (VOF) and TransAT (Level Set)

At an early stage of this study a substantial difference between Fluent and TransAT

simulation results was observed. These dissimilarities were visible in the topology and

generation of flow field. Since already TransAT has been validated against experimental

results in [26], and that the generated flow field seemed physical, a thorough investigation

of the FLUENT simulations were conducted. We wanted to explain the shortcomings

in the VOF in FLUENT. Three important findings are believed to cause the lack of

reproduction of physics:

• Diffusion of parameters in the interfacial cells.

• Arithmetical averaging of material properties.

• Imposed parallel flow in the interfacial cells.

FLUENT diffuses the interface over 2 cells, and within these cells the parameters are

smeared. The parameters can be treated in different ways within the interfacial mixed

cells, either arithmetical or harmonically averaging. In either way a considerable numer-

ical error emanates from averaging of material properties for high viscosity and density

ratios. The magnitude of the numerical errors corresponds to the viscosity and density

ratio.

FLUENT is arithmetically averaging the material properties, based on the volume frac-

tion. Arithmetical averaging is favourable when the interface is perpendicular to the flow,

Zaleski et. al. [6] Harmonically averaging is optimal when the interface is parallel with

the flow. Arithmetical averaging with parallel interface and flow is inappropriate, since
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no interfacial orientation can then be extracted. Expected recirculation patterns were not

produced with FLUENT and part of the cause for this is due to the averaging. The author

has experience from FLUENT VOF simulations, with high viscosity ratios (µL

µG
= 50) and

density ratios ( ρL

ρG
= 100), which produced expected recirculation patters. The difference

compared with the present problem statement is that the interface was perpendicular to

the flow direction, Appendix A. As a consequence of the diffusion and averaging, there

exists almost no interfacial shear stress in the FLUENT simulations. In spite the fact that

a shear flow is imposed in the initial condition and at the inlets, a parallel flow prevails in

the mixed cells, so the two phases become ”over coupled”. This makes a dramatic impact

on the shear stress constrain given by

µL
∂(ui)L

∂xj

= µG
∂(ui)G

∂xj

(4.2)

between the two phases. In other words, the shear stress constrain is fulfilled by no trans-

fer of shear stress. It implies that µL
∂(ui)L

∂xj
= µG

∂(ui)G

∂xj
≈ 0. This makes it unfeasible to

generate physical sound results, due to substantial errors in the velocity distribution. As

a consequence it directly influences the two phase flow topology.

To illustrate the consequences of these effects a cross section of a slug in an AMR FLUENT

simulation has been extracted. In Figure 4.15 a line visualizes the extracted cross section

in the domain. Also the velocities, derivative of the velocity (in radial direction) and vis-

cosity distribution in the cross section are plotted. A plausible ”correct” velocity profile

is added with red and blue lines with the assumption of a linear velocity profile. From the

”correct” profile the shear stress is calculated, keeping in mind that (τL)FLUENT ≈ 0 is

estimated by FLUENT. The interfacial shear stress was calculated with the assumptions

above: τL = µL
∂(ui)L

∂xj
= µL

∂U
∂y

= −5.77Pa, proved to be far from zero.

Keeping the same analogy we show the effect of property averaging in the mixed cells.

We extract the viscosity from FLUENT calculations and apply it for the shear stress with

the ”correct” velocity derivatives: τL,FLUENT = µL(∂U
∂y

)predicted = −2.875Pa. As foreseen

a large error, by 50%, is caused by the averaging alone even with the ”correct” velocity

derivative.

TransAT smears the interface within one cell. Since TransAT‘s interfacial diffusion is

less and as the shear can be directly calculated at the interface φ = 0, a more correct flow

field is generated. The experienced recirculation patterns will not only influence the slug

generation, but most certainly the bubble behaviour. Calculation of a correct recircula-

tion pattern is of crucial importance for the diabatic case. It will have a profound effect

on the temperature profile and creating an incorrect heat removal.
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(a) Section of bubble, line where variable properties

are extracted.

(b) Plotted velocity, with ”predicted” (velocity red

and blue lines).

(c) Plotted derivative axial velocity in radial direc-

tion.

(d) Plotted viscosity in radial direction.

Figure 4.15: Effect on interfacial smearing of properties.
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The generation of slug flow was briefly considered, but it needs further clarification. At

the interface a disturbance generates a local curvature change, this affects the surface

tension force. Inertia ”stretches” the interface as the momentum (pressure) forces and

surface tension force level out each other. As the surface tension forces becomes less than

the momentum and inertia forces the interface pinches off and a slug is generated. For

numerical simulations it is of importance to quantify if the generated interfacial distur-

bances are numerical or physical. Parasitic currents are assumed to cause slug flow on a

”coarse” mesh in FLUENT, as this numerical disturbance gives a global influence on the

results. it makes FLUENT unfeasible for this problem statement. The influence of dis-

turbances and slug flow generation are shown by the introduction of a small disturbance

in the liquid inlet in the AMR FLUENT simulations.

TransAT generates naturally a slug flow. A hypothesis is suggested for slug generation

based on the insight gained from the numerical experiments in TransAT.

Slug generation: 4.3.1 Generation of slug flow in a gas flowing into a moving liquid is

assumed to be the effect of interfacial instabilities. These instabilities can be driven by:

shear (recirculation), shear-inertia, and inertia.

The rupture process is very different in FLUENT and TransAT. This is mainly due

to the effect of smearing of the surface tension force. This will be discussed further

in 4.3.2, but since FLUENT VOF smears the force over a larger region of mixed cells

hV OF > hLS compared with TransAT Level Set. It implies that the surface tension force

is considerably different in Fluent and TransAT, in which creates a different rupture pro-

cess. The author concludes that surface tension forces are wrongly estimated in FLUENT.

By comparing the performance between FLUENT and TransAT it is clear that TransAT

is generating better results. FLUENT fails in delivering physically sound results, in con-

trary to TransAT. Computational time for the simulations is also substantially less with

TransAT, even with higher residual (three magnitudes) it is roughly 30% less than in

FLUENT. It is in general difficult to reach convergence with the VOF method in FLU-

ENT.

In summary we have identified and discussed some important ”unknown” numerical effects

in the CMFD platforms, FLUENT and TransAT. FLUENT is incapable at the current

status to deal with the horizontal slug flow phenomenon in a micro channel. Strong

spurious currents generate numerical artifacts and unphysical results. TransAT captures

the gross physics and is more suitable for simulations with the given problem statement.
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Although a small amount of interfacial smearing generates a source term for numerical

errors. The above evaluation of calculated results clearly suggests that sharp interface

method is needed in two-phase flow simulations to overcome this problem.

4.3.2 Critical comment to the Continuum Surface Force model

The surface tension force between two media is present at the interface of an infinitesimal

width. The CSF model is reformulating this force, or boundary condition, into a volume

force in the diffused interfacial cells through a coloring function. Main advantage of this

model is that it is general and numerically robust, and as in reality the surface tension

force peaks or converges as the width of the interface reduces.

Although it inherits sides that can make it unable to accurate predict the interfacial

forces. The model was originally developed for inviscid fluids, which means that the tan-

gential force contribution is neglected. This is not true for the problem statement in this

thesis. As observed already in the paper by Brackbill et al. [7] the oscillatory curvature

(from VOF in that paper) can generate spurious currents, see [7] page 364 Fig.5. This

numerical error can influence the global results in a numerical simulation, as seen from

the FLUENT calculations. Even though spurious currents are not the only problem. By

reformulating the surface tension force into a volume force we are automatically smearing

it in the region of the mixed cells. If we would sum all contributions in the computational

domain, we would come close to the analytical solution. Although, it does not correctly re-

produce the physics of the surface tension force that would peak at an infinitesimal width

as long as the interface has a finite width. In the CSF model it is smeared over several

cells. As an unavoidable consequence this influences the calculations. For cases where the

surface tension force needs to be accurately represented it fails to deliver. This is also the

cause for the unphysical break-up in the FLUENT simulations, since the surface forces are

diffused over the interfacial area. TransAT as well as FLUENT inherit numerical smear-

ing of the surface tension forces. It is though substantially less diffusive, so the force is

closer to the physical force (analytical solution). TransAT with Level Set is also profiting

on the explicitly located interface φ = 0, so that the calculation of the interfacial curva-

ture does not produce spurious currents. Comparing the two codes one acknowledge that

TransAT better captures the surface tension force, since it is less diffusive, than FLUENT.

Summarizing the findings we conclude that all diffuse interface tracking methods can

inherit a substantial error for surface tension calculations with the CSF model. The

simplification in the CSF model to treat both fluids as inviscid is only appropriate for

limited cases, and not a generally applicable assumption. The above evaluation of calcu-
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lated results clearly suggests that a sharp interface method is needed in two-phase flow

simulations to overcome this problem.

4.4 Numerical experiments on slug flow in TransAT

4.4.1 Parameter domain

The results from FLUENT calculations proved that it is not to be feasible for horizontal

slug flow simulations. TransAT produce reliable physical results and the results have

been careful investigated. Numerical simulations enable us to extract information from

small-scales that are not conceivable in experiments. These small- scale details can be

important to quantify for enhancement of engineering applications.

Buckinghams Pi-theorem has been applied to determine the similarity criteria (or non-

dimensional numbers). The non-dimensional numbers are useful to separate the different

effects. The Capillary number (Ca), Weber number (We) and Ohnesorge (Oh) number

are defined:

Capillary number: Ca =
µU

σ
. (4.3)

The Capillary number is expressing the ratio between viscous forces and surface tension

forces.

Weber number: We =
ρDU2

σ
. (4.4)

The Weber number is expressing the ratio between the fluids inertia forces and the surface

tension force.

Ohnesorge number: Oh =
Ca

We
1
2

=
µ√
ρσD

. (4.5)

The Ohnesorge number is expressing the ration between viscous force and surface tension-

inertia force.

Initial conditions and material properties:

62



Case UL [m
s
] UG [m

s
] ρG [ kg

m3 ] ρL [ kg
m3 ] µG [ kg

ms
] µL [ kg

ms
] D [m] σ[N

m
] α [-]

1 1.11 0.66 1.22 998 1.78 · 10−5 0.0010 10−3 0.0727 0.25

2 1.11 0.66 1.22 998 1.78 · 10−5 0.0010 10−3 0.0727 0.36

3 1.11 1.57 1.22 998 1.78 · 10−5 0.0010 10−3 0.0727 0.49

4 1.11 1.57 1.22 998 1.78 · 10−5 0.0010 10−3 0.0727 0.36

Table 4.6: Material properties, Case 1− 4.

Case UB [m
s
] S = UL

UG
CaG CaL CaB

1 1.54 1.68 0.00016 0.01531 0.0212

2 1.41 1.68 0.00016 0.01531 0.0194

3 1.27 0.707 0.00038 0.01531 0.0176

4 2.53 0.707 0.00038 0.01531 0.0350

Table 4.7: Bubble velocity, slip ratio and Capillary number, Case 1− 4.

Case WeG WeL WeB

1 0.00731 16.91 32.4

2 0.00731 16.91 27.2

3 0.04136 16.91 22.27

4 0.04136 16.91 88.18

Table 4.8: Weber number, Case 1− 4.

Case OhG OhL OhB

1 0.00189 0.00372 0.00372

2 0.00189 0.00372 0.00372

3 0.00118 0.00372 0.00372

4 0.00118 0.00372 0.00372

Table 4.9: Ohnesoge number, Case 1− 4.
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4.4.2 Numerical results and discussion

(a) T= 0.20394 · 10−2s. (b) T= 0.37228 · 10−2s.

(c) T= 0.1655 · 10−1s.

(d) T= 0.223 · 10−1s.

Figure 4.16: Contours of the densities with streamlines and isoline for φ = 0, Case 1.

(a) T= 0.20394 · 10−2s. (b) T= 0.37228 · 10−2s.

(c) T= 0.1655 · 10−1s.

Figure 4.17: Contours of the pressure with velocity vectors and isoline for φ = 0, Case 1.
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(a) T= 0.29394 · 10−2s. (b) T= 0.36176 · 10−2s.

(c) T= 0.2586 · 10−1s.

(d) 0.1971 · 10−1s.

Figure 4.18: Contours of the densities with streamlines and isoline for φ = 0, Case 2.

(a) T= 0.20394 · 10−2s. (b) T= 0.36176 · 10−2s.

(c) T= 0.2585 · 10−1s.

Figure 4.19: Contours of the pressure with velocity vectors and isoline for φ = 0, Case 2.

65



(a) T= 0.27806 · 10−2s. (b) T= 0.79577 · 10−2s.

(c) T= 0.1691 · 10−1s.

(d) = 0.1691 · 10−1s.

Figure 4.20: Contours of the densities with streamlines and isoline for φ = 0, Case 3.

(a) T= 0.17532 · 10−2s. (b) T= 0.79577 · 10−2s.

(c) T= 0.1691 · 10−1s.

Figure 4.21: Contours of the pressure with velocity vectors and isoline for φ = 0, Case 3.
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(a) T= 0.27806 · 10−2s. (b) T= 0.79577 · 10−2s.

(c) T= 0.79577 · 10−2s.

(d) 0.1565 · 10−1s.

Figure 4.22: Contours of the densities with streamlines and isoline for φ = 0, Case 4.

(a) T= 0.17532 · 10−2s. (b) T= 0.79577 · 10−2s.

(c) T= 0.6033 · 10−2s.

Figure 4.23: Contours of the pressure with velocity vectors and isoline for φ = 0, Case 4.

Four different cases have been examined with dissimilar inlet void fraction, velocity

and slip ratio. We want to quantify flow features as: recirculation pattern, flow field and

pressure drop. These aspects are visualized in the figures above and below.

Case 1 and 2 generates a bubbly flow pattern. As the bubbles travels downstream their

front and rear are contract and expand, a ”wobbling” nature. Case 2 shows that with

increasing inlet void fraction, the time and length to bubble pinch-off are prolonged.

Case 3 and 4 generates a slug flow pattern, elongated bubbles. Their topology are similar

to the experimental results from Pan et. al. [12], and they labeled these patterns in micro

channels as a ”slug train” pattern. Case 4 has a topological characteristics that are often

mentioned for slug flow, a comparison of Figure 2.3 shows striking similarities. The slug

has a smooth elliptic front with ”ripples” along the sides and a round rear.

The effective pipe pressure drop has been mapped together in Figure 4.24. It is ob-

served that each bubble generates a pressure drop. One can deduce that the pressure

drop correlates to the inlet void fraction, bubble length and bubble velocity.

67



Figure 4.24: Pressure drop in long pipe (∼ 24D) for Case 1− 4.

4.4.3 Remarks about the fidelity of TransAT

FLUENT VOF has already shown incapacities to generate accurate physical results for

thin film slug flow. Although TransAT generates physical sound results for macroscopic

slug flow, we suspect that within a certain parameter domain it will fail to deliver. Our

aim is here to depict the fidelity of TransAT.

A parameter domain of low Ca number has been generated in order to form a thin bound-

ing liquid film;

Case UL [m
s
] UG [m

s
] ρG [ kg

m3 ] ρL [ kg
m3 ] µG [ kg

ms
] µl [ kg

ms
] D [m] σ[N

m
] αi [-]

5 0.111 0.066 1.22 998 1.78 · 10−5 0.0010 10−3 0.0727 0.36

Table 4.10: Material properties, Case 5.

As the interface approaches the wall the bounding film is ”lost” in the wall adjacent

cell, and as a consequence a numerical dry out occur. The dry-out is a numerical artifact

as an effect of discrete grid spacing. The unphysical behavior can be observed immediately

as the dry-out takes place, as an instantaneous change in bubble topology. The fact that

the bounding lubricating film is lost causes the gas to get in direct contact with the wall.
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Case S = UL

UG
UB [m

s
] CaG CaL CaB

5 1.68 − 1.6 · 10−5 0.00153 −

Table 4.11: Bubble velocity, slip ratio and Capillary number, Case 5.

Case WeG WeL WeB

5 7.31 · 10−5 0.1691 −

Table 4.12: Weber number, Case 5.

Case OhG OhL OhB

5 0.00188 0.00372 −

Table 4.13: Ohnesoge number, Case 5.

This implies that the shear stress at the bubble interface and wall inherits a substantial

numerical error.

The results verify our suspicions about the fidelity of TransAT for thin film slug flow.

It demonstrates that special treatment is needed to adequately capture the physics in the

multiscale phenomenon thin film slug flow.
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(a) T= 0.2623 · 10−1s. (b) T= 0.2652 · 10−1s.

(c) T= 0.2891 · 10−1s.

(d) T= 0.293 · 10−1s.

Figure 4.25: Contours of the densities with streamlines and isoline for φ = 0, Case 5.

(a) T= 0.2623 · 10−1s. (b) T= 0.2652 · 10−1s.

(c) T= 0.2891 · 10−1s.

Figure 4.26: Contours of the densities with streamlines and isoline for φ = 0, Case 5.
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4.4.4 Multiscale phenomena in slug flow

Simulation results from both CMFD codes show that they fail to deliver physically sound

results for the multiscale phenomenon of thin film slug flow, Figure 4.2, 4.4, B.11. To

visualize clearly the multiscale nature of the phenomena a sketch is given.
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Macro scale - Slug flow

Meso scale

Micro scale - molecular scale

Figure 4.27: Multiscale problem in slug flow.

The problem statement has used material properties for air and water. If we make

the assumption of fused quartz as the pipe material, the effective Hamaker constant

would be A = 0.83 · 10−20. Molecular dynamics theory guarantees that the water film,

bounded by quartz and air, will never rupture. This implies for the isothermal case that

there will always be a film lubricating the pipe wall. The thin film can be resolved by

CMFD, but with a high computational cost. If the height h becomes less than 100nm

new intermolecular forces will determine the film topology. This makes CMFD simulations

unfeasible to capture the physics in the thin film. To capture the dual nature and influence

from the micro-scale on a macro-scale solver, a multiscale methodology is proposed. A

micro-scale solver is introduced as a Sub-grid Scale model for the microscopic thin film,

coupled with a macro-scale CMFD code. This preserves that perturbations from the

micro scale can propagate up scale and evolve on the macro-scale. This novel technique

for a multiscale coupling between a SGS thin film model and a CMFD code is developed

and further discussed in Chapter 6.
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Chapter 5

Development and evaluation of a

mechanistic micro-scale model for

thin film dynamics

The existing computational methods for multiphase flow (VOF, Level Set) simulations

failed to deliver accurate results for the multiscale phenomenon of thin film slug flow.

This proves the need for special treatment of the lubricating film formed between the

pipe wall and the bubble interface. To numerically study thin film slug flow a multiscale

approach is needed to obtain high fidelity simulations without the sacrifice of unreasonable

high computational time. In the spirit of multiscale methodology a coupling between the

micro/meso and macro scale is needed. A computational platform has been developed

to capture the physics of the micro/meso scale through the Long Wave Theory for thin

film dynamics. This advanced micro-scale model from LWT is proposed coupled with the

macro-scale CMFD model with a Level Set method (TransAT). By coupling the micro-

and macro-scale model the main tendencies or behavior from the micro scale can evolve on

the macro scale through a multiscale coupling. Multiscale methodology will be discussed

in detail in Chapter 6.

Sub-Grid Scale model

CMFD
Advanced computational

micro-scale thin film model

multiscale coupling

Macro-scale platform

Figure 5.1: Multiscale coupling between two developed computational platforms.
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Before going into the multiscale coupling methodology, validation and physical insight

are sought by investigating results obtained from the micro-scale thin film model. Both a

parametric study as well as a case study have been performed to determine the influence

of: retardation forces, antagonistic attractive forces, mean initial film height, Hamaker

constant.

5.1 Development of a computational platform for the

thin film equation

A computational platform for the dimensional 3.25 and non-dimensional 5.3 thin film

equation have been developed in MatLab. This is a 4th order stiff partial differential

equation in terms of local film thickness H, that has been solved numerically with a finite

difference method. Since the equation is stiff special care must be taken since it is sen-

sible to space and time stepping, it becomes easily numerically unstable. This is solved

by applying a Gear method for the time integration which has been reported with good

results in literature [24]. The Gear method is suitable for solving stiff partial differential

equations since it is adjusting size of the time stepping to avoid numerical instabilities.

Periodic boundary conditions have been applied at the axial ends (east and west).

5.2 Evaluation of the computational platform for the

non-dimensional thin film equation with inter-

molecular forces

The isothermal thin film model with inclusion of intermolecular forces has been chosen

to be appropriate for the present work. To determine the effect of antagonistic attractive

(Van der Waals) forces, stabilizing surface tension force and repulsive forces the non-

dimensional film equation have been investigated, following the analogy from Bruelbach

et. al. [9]. Starting point is the film equation eq.(3.25), that are non-dimensionalized.

Using S(a, b) = νah0
b to non-dimensionalize the equation a and b are parameters tuned to

make the terms non-dimensional in space. The non-dimension film height is given H = h
h0

where h0 is the initial mean film thickness, h is local film thickness. The non-dimensional

equation with the use of φ = A′

6πh3 is:

∂th +
A′

6πµ
∂x(

∂xh

h
) +

σ

3µ
∂x(h

3∂x
3h) = 0 (5.1)
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Substituting H = h
h0

,

∂tH +
A′

6πµ
∂x(

∂xH

H
) +

σ

3µ
∂x(H

3∂x
3H) = 0 (5.2)

Non-dimensionalizing the Hamaker terms and surface tension terms A = A′

6πµ
∗S(−2,−1) =

A′

6πµν2h0
, and C = σ

3µ
∗ S(−1, 1) = σh0

3µν
gives the non-dimensional film equation,

∂tH + A∂x(
∂xH

H
) + C∂x(H

3∂x
3H) = 0 (5.3)

similar to the one obtained in Burelbach et al. [9]. Scaling the equations with the help

of two scaling parameters, X = (A
C
)

1
2 x in space and T = A2

C
t in time, and by applying

the chain rule for the derivatives one obtain the scaled non-dimensional equations for film

height with constant surface tension coefficient and long range Van der Waals forces as in

[9], non-dimensional scaled film equation:

∂T H + ∂X(A
∂XH

H
) + ∂X(CH3∂X

3H) = 0 (5.4)

This is a 4th order stiff partial differential equation in terms of local film thickness H. The

non-dimensional film equation consist of three terms: pseudo viscous term, excess inter-

molecular forces and surface tension forces. φ is the intermolecular forces that contains

the sum of long range attractive (destabilizing) and repulsive (stabilizing) short range

potentials. Surface tension force is always trying to stabilize the film. For the validation

of the code the result for the non-dimensional isothermal thin film with intermolecular

Van der Waals potential Φ = AH−3 from [9] has been reproduced. With the use of the

constants in eq.(5.4) A = C ∼ 1 also used in [9], results from both film topology and

rupture time match well. In figure 5.2 the effect of long range Van der Waals forces are

obvious. The attractive long range forces accelerate the film toward the solid surface and

it results in film rupture. To state the effects of short range stabilizing repulsive forces a

typical Lennard-Jones potential defined,

φ = a3h
−3 − a9h

−9 (5.5)

has been investigated, similar to the one used by Mitlin and Petviashvili [27]. Mitlin and

Petviashvili [27] investigated Born repulsion in the film and the results showed kinetically

stable film structures or patterns. Including the non-dimentional form of eq.(5.5) in the

eq.(5.4) shows the effect of the repulsive forces. Kinetically stable patterns are generated

and the results coincide with the results obtain by Mitlin and Petviashvili et. al. [27].

A pseudo wetting behavior is experienced, as the system goes into equilibrium, where a

droplet resting on a thin liquid film of Hmin. A short analysis shows that the minimum film

height is depending on the ratio between the constants A3 and A9. For stable steady state
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Figure 5.2: Solution of the non-dimensional scaled film equation eq.(5.4) with Van der

Waals potential Φ = AH−3.

structures, ∂T H ' ∂X(CH3∂X
3H) ' 0 so that the attractive and repulsive intermolecular

forces are dominating.

⇒ A3Hmin
−3 − A9Hmin

−9 = 0

⇔ Hmin =

(
A3

A9

)− 1
6 (5.6)

The deviation can be due to the simplifications in the analysis above, although the

deviation seem to not vary significantly.

5.3 Evaluation of computational platform for the di-

mensional thin film equation with intermolecular

forces

The use of the developed microscopic model is to gain physical insight from the molec-

ular forces on the dimensional thin film. We can then also quantify typical time and
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Figure 5.3: Solution of the non-dimensional scaled film equation eq.(5.4) with Lennard-

Jones potential Φ = A3H
−3 − A9H

−9.

A3 A9 Hmin model Hmin analytical % deviation

1 0.1 0.593 0.681 12.9%

1 0.05 0.521 0.607 14.1%

1 0.01 0.393 0.464 15.3%

1 0.005 0.349 0.414 15.7%

1 0.001 0.265 0.316 16.1%

1 0.0005 0.236 0.282 16.3%

Table 5.1: Analytical and computed minimum film height with LJ-potential, Φ =

A3H
−3 − A9H

−9.

length scales from the computations that will be exploited in a multiscale coupling with

a macroscopic CMFD code. For this reasons some cases with physical properties have

been investigated with the computational thin film platform. It was also of importance

to demonstrate the fidelity with physical properties. Also for the purpose to validate the

derivation of the non-dimensional equation.
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Some of the reported applied physical quantities in the open literature for the study of

thin liquid films are listed in Table 5.3.

Author A′ [J ] µ [ kg
ms

] ν [m2

s
] σ [N

m
] ρ [ kg

m3 ] Film media

Bruelbach et al. [9] 10−20 2.88 · 10−4 3 ∗ 10−7 0.059 960 Water

Bruelbach et al [9] 10−20 2.88 · 10−4 5 ∗ 10−7 0.020 790 Ethanol

Mitlin et al.[27] −10−20 10−4 10−7 0.020 1000 Water like

Blossey et al. [4] 2.2(4) · 10−20 1200 - 0.0308 - Polystyrene (PS)

Table 5.2: Properties for media used for film study.

Parameters from Burelbach et al. [9] (water like fluid) have been applied, and as for the

case of the non-dimensional equation film rupture was experienced. The effective length

of the long range Van der Waals forces have been examined by consequently changing the

Hamaker constant A′.

Figure 5.4: Solution of the dimensional film equation eq.(3.25) with Van der Waals po-

tential φ = A′

6π
h−3, with different Hamaker constants A′ and hmean = 10nm.

The results show the effective attractive forces, and as the Hamaker constant increases
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the strong acceleration of the interface results in a steep rupture. As the Hamaker constant

is decreased the surface tension force starts stabilize the film. This is seen for A′ = 10−21

when the surface tension force flattens the film, and it transforms into a planar state.

Parameters from Blossey et al. [4] have also been investigated and a remarkable dewet-

ting scenario was captured. This morphology resemble hole formation in the dewetting,

and similarity can be drawn to the results obtained in [4]. The intermolecular forces have

been included in a model, for the potential with both an attractive and repulsive part,

that was proposed by Oron et. al. [30].

Figure 5.5: Solution of the dimensional film equation eq.(??), φ = a3h
−3−a4h

−4, hmean =

4.9nm.
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5.4 Findings

The advanced microscopic model shows that the interfacial dynamics of thin films can not

be solely explained by hydro dynamics, but new governing intermolecular forces starts to

influence the film as its film height decreases. Some of the results that have previously

been reported in literature are reproduced to validate the code. The obtained results

shows that the final thin film topology are strongly influenced by: material properties

(Hamaker constant), initial disturbance and mean film height, attractive and repulsive

forces.

By critically inspecting the LWT we became aware of some shortcomings that should

be noted. It is developed from a simplification of the Navier Stokes equations with its

boundary conditions, with inclusion of source terms from molecular dynamics. Inclusion

of source terms from molecular dynamics in hydrodynamics is questionable, since their

theoretical basis is well separated. To fully capture all the intermolecular effects the usage

of Hamaker constant and surface tension coefficient generate a plausible error, both these

constants are actually never truly constant. Additional equations or simulations at every

time step for the calculations of the Hamaker constant and surface tension coefficient

would increase its accuracy. This would imply the development of new models or use of

molecular dynamics simulations.

As film rupture takes place special treatment is needed as the film height approaches zero,

h → 0. The code is limited to discrete grid spacing and the physics down to the level

of molecular distances are not captured. To capture these physics an additional model is

needed to increase its fidelity.

The treatment of the surface is not in accordance with its molecular physics. The model

treats the surface as heterogeneous which never truly the case. Even a nano-scopically

treated surface will inherit ”hills” and ”valleys”. These impurities are of nanometric-scale

and will influence the film topology.

Although LWT posses some short-comings, it has proven capable to perform high fidelity

simulations for thin film dynamics. Simulation results obtained Figure 5.3 and in [4] co-

incide with experimental results [4]. This also proves that the theory is ripe and makes

it a prosperous avenue as a SGS thin film model, applicable for a multiscale coupling.
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Chapter 6

Development of a novel technology

and multiscale platform for coupling

of a Sub-Grid Scale thin film model

to a CMFD code

The investigation of the existing computational technology clearly shows that special

treatment is needed for the case of thin film slug flow. As the film decreases to length scales

that are less than the grid spacing h < ∆x a numerical dry out occurs. A computational

platform for a Sub-Grid Scale (SGS) model for the thin film dynamics is already developed.

A novel technique for the treatment of the multiscale phenomena with a SGS thin film

model coupled with a CMFD code is described and multiscale simulations from thin film

slug flow are presented.

Figure 6.1: Results from FLUENT and TransAT shows numerical dry-out.
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6.1 Hierarchy of descriptions for thin film Sub-Grid

Scale model coupled to a macro solver

The author could not report any findings in literature of previous attempts of a SGS

model for thin film slug flow. This is a new avenue that is pursued, that puts it at the

frontier of science. A schematic Figure 6.2 of the level of description or accuracy of the

microscopic length scales in the film that are captured with different film models coupled

with a CMFD are shown.

Figure 6.2: Hierarchy of micro thin film descriptions coupled to a macroscopic solver.

Different plausible models for the microscopic thin film have been proposed and ex-

amined by the author:

1. Model for free energy, local change of surface tension coefficient

- Coarse model.

- Possibility to use already implemented CSF model in both VOF and Level Set.

- Model dependent on local solid, liquid and gas material properties→capture different forces.

2. Additional source terms in NS equations as an integral length scale model for filtered

intermolecular and surface forces.

- Need to generate a model for length scales below a cut-off length.

- The model plays an important role in parts of the computational domain.
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- Model dependent on local solid, liquid and gas material properties→capture different forces.

3. Extracting and introducing advanced boundary conditions for local film height

by coupling microscopic model and CMFD Level Set platform.

- Extracting the important microscopic variable (local film height) from additional advanced

thin film SGS model.

- Coupling the microscopic model with the macroscopic computational platform through a

novel multiscale methodology.

- Exploiting the Level Set distance function to impose the local film height.

- Model dependent on local solid, liquid and gas material properties→capture different forces.

From these different branches the third (3.) proposed modelling approach was seen to

be the most prosperous in terms of generating accurate results for thin film slug flow.

Therefore the next section is devoted to further specification and explanation of the

methodology behind the multiscale coupling of a SGS model with a CMFD code.

6.2 Methodology and algorithm for a Sub-Grid Scale

model coupled to a CMFD platform

An advanced micro-scale computational platform has been developed for the dynamics

of the thin liquid film. This model derived from Long Wave theory, has been validated

against other published results. In the spirit of multiscale technology the goal is to

couple the micro-scale model with a macro-scale CMFD platform. This means extracting

quantities on the sub-grid level and ”prolong” them on to the macro solver. Since it

has been proved that the FLUENT with VOF code is unusable for such simulations the

TransAT code with Level Set has been chosen as an appropriate macroscopic solver. The

process of developing such an innovative computational platform was divided into three

subsequent steps:

1. Global minimum film height.

A necessary first step is to show that the Level Set distance function can be used for

such advanced boundary conditions. A numerical algorithm will control the preset

minimum film height by imposing a distance from the wall by using the Level Set

function.

∇φ = φwall(h) = constant. (6.1)

This implies that when the film height in the domain becomes less than the minimum

film height the minimum film height will be imposed. This solves the problem with
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numerical dry out at the wall, and generates a physical solution with a lubricating

thin film.

2. Correlation based film height with internal iteration loop for correct cal-

culation of the interfacial shear stress.

In the calculations a bubble velocity is assumed from the first break up and bubble

generation by using the correlations

UB =
Lbubble

1
f

. (6.2)

Lbubble is bubble length and f is the frequency of bubble generation. This is set as a

reference bubble velocity in the calculations and the minimum film height is based

on the correlation eq.(2.3). An iterative procedure is proposed for the calculation

of the correct interfacial shear stress.
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Iterative procedure for correct interfacial shear:

Parameters:

VTF = velocity from thin film model on the interface.

UAD = velocity in second adjacent wall normal cell.

τTF,g/l = interface shear stress thin film model, gas/liquid.

µl/g = viscosity liquid/gas.

δ = film height.

hAD = height from wall to the node in second adjacent wall normal cell.

Continuum stress constraint: τTF,g = µg
∂Ug

∂y
= µl

∂Ul

∂y
= τTF,l.

�����������
�����������
�����������
�����������

δ

hAD

Schematich drawing of thin film shear stress model

interface

wall

VTF

UAD

Figure 6.3: Schematic drawing of near wall cell and adjacent wall normal cell containing

the interface.

84



(a) Calculate bubble velocity from eq.(6.2) UB.

(b) Calculate film height from correlation δ ⇒ f
(
Ca(UB)

)
, eq.(2.3)

(c) The interface is filling the near wall cell.

(d) Presume that we have a correct interface velocity, in the near wall cell at

previous time-step (n-1) V n
TF = V n−1

TF , initial guess.

(e) Calculate the new shear stress from the gas on the interface.

τTF,g = µg
Un

AD − V n
TF

hAD − δ
= interface shear stress gas. (6.3)

(f) Check if the stress obtained satisfy the continuum mechanics, τTF,g = τTF,l, if

this is TRUE go out of the iteration loop.

τTF,l = µl
V n

TF

δ
= interface shear stress liquid. (6.4)

(g) IF τTF,g 6= τTF,l find new velocity at interface ⇒ V n
TF =

τTF,gδ

µl

(h) Go to (c) to and run the iteration procedure until τTF,g = τTF,l.

Validation by comparing against publicated experimental results will ensure the

correct calculation of shear interfacial stress to ensure correct bubble velocity. The

procedure will need testing for the diabatic case and again validated against exper-

imental results

3. Coupling of advanced micro-scale film model with macro-scopic CMFD

model TransAT.

Step 1 and 2 have developed a solid platform for further an advanced multiscale

coupling.

As the interface is filling the wall adjacent cell the local film height cannot be

extracted from the CMFD simulation itself. To increase fidelity we can locally

determine the film height from the equation from LWT eq.(5.1). Basically, the

macro-scale model can be applied all over the computational domain once appro-

priate boundary conditions are selected. In a broad sense, the boundary conditions

for the CMFD are the missing macro-scale property that has to be recovered with

the micro-scale simulation. This class of problems (Type-B problems, according to

the HMM classification due to Engquist et. al. [15]) is actually one of the most

frequently encountered in the context of the HMM. This approach is especially con-

venient since the film properties depends on fluid conditions local in time and space,

which means that the spatial domain for the solution of the micro-scale SGS model
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can be limited to small areas around the dry-out. The information about the local

film height is calculated by the computational SGS thin film platform on a locally

refined sub-grid. An initial long wave disturbance is enforced in the initial micro

solution extracted from CMFD. The mean cell film height is imposed by the Level

Set φ function as a non-homogeneous wall boundary condition.

∇φ = φwall(h) 6= 0. (6.5)

If several neighbouring wall adjacent cells need SGS treatment a smoothing func-

tion between them is proposed to ensure a smooth interface. As the last step the

iteration procedure, described above, used to ensure that we obtain the correct in-

terfacial shear stress.

A multiscale methodology is needed for the coupling between the macro CMFD

and micro SGS model. Two features make the SGS model suitable for a multiscale

coupling; in the first place, the SGS model is continuum based so that we can pro-

mote a stronger coupling between the model that would be feasible for molecular

dynamics simulations; in the second place, scale separation is exploited and the

much faster dynamics if the SGS thin film model relaxes to a steady-state solu-

tion within one macro CMFD time step δtTransAT � δtSGS−model. It simplifies the

coupling as only the steady-state solution is needed from the SGS thin film model.
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IF δ < 0.5∆x

micro-scale model solved
on refined grid
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Domain for micro-scale computational platform

Sub-Grid
Scale domain

interface

Macro
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Figure 6.4: Domain for the microscopic thin film model for imposing boundary condition

on the macro solver.
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6.3 Multiscale simulations with a Sub-Grid Scale thin

film model

A multiscale platform has been developed (step 1) to perform multiscale simulations for

thin film slug flow, in collaboration with ASCOMP. An advanced boundary condition

is used to impose the minimum film height at the pipe wall. This ensures that we will

not have a numerical dry-out. High fidelity results are shown for two different minimum

film heights. The first simulation shows results with a film height that is half of the

cell width hmin = 0.1µm, the second simulation shows results with a film height that

is one fourth of the cell width hmin = 0.05µm. Comparing the macro-scopic TransAT

simulation Figure 4.25 with the first-of-a-kind multiscale simulation Figure 6.5, 6.7 one

can conclude that the multiscale simulation produces a much more physical reality. The

bubble topology as well as bubble speed correlates well with macro-scopic simulations. It

illustrates that multiscale treatment generates results that with regular Level Set CMFD

would be unattainable without a special treatment for the lubricating film.
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(a) T= 0.301 · 10−1s.

(b) T= 0.408 · 10−1s.

Figure 6.5: Multiscale simulation with hmin = 0.1µm contours of the densities with

streamlines and isoline for φ = 0, Case 5.

(a) T= 0.301 · 10−1s.

(b) T= 0.408 · 10−1s.

Figure 6.6: Multiscale simulation with hmin = 0.1µm contours of the densities with

streamlines and isoline for φ = 0, Case 5.
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(a) T= 0.314 · 10−1s.

(b) T= 0.400 · 10−1s.

Figure 6.7: Multiscale simulation with hmin = 0.05µm contours of the densities with

streamlines and isoline for φ = 0, Case 5.

(a) T= 0.314 · 10−1s.

(b) T= 0.400 · 10−1s.

Figure 6.8: Multiscale simulation with hmin = 0.05µm contours of the densities with

streamlines and isoline for φ = 0, Case 5.

89



6.3.1 Summary

The standard CMFD treatment of this problem imposes a wall boundary condition on

the Level Set function φ:

∇φ = 0. (6.6)

As we previously observed, the knowledge of the level set function φ lets us determine

if we have gas or liquid in a computational cell, and, therefore, the film thickness in the

whole domain. We notice that a problem arises when the presence of gas is detected in a

wall adjacent cell; from the point of view of the CMFD solution this means that there is no

liquid wetting the wall. However, with the quantities (quartz, water, air), intermolecular

theory guarantees that the wall is wetted all the time. The result obtained from the CMFD

solution is rather a numerical dry out, meaning that the film thickness is actually located

somewhere inside the wall adjacent cell and, as a consequence, all information about the

film is lost from a CMFD perspective. In order to have a physically sound solution, then,

we have to ensure that the CMFD calculation always predicts the presence of liquid in the

wall adjacent cell. This could actually be done, if the liquid film thickness h was known,

by imposing a non-homogeneous boundary condition on the level set function:

∇φ = φwall(h) 6= 0. (6.7)

Again, we remark that this information, namely the value of h, cannot be extracted by the

CMFD simulation itself. The multiscale coupling between the CMFD model and some

form of sub-grid scale model provides a solution to this problem for the calculation of

the film thickness. In our case the sub-grid model is provided by the thin film equation

eq.(5.1). This approach is particularly convenient for two reasons: in the first place, the

film thickness in a cell depends on the fluid conditions locally in time and space, which

means that the spatial domain for the solution of the thin film equation can be limited

to a small area around the cell where numerical dry out is detected; in the second place,

we can exploit the scale separation between the thin film dynamics and the much slower

dynamics of the Navier Stokes equations: in this case, in fact, we can simply use the

steady state formulation because the time dependent solution of the thin film equation

will, in any case, relax to the steady state one on a time scale much smaller than a CMFD

time step.

From a scientific point of view multiscale treatment is of great interest and importance,

not only for this problem. For many phenomena what is happening on the small scales

can influence the larger scales. In reality all physical phenomena are of multiscale nature.

The difficulty and important aspect is to be able to separate the phenomena where ad-

vanced multiscale treatment is needed.
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The treatment of thin liquid films in slug flow does not only have a great impact in science

but also in engineering applications. Such special treatment makes it feasible to reduce

mesh size and then reduce CPU time, without losing important film features and dry

out. This implicates that shear, heat and mass transfer can be more correctly calculated.

A new avenue for interface tracking methods does also open, where this new technology

opens new avenues that currently is not possible with the existing technology. For such

advanced film treatment the geometrical case limitations for the interface tracking meth-

ods can be removed. As a consequence pipe junction flow (Y-junctions and T-junction),

can be simulated with high accuracy. In the junction a thin film is formed that prevents

bubble break-up, that can be calculated in high fidelity simulations with a SGS thin film

treatment. A bubble traveling in a micro channel with a junction is clearly visualized in

the experiment performed by Fowlkes et. al. [10]. Present CMFD technology without

multiscale treatment will fail to deliver accurate and physical sound results. The bubble

will separate producing an unphysical solution (a numerical dry-out) as the bubble enters

in the junction. Multiscale simulation of thin film slug flow shows high fidelity first-of-a-

Figure 6.9: (a) Lodging state, (b) Lodging state, (c) Bubble lodged in on of the branches

from [10].

kind simulations. The already developed model and platform has at current status (step

1), already an impact in micro-fluidic applications.

91



Chapter 7

Conclusion and future work

Evaluation of the CMFD codes FLUENT and TransAT shows that the multiscale nature

of slug flow in a micro channel presents a formidable challenge to numerical simulations.

Although full-scale microscopic simulations can still be attempted, such simulations are

not practical. Multiscale treatment is needed to obtain high fidelity simulations without

a dramatic sacrifice of computational time.

VOF (FLUENT) and Level Set (TransAT) are the two most widely applied interface

tracking methods and they represent the state-of-the-art in CMFD. To assess performance

of the two methods, two CMFD codes have been applied, FLUENT (VOF) and TransAT

(Level Set). By comparing their performance we numerically validated the codes and

examined numerical errors and artifacts. It became evident that FLUENT was incapable

to generate physically sound results for macroscopic slug flow. A diffuse interface treat-

ment and the averaging of material properties within their mixed cells lead to unphysical

results. Arithmetically averaging based on volume fraction generates a substantial nu-

merical error in simulations with high density and viscosity ratio. The outcome is that

viscous shear stress transfer across interface is deficient. This effect suppresses ”natural”

interfacial instabilities and slug flow generation. The AMR FLUENT simulations sug-

gest that spurious currents govern the generation of slug flow on a ”coarse” mesh. The

AMR FLUENT simulations with a disturbed liquid inlet were performed to demonstrate

the effect of an imposed artificial instability on slug flow generation. The present study

concludes that the VOF-based scheme in FLUENT is not appropriate for the numerical

solution of shear-driven multiphase flow problems, with high density and viscosity ratios

and dominant flow direction parallel to the interface. Consequently, the Level Set-based

TransAT code is employed as the computational platform for implementing and testing a

proposed scheme for multiscale treatment.
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In spite of the fact that TransAT produces physically sound results for macroscopic slug

flow, is unable to capture the micro-scale physics for thin film slug flow. Remarkably, the

CMFD simulations (from both codes) generate a numerical ”dry-out”. This signifies a

behavior that micro-scale perturbances can effectively propagate up scale, rendering the

macro-scale description (CMFD) inadequate. A novel technology for multiscale coupling

between a CMFD code and a Sub-Grid Scale (SGS) model is proposed, to preserve micro-

scale perturbations. It enables high fidelity simulations without a dramatic increase in

computational time.

First step, in the novel technology, was the development of a computational platform

for a SGS thin film model. Numerical simulations for thin film based on the Long Wave

Theory (LWT) agreed with experimental results in [4], suggesting that the theory is ripe

as a proper SGS model. This fact is recognized and exploited. A computational plat-

form has been developed and validated against previously published results. The results

made it feasible to quantify effects from intermolecular forces and illustrated that the SGS

model captures the dual nature of thin films, from hydro- and molecular- dynamics.

Second step, in the novel technology, was the development of a multiscale platform for

coupling a SGS thin film model to a CMFD code (TransAT). Subsequent steps are pro-

posed for the treatment of an advanced non-homogenous wall boundary condition, using

the Level Set distance function to characterize the local film height. First-of-a-kind mul-

tiscale simulations for thin film slug flow, with a fixed minimum lubricating film height,

shows physical results. The present development creates a new avenue for applying nu-

merical simulations in micro-fluidic applications. It also demonstrated that the platform

for multiscale treatment with the Level Set function is preceptive.

Although the simulations show the fidelity of the multiscale coupling methodology with

a SGS thin film model, additional aspects needs further development and model refine-

ment in the future. The SGS thin film model needs improved or additional models for

the prediction of: Hamaker constant, surface tension coefficient and polar forces. For the

treatment of film rupture additional model refinement is needed to capture the molecular

physics.

In the CMFD framework additional physics is needed for the bubble pinch-off in slug

generation. As the interfaces approach each other a thin film is formed and intermolecu-

lar forces become dominant. This is another avenue of multiscale treatment for thin film

physics.
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A multiscale coupling between the full-bloom SGS thin film model and TransAT is needed.

This work is in progress in collaboration with ASCOMP. A model developed and vali-

dated will have a significant impact in many multiphase mechanistic flow problems, such

as: porous media, boiling. A case of high practical and fundamental interest is microflu-

idic system and evaporating thin film in high heat flux boiling and burnout. For such a

case additional treatment is also needed for the triple-point contact line.
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Objectives for the Appendix

The objectives for the appendix are to show results to supplement stated hypothesis or

additional supplementary results to the thesis. The appendix is separated into three

different parts:

1. Benchmark case in FLUENT with a rising bubble.

2. Parametric study on slug flow in TransAT.

3. Additional results from LWT.

The first chapter in the appendix shows results from a benchmark case for numerical sim-

ulations of a rising bubble in a stagnant liquid, with FLUENT. The simulations shows re-

circulation patterns for high viscosity and density ratio simulations with an AMR method.

This proves that the lack of recirculation and bubble break-up, previously shown for slug

flow, are not numerical effects of AMR.

A parametric study with the use of TransAT shows changes in: recirculation pattern,

capillary force and pressure drop. The results increase the physical insight of the macro-

scopic slug flow nature by parameter changes, which can be exploited for engineering

applications.

Additional results from LWT shows the effective length of the Van der Waals forces.

101



Appendix A

Rising bubble (spherical cap)

benchmark case

The author has earlier performed an in-house project, where the effects of resolution in

both time and space have been examined. The motivation for this work was to validate

the performance of the commercial CFD code FLUENT and to show effects of time and

space resolution. A benchmark case for a rising bubble in a stagnant liquid, with spherical

cap was chosen. For this case of a rising bubble there exist an analytical solution. The

simulation results show a reasonable match and good performance of the code. The techni-

cal approach was to use a moving coordinate system, with the pre-calculated steady-state

bubble velocity. This avoided time and space restrictions for the study of the rising bubble.

The Archimedes (Ar) number expresses the ratio between the gravitational velocity

(hydrostatic head) and the viscous forces. Archimedes number,

Ar =
ρ

1
2
l (ρl − ρg)

1
2 g

1
2 db

3
2

µl

. (A.1)

The Bond (Bo) number is expressing the ratio between the gravitational force and the

surface tension force. So low Bond number indicates that the surface tension forces are

dominating. Bond number,

Bo =
ρlgdb

2

σ
. (A.2)

As the Morton (Mo) number is defining the ratio between the viscous length scale and

the capillary length scale. Morton number,

Mo =
gµl

4

ρlσ4
. (A.3)

A.1 shows the rising bubble evolution for three different mesh resolutions. These

simulations were performed to quantify effects of lack of time and space resolution for
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- Ar Bo Mo σ ρl µl ρb µb

Rising bubble 32.7 40 0.056 0.1 1000 0.273556 10 0.00273556

Table A.1: Material properties rising bubble.

VOF FLUENT simulations. As is clearly shown with a coarse mesh it becomes impossible

to extract qualitative information from the simulations. The interface becomes so severely

smeared that it can not reproduce properly the physical behavior.

A.2 visualized the final improved results with an AMR simulations. Special emphasis is

put on visualizing the physical recirculation pattern as a validation for the AMR.

A.3 the plots show the effect of time stepping for three different mesh sizes. This shows the

effects of mesh resolution and time step size on the simulation results. By consequently

reducing mesh spacing, and time stepping on ensures that the obtained results have

converged in both time and space.
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A.1 Phase contour of rising bubble

(a) Initially 25 cells, db = 10∆xmin.

(b) Initially 99 cells, db = 18∆xmin.

(c) Initially 402 cells, db = 32∆xmin.

Figure A.1: Non dimensional time, τ = 0.01.
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(a) Initially 25 cells, db = 10∆xmin.

(b) Initially 99 cells, db = 18∆xmin.

(c) Initially 402 cells, db = 32∆xmin.

Figure A.2: Non dimensional time, τ = 2.23.
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(a) Initially 25 cells, db = 10∆xmin.

(b) Initially 99 cells, db = 18∆xmin.

(c) Initially 402 cells, db = 32∆xmin.

Figure A.3: Non dimensional time, τ = 3.69.
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A.2 AMR of rising bubble

(a) Contour of the phases rising bubble.

(b) Pathlines for rising bubble.

(c) Velocity vectors for rising bubble.

Figure A.4: AMR results for rising bubble in stagnant liquid, τ = 5.53.
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A.3 Reduced time evolution of speed of bubble dis-

placement

(a) ∆xmin = 2 · 10−3m, for three different time-steps.

(b) ∆xmin = 1.11 · 10−3m, for three time-steps.

(c) ∆xmin = 6.6 · 10−4m, for four time-steps.

Figure A.5: Space end time convergence, three different meshes with reduced time steps.
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Appendix B

Parametric study of slug flow in

TransAT

B.1 Parameter domain

To gain physical insight about slug flow the effects of change in parametric properties

have been investigated in a short pipe (10D). Special interest has been focused on the

flow patter within the bubbles as well as bubble topology. A hypothesis for the driving

forces in the bubble break-up is suggested. There seem to be three different regimes

that govern the break-up and slug flow generation. First is Shear driven, with strong

recirculation patterns in the bubble. Several vortexes can be captured as an effect of the

coupling of the shear over the interface. For the shear created break-up strong vortexes

and low inertia forces are typical. Second is Shear-Inertia driven break-up, with the effects

from both bubble inertia forces and recirculation in the bubble. Together these govern the

bubble breakup. Third is the pure Inertia driven bubble break-up, high bubble inertia

force that is creating the bubble break-up.

Case UL [m
s
] UG [m

s
] ρG [ kg

m3 ] ρL [ kg
m3 ] µG [ kg

ms
] µl [ kg

ms
] D [m] σ[N

m
] α [-]

6 1.11 0.66 12.2 998 1.78 · 10−5 0.0010 10−3 0.0727 0.36

7 1.11 0.66 1.22 998 0.0010 0.0010 10−3 0.0727 0.36

8 1.11 0.66 1.22 998 1.78 · 10−5 0.0010 10−3 0.3635 0.36

9 1.11 0.66 1.22 998 1.78 · 10−5 0.0010 10−4 0.0727 0.36

10 1.11 0.66 122 998 1.78 · 10−5 0.0010 10−3 0.0727 0.36

11 1.11 0.66 1.22 998 1.78 · 10−5 0.0010 10−3 0.727 0.36

Table B.1: Material properties, Case 6− 11.
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Case S = UL

UG
UB [m

s
] CaG CaL CaB

6 1.68 1.354 0.00016 0.01531 0.01869

7 1.68 1.12 0.00910 0.01531 0.01549

8 1.68 0.924 3.22 · 10−5 0.00306 0.00255

9 1.68 1.81 0.00016 0.01531 0.02493

10 1.68 1.11 0.00016 0.0153 0.01537

11 1.68 − 1.6 · 10−5 0.00153 −

Table B.2: Bubble velocity, slip ratio and Capillary number, Case 6− 11.

Case WeG WeL WeB

6 0.07310 16.91 25.18

7 0.007310 16.91 17.31

8 0.00146 3.38 2.34

9 0.00073 1.69 4.48

10 0.73099 16.91 17.04

11 0.00073 1.691 −

Table B.3: Weber number, Case 6− 11.

Case OhG OhL OhB

6 0.00060 0.00372 0.00372

7 0.10650 0.00372 0.00372

8 0.00084 0.00166 0.00166

9 0.00597 0.0117 0.01177

10 0.00019 0.00372 0.00372

11 0.00060 0.00118 −

Table B.4: Ohnesoge number, Case 6− 11.
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B.2 Numerical results and discussion

(a) T= 0.3011 · 10−2s. (b) T= 0.31635 · 10−2s.

(c) T= 0.8929 · 10−2s.

(d) T= 0.6033 · 10−2s.

Figure B.1: Contours of the densities with streamlines and isoline for φ = 0, Case 6.

(a) T= 0.3011 · 10−2s. (b) T= 0.31625 · 10−2s.

(c) T= 0.8929 · 10−2s.

Figure B.2: Contours of the pressure with velocity vectors and isoline for φ = 0, Case 6.
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(a) T= 0.3177 · 10−2s. (b) T= 0.38189 · 10−2s.

(c) T= 0.8380 · 10−2s.

(d) T= 0.6033 · 10−2s.

Figure B.3: Contours of the densities with streamlines and isoline for φ = 0, Case 7.

(a) T= 0.3177 · 10−2s. (b) T= 0.3819 · 10−2s.

(c) T= 0.8380 · 10−2s.

Figure B.4: Contours of the pressure with velocity vectors and isoline for φ = 0, Case 7.
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(a) T= 0.32057 · 10−2s. (b) T= 0.32057 · 10−2s.

(c) T= 0.4207 · 10−2s.

(d) T= 0.4684 · 10−2s.

Figure B.5: Contours of the densities with streamlines and isoline for φ = 0, Case 8.

(a) T= 0.32057 · 10−2s. (b) T= 0.32057 · 10−2s.

(c) T= 0.4207 · 10−2s.

Figure B.6: Contours of the pressure with velocity vectors and isoline for φ = 0, Case 8.
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(a) T= 0.198 · 10−3s. (b) T= 0.2671 · 10−3s.

(c) T=0.7671 · 10−3s.

(d) T= 0.8587 · 10−2s.

Figure B.7: Contours of the densities with streamlines and isoline for φ = 0, Case 9.

(a) T= 0.2671 · 10−2s. (b) T= 0.3445 · 10−3s.

(c) T= 0.7670 · 10−3s.

Figure B.8: Contours of the pressure with velocity vectors and isoline for φ = 0, Case 9.
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(a) T= 0.32045 · 10−2s. (b) T= 0.3685 · 10−2s.

(c) T= 0.944 · 10−2s.

(d) T= 0.8848 · 10−2s.

Figure B.9: Contours of the densities with streamlines and isoline for φ = 0, Case 10.

(a) T= 0.32045 · 10−2s. (b) T= 0.3685 · 10−2s.

(c) T= 0.9440 · 10−2s.

Figure B.10: Contours of the pressure with velocity vectors and isoline for φ = 0, Case

10.
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(a) T= 0.315 · 10−3s. (b) T= 0.3368 · 10−3s.

(c) T= 0.39263 · 10−2s.

(d) T= 0.8848 · 10−2s.

Figure B.11: Contours of the densities with streamlines and isoline for φ = 0, Case 11.

(a) T= 0.315 · 10−3s. (b) T= 0.3368 · 10−3s.

(c) T= 0.39263 · 10−2s.

Figure B.12: Contours of the densities with streamlines and isoline for φ = 0, Case 11.
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The pressure drop for the small pipe has been mapped.

Figure B.13: Pressure drop in short pipe (10D) for Case 6, 7, 10.
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Appendix C

Long wave theory

C.1 Critical note on publication: Long-scale evolu-

tion of thin liquid films [30]

As the results from long wave theory were scrutinized, it was apparent that with the

data from [30] it was a problem to obtain the correct rupture time. It was noticed that

there is an inconsistency with the original paper from Burelbach et. al. [9] and the paper

from Oron et. al. [30]. The results from the non dimensional isothermal case that was

reprinted in [30] (page 941 eq.2.41b) eq.(C.2) do not correspond with the original paper

[9]. The last term is multiplied by a factor of 1
3

compared to the original equation in [9]

eq.(C.1). This influences the results as well and the rupture time.

Bruelbach et. al. [9] ∂T H + A∂X(
∂XH

H
) + C∂X(H3∂X

3H) = 0 (C.1)

Oron et. al.[30] ∂T H + A∂X(
∂XH

H
) +

C

3
∂X(H3∂X

3H) = 0 (C.2)
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C.2 Effective length of Van der Waals forces

The plot below shows the effective length of the Van der Waals forces with the parameters

from Bruelbach et. al. [9]. It is also observed that the effective length of the Van der Waals

forces scale by the order of two magnitudes of the Hamaker constant. This means that

if the effective length is supposed to be changed from 10nm to 100nm, n = h2

h1
= 100nm

10nm

the Hamaker constant must be changed from x · 10i to ∼ n2 · x · 10i (, x is an arbitrary

constant).

Figure C.1: Effective length of the Van der Waals forces shown by changing initial mean

film height, parameters from [9].
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