
IN DEGREE PROJECT TECHNOLOGY,
FIRST CYCLE, 15 CREDITS

,  STOCKHOLM SWEDEN 2019

A time alternating
classical–quantum method for 
simulating radiation damage in 
crystalline materials

DANIEL FRANSÉN

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ENGINEERING SCIENCES



www.kth.se



INOM EXAMENSARBETE TEKNIK,
GRUNDNIVÅ, 15 HP

,  STOCKHOLM SVERIGE 2019

Klassisk–kvantmekanisk 
tidsalternerande metod för 
simulering av strålnings-
inducerade defekter i metaller

DANIEL FRANSÉN

KTH
SKOLAN FÖR TEKNIKVETENSKAP



www.kth.se



Abstract

Radiation damage in metallic components is unavoidable near the core of nuclear fis-
sion and fusion reactors. The key parameter for all radiation damage calculations is the
threshold displacement energy, commonly determined through molecular dynamics (MD)
displacement cascade simulations based on the embedded atom method (EAM), and re-
cently also using the quantum mechanical density functional theory (DFT). DFT is more
accurate and provides better agreement with experimental data compared to the consid-
erably much faster EAM. In the present study, the dynamics of DFT and EAM based
MD displacement cascade simulations is compared. The differences predominantly appear
after 150 to 200 fs or more. A method is therefore proposed which substitutes the first
part of a DFT simulation for EAM. The simulation time reduction is considerable due to
the low cost of EAM, and due to the fact that a majority of the simulation time is usually
spent in the first high energetic collisions which occur in this early part of the collision
process. The proposed method is tested by determining the threshold displacement en-
ergy and comparing the results to calculations based purely on DFT and EAM. For the
tested cascade directions, the method provides good agreement to DFT, including cases
where EAM deviates from DFT. With approximately 1/5 of the DFT simulation cost,
the proposed alternating EAM-DFT method seems promising but requires further study
and verification.

Sammanfattning på svenska – Summary in Swedish

Strålskador i metalliska komponenter är oundvikligt för metaller i reaktormiljöer. Den
viktigaste materialparametern för beräkningar av strålningsinducerad defektbildning är
tröskelenergin för defektbildning, som ofta bestäms genom molekyldynamiksimuleringar
(MD) baserade på den empiriska metoden EAM, och nyligen även den kvantmekaniska
metoden täthetsfunktionalteori (DFT). DFT är mer noggrann och har visats ge bättre öv-
erensstämmelse med tillgängliga experimentella data, jämfört med den mycket snabbare
EAM-metoden. I denna studie undersöks skillnader mellan dynamiken i DFT- och EAM-
baserade MD kaskadsimuleringar genom analys av den totala kinetiska energin. Skill-
naderna verkar primärt uppstå efter 150 till 200 fs eller mer. En metod föreslås därför
som ersätter första delen av en DFT MD simulering med EAM MD. Den möjliga min-
skningen av beräkningskostnad är stor eftersom den mesta simuleringstiden krävs under
de första, högenergetiska kollisionerna, och eftersom EAM har försumbar beräkningskom-
plexitet jämfört med DFT. Metoden testas genom tröskelenergiberäkningar för ett par
riktningar. För de testade fallen ger den föreslagna alternerande EAM-DFT-metoden
bra överensstämmelse med DFT, inklusive när EAM och DFT har dålig överensstäm-
melse. Metoden kan minska simuleringkostnaden till storleksordningen 1/5 av den för
DFT, och verkar baserat på de undersökta fallen lovande, men ytterligare undersökning
av noggrannheten krävs.
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Aim and scope

In order to find new alloys with better radiation defect properties, it is crucial to have
primary damage simulation methods that are precise and detailed enough to accurately
predict differences between materials, but fast enough to be of practical use. In this
respect, quantum molecular dynamics (QMD) is the most accurate method for low energy
cascade simulations, but it is also quite computationally expensive compared to the less
accurate classical molecular dynamics (CMD). It is therefore of interest to investigate if a
combination of the two methods could retain most of the benefits of both: a method that
is faster than pure QMD but almost as accurate. In the present study, it is investigated
if parts of a QMD cascade simulation could be substituted to CMD without losing too
much accuracy. The potential reduction of simulation cost is considerable since CMD has
negligible computation complexity compared to QMD.

Limitations

Simulating the time evolution of large systems of atoms using QMD is computationally
expensive even compared to modern supercomputer standards. Since the computation
resources available for the project were restricted, limitations and simplifications over
more precise analyses and procedures were necessary. The proposed method is studied for
a limited set of cases (energies, lattice directions, etc.) and for one compound using one
interatomic EAM potential for the CMD simulations, in addition to the QMD simulations
based on density functional theory (DFT). To allow for a reasonably large number of cases
to be studied, the simulations were initiated from a stationary system, corresponding to
temperature 0K, excepting the primary knock-on atom. Here, for each simulation setup
(energy, lattice direction, etc.) only one simulation is needed at 0K, as opposed to nonzero
temperatures where a large number of simulations is necessary to gain a statistical basis.
The physical implications are mostly small and a good tradeoff to computational cost,
and quite acceptable for a first test of a method. Future studies will have to examine
remaining aspects induced by the applied limitations.

Considerations on ethics and sustainability

Nuclear energy, including fusion, is an interesting solution to an environmentally friendly
and sustainable energy source. New generations of reactors that produce less persistent
radioactive waste may provide a solution to the ethic dilemma concerning the long storage
time presently needed for used nuclear fuel. One of the main difficulties in the new
reactor types is that all known materials are damaged too quickly by the radiation, for
components nearest the source. Here, simulations could play a major role by providing a
powerful complementary method for development of new materials. Hopefully the result
of the present study could contribute to more efficient simulation methods. No other,
more direct ethical or societal implications of the present work were found.
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1 Background

In nuclear reactors, neutron irradiation causes lattice defects that greatly limit the usable
lifetime of the most exposed components, sometimes down to as little as a few years. To
enable future development of new materials, and to obtain more accurate radiation dam-
age estimates, basic science today apply increasingly accurate methods where induction
of crystal structure defects can be studied. One of the limiting factors is the high compu-
tational cost of QMD / DFT MD methods. Below, lattice defects will first be described
as a background to what radiation damage is. Subsequently, the damage process from
neutron collisions, to the long term mechanical consequences will be described. Lastly,
methods for estimating radiation damage will be described, as well as simulation methods
that are applied for getting the related material parameters.

1.1 Lattice defects

An ideal crystalline solid exhibits a perfectly regular, translation symmetric structure.
Real crystalline materials however contain crystallographic lattice defects that in some
respects lead to dramatically different properties compared to the ideal crystal. These
lattice defects are categorized according to their dimensionality, from zero-dimensional
point defects to often highly complex and varied three dimensional ones. In zero dimen-
sions, there are two basic types. Firstly, a vacancy is an empty lattice site that is normally
occupied by an atom. Secondly, an interstitial is an added atom, more generally n + 1

atoms sharing the space of n atoms in the corresponding ideal structure. Sometimes,
lattice planes may be locally missing, and such defects are referred to as edge dislocations
and are of dimensionality one. In two dimensions, a common example of lattice defect is
grain boundaries, which are found in polycrystalline materials. Lastly, voids, cracks, and
inclusions are common three-dimensional defects [1].

Lattice defects are dynamic and interact in complex mechanisms with major influence
on the mechanical properties. Depending on type, lattice defects form through different
processes involving mechanical stress and deformation, high temperatures, radiation, and
also stochastically due to thermal movements even at low temperatures [1].

1.1.1 Radiation induced lattice defect formation

In nuclear reactors neutron irradiation causes lattice defects that greatly limit the usable
lifetime of the most exposed components, sometimes down to as little as a few years.
Radiation produces primary damage in materials through collision sequences induced by
the energetic neutrons, which results in production of point defects and small point defect
clusters. Through secondary damage, the produced vacancies often interact with voids,
leading to swelling, and the interstitials often bind to dislocations, inducing dislocation
climb which can be described as a spontaneous plastic deformation. Point defects also
interact with grain boundaries and through diffusion contribute to segregation of alloying
elements in materials with multiple elements [1].
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While irradiation damage is a microscopical process, the formation of microscopical de-
fects has major influence on the macroscopic bulk mechanical properties. Weakened grain
boundaries, microscopic tensions, voids and decreased dislocation motion due to defect
obstacles, all contribute to increased hardness and brittleness, resulting in elevated frac-
ture probability. Also, the swelling caused by void growth is macroscopic and may present
issues for example in fasteners (screws, etc), joints, and other high tolerance parts. Fur-
thermore, deformations are sometimes anisotropic even on a macroscopic length scale,
primarily in textured materials (polycrystalline materials that exhibit biased crystal di-
rections) [1, 2].

1.1.2 Calculations of radiation damage

Due to the high safety requirements on nuclear reactors, accurate estimates of expected
safe operation time of reactor components is paramount. Since point defects are the source
of all radiation damage, the starting point for virtually all calculations of irradiation
effects is the number of displacements (stable point defects) per atom, dpa (see ref [3] and
references therein). Determination of the dpa requires the following to be known:

1. The neutron dose and energy spectrum,

2. the material�s neutron cross section, and

3. the number of stable defects produced by a given cascade energy, N
d

.

Of these, the last one is most closely related to the topic of the present study. While
the first two may be determined experimentally, the mechanisms of single cascades must
be simulated due to the small length and time scales. However, since radiation cas-
cades often involve high energies and large number of atoms, direct simulations of full
cascades are often impractical or impossible. Empirical methods can, at great cost, simu-
late full displacement cascades (based on the binary collision approximation or empirical
MD). However, these methods still lack in reliable predictive power. Thus, in order for
simulations to be of practical use, for example when estimating the lifetime of nuclear
components, methods are often applied that estimate the cascade displacements based on
more fundamental properties.

For many metals, a first approximation is that the number of point defects induced by a
cascade is proportional to the neutron transferred energy. The simplest model for such
metals is the Kinchin-Pease model [4], which states that the number of point defects N

d

is given by

N
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Here, T is the radiation-transferred kinetic energy and E
d

is the threshold displacement
energy, the minimum cascade energy required to form a stable defect pair. Also, above
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the energy E
c

, the model estimates constant defect production due to electron excitation.
A more precise model based on that of Kinchin and Pease was later derived in ref. [5].
In this model, the energy T is replaced by the damage energy T

d

which is the energy
available for atom displacements, and the number of atomic displacements is estimated
as
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This is known as the NRT-dpa model and is the current international standard for quan-
tifying radiation damage. The most prominent difference between the two models is the
high energy behavior. While the constant number of defects in the Kinchin-Pease model
is an underestimation, the NRT-dpa overestimates the number of stable defects by 300-
400% [3]. K. Nordlund et al. therefore recently suggested an improved model including
a point defect production efficiency function for the high energy interval of NRT-dpa [3].
Regardless of which model is used, the threshold displacement energy remains the key
parameter for radiation damage estimation since its introduction to literature [6] in 1949.

1.1.3 Displacement cascades

Each displacement cascade is induced by energy transfer during a collision between a
neutron (or other radiation particle) and a lattice atom referred to as the primary knock-
on atom (PKA). Since lattices are not isotropic, atoms traveling in different directions
behave differently. At high energies, atoms can be displaced long distances by channeling,
movement inbetween atoms in open directions of a lattice. At low energies, channeling
is not possible, instead displacements in high symmetry directions are characterized by
binary collision chains between atoms at a straight line, with small energy transfer to sur-
rounding atoms. Such sequences are referred to as replacement collision sequences (RCS),
and occur frequently due to focusing, a geometrically induced phenomenon that focuses
collision sequences near high symmetry directions [1]. In contrast, displacement cascades
in low symmetry directions are characterized by chaotic motion and fast thermalization.

Due to the low energy transfer to surrounding atoms in replacement collision sequences,
high energetic cascades often split into subcascades [1]. Through subcascade splitting, the
mechanisms of high energetic cascades in the 10-20 keV PKA energy range can largely be
studied by simulations of low energy cascades.

In conclusion, simulation of displacement cascades near the threshold displacement energy
is of great importance for both the understanding and calculation of radiation damage.
They provide understanding of the whole primary damage process in irradiated solid
crystalline materials, and the related threshold displacement energy is the key factor for
radiation damage calculations and component lifetime estimates.
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1.1.4 Simulating defect formation

High energetic cascades may be studied, as mentioned before, by low energy cascades
(through subcascade splitting). The low energy allows for relatively small supercells,
which in turn allows for usage of the most precise methods, molecular dynamics (MD)
simulations. However, it should be mentioned that high energetic cascades can be studied
directly, for example through methods based on the binary collision approximation. Since
the method only treats the two most high energetic atoms, it is fast enough for the huge
supercells required, but it is not very precise. When possible, MD is therefore the first
choice for radiation damage simulations.

MD simulations for low energy cascades and threshold displacement energy simulations
can be based on various methods, both classical, empirical and quantum mechanical ones.
EAM is a common semi-empiric method used for MD displacement cascades, including
for determining threshold displacement energies. DFT is the only quantum simulation
method that is fast and efficient enough to treat displacement cascades, and really only
at the very low, near threshold end of the scale. Only a handful of studies have been
published to date. Both DFT and EAM will be described in the next sections.

1.2 DFT and EAM as methods for MD displacement cascade

simulations

Defect and atom displacement has been studied in various metals using both classical
methods and quantum mechanics based ab initio DFT methods. For estimating the
displacement energy, DFT has been shown to yield superior agreement with experimental
data compared to EAM, in Fe, SiC, among others [7, 8]. Also, since DFT is an ab
initio quantum simulation method, based on more fundamental principles than EAM, it
is expected to give more reliable results. In fact, results from DFT simulations are often
used as fitting parameters in the construction of EAM potentials [9, 7]. However, the high
computational cost associated with ab initio methods restricts simulation boxes to small
sizes, typically to a few hundred atoms.

1.3 Density functional theory (DFT)

Even though the Schrödinger equation cannot directly be solved for even a single metallic
atom, and clearly not for the large systems required in displacement cascades, there are
methods for making quantum mechanics based MD. One such method is density functional
theory (DFT) which was presented in two papers, by Hohenberg and Kohn [10] in 1964
and by Kohn and Sham in 1965 [11]. In DFT, firstly, the dynamics may be separated
into two separate subproblems: the electronic problem, and the ionic problem treating
the movements of the nuclei. It is the quasistatic electron density that is determined
quantum mechanically in DFT. The electronic and ionic subproblems are described in
detail in appendix A.1. A shorter summary of DFT and EAM will follow in section 1.5.
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1.4 Embedded atom method (EAM)

The embedded atom method is a classical semi-empirical model. In the embedded atom
method [12], each atom is treated as an impurity in a host consisting of all other atoms.
Whereas the core-core interactions are modeled with pair potentials, the influence of the
host electron density is approximated as that of a locally uniform electron gas. The
resulting expression for the total energy is

E
tot

=

X

i

F
i

(⇢
i

) +

1

2

X

i 6=j

V
i,j

(R
ij

)

where ⇢
i

is the host electron density at site i (the impurity), F
i

, the thereof generated
embedding energy, and V

i,j

(R
i,j

) the pair potential between atom i and j with relative
distance R

i,j

. Some intervals of the pair potential have empirical but generic expressions,
for example that of Littmark et al. [13] for short range repulsion, and others are fitted to
properties of each specific compound. Remaining intervals that are difficult to motivate
are often interpolated. Several empirical methods exist for modeling the electron density
and embedding energy.

In practice, since the EAM method is largely based on empirical considerations, and
since every EAM potential is constructed to mimic a set of selected properties, EAM
potentials are not necessarily reliable for purposes not considered in the construction.
Further restrictions, in addition to the poor transferability, include that EAM potentials
are restricted to systems with two, or at most three elements.

1.5 DFT - EAM comparison

To summarize the differences between DFT and EAM, DFT is an ab initio (from first prin-
ciples), quantum mechanical method, whereas EAM is a classical semi empirical method.
For DFT, the electron density at each ionic step is computed self consistently by solving
many one-electron Schrödinger equations for an effective potential. The electron density
obtained in each step is used to produce a new effective potential, used in the next self
consistency step. EAM instead uses a potential that is an explicit function of the atom
positions, to compute the atomic forces. DFT is both more general than EAM, and can
be expected to provide reliable results in new situations, without being dependent on
empirical fits or associated experiments. On the other hand, the greatest advantage of
the EAM method compared to DFT is that it is considerably much faster, at least about
6 orders of magnitude, excluding start-up time (reading input data etc.) and for the sim-
ulations in the present project. Here, a typical simulation of 648 W atoms (W_pv VASP
PAW PBE potential) and 200 time steps required about 12000 core hours for DFT, and
a few core seconds for EAM (excluding start-up time).
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2 Methods

2.1 Simulation setup

Displacement cascade simulations were alternately carried out using DFT and EAM,
and the results compared with simulations purely based on DFT and EAM respectively.
As a first estimate of how well the alternated DFT-EAM simulations conform to pure
DFT simulation, the dynamics was qualitatively compared through total kinetic energy
analysis. Lastly, the threshold displacement energy was determined for three directions
and compared for the different methods.

All simulations with alternating EAM-DFT were carried out by using EAM (throughout
LAMMPS) for the first time steps, and switching to DFT (VASP) for the remaining
simulation. The reason EAM was applied at the start, and not for example at the end of
a simulation, was that the dynamics was believed to be more sensitive near equilibrium,
close to thermalization, in the end of a simulation. Also, whether or not a certain defect
configuration is stable is determined after the high energetic collisions have stopped, rather
than in the beginning. Thus it was argued that using EAM for the beginning would affect
the TDE the least. However, other combinations of EAM/DFT could be the topic of
future study. Below in figure 1, a schematic diagram of the simulation setup is provided.

Figure 1: Schematic diagram of the simulation setup.

The dynamics for DFT, EAM and mixed DFT-EAM was analyzed for cascades in both low
and high symmetry directions, and with energy near the threshold displacement energy.
For the first qualitative comparison, the PKA was given an initial kinetic energy of 100 eV,
and velocity in four different lattice directions; h100i, h111i, h110i and h135i, see fig. 2 and
3. The threshold displacement energy was calculated for h110i, h135i and h30, 5, 2i. h110i
is technically a high symmetry direction, but with fast thermalization making it similar
to low symmetry directions as well. Furthermore, h135i is often chosen as an example low
symmetry direction. The intention is that h135i will provide an indication of what can
be expected in general for low symmetry directions. This certainly is a rough estimate,
but should be sufficient for a first analysis, and a good tradeoff for computational cost.
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Figure 2: Lattice unit cell with sample
lattice direction (yellow). Each triangle-
shaped section of directions (black lines) is
equivalent in a perfect crystal. Thus, the
direction h135i (given in Miller indices) is
for example equivalent to h531i and h351i.
The corresponding applies to other direc-
tions. The shaded section is shown in de-
tail in figure 3.

Figure 3: Irreducible direction spectrum
showing the relation between lattice direc-
tions. The figure is a 2D-projection of the
shaded section in fig. 2. The directions
marked with red stars are investigated in
the present study. The small black trian-
gle is the projection direction (equal to the
mean of the three corners).

2.2 Implementation

For the ab-initio DFT MD simulations, Vienna Ab initio Simulation Package (VASP)
[14] was used. Furthermore, the EAM MD simulations were performed though Large-

scale Atomic/Molecular Massively Parallel Simulator , LAMMPS [15]. Specifically, a
tungsten EAM potential by Marinica et al. [9] was used, a potential developed for studying
radiation defects and dislocations in tungsten. The code for switching between DFT and
EAM simulation was here implemented in Python.
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2.3 Choosing simulation parameters

DFT and EAM MD both require a set of parameters to be defined, including parameters
related to discretization, boundary conditions, and some method specific parameters.
Most simulations were conducted in a supercell of 9⇥ 6⇥ 6 conventional unit cells of bcc
tungsten (W) with periodic boundary conditions. Since each unit cell contains 2 atoms,
the total number of atoms is 648. While a larger supercell would naturally give less self
interference induced by the periodic boundary conditions, the larger number of atoms
would also significantly increase the computational cost. At a minimum, the supercell
should be large enough that the whole cascade is surrounded by at least one layer of low
energetic atoms, so that the high energetic atoms in the cascade do not collide unphysically
with high energetic atoms in any of the cascade�s periodic images. The chosen size was
considered a good compromise between computational cost and physical correctness, and
all simulations were of appropriate energy or total time to avoid the aforementioned strong
self interference. The elongated non-cubic supercell shape was selected to avoid unphysical
dynamical self-interaction of a self-interstitial atom and the vacancy it has left behind in
the particular case of the h111i replacement collision sequence.

2.3.1 Absolute convergence, ionic relaxation and choice of lattice constant

For accurate simulations, it is important to have a relaxed structure. The purpose of
structure relaxation, in general, is to find the equilibrium atom positions, the positions
that give the least total energy. For MD simulations, a relaxed structure is usually used
for the initial positions, and for most simulations (constant volume MD), the volume
is furthermore fixed and set equal to the volume of the relaxed structure. However,
depending on method, the relaxed structure of a simulated system will differ. For example,
the relaxed structure will be slightly different for DFT and EAM, and will also be different
from the real, experimentally observed structure. One reasonable choice for getting a
relaxed structure for the initial positions in a MD simulation is to use the structure that
is relaxed according to the simulation method used for the actual simulations (cascades
etc.), in this case DFT or EAM.

In this project, the DFT structure relaxation methods implemented in VASP were used
to gain a relaxed structure close to absolute converged. Since the lattice type is known,
and must be the same as for the real system, only volume (lattice constant) relaxation
was considered necessary. Furthermore, the structure was relaxed for the primitive unit
cell, statically (0 K), and the convergence of the total energy and lattice parameter was
investigated with respect to number of k-points and the maximum plane wave energy,
E

max

, both restricting the plane wave basis completeness. Remaining parameters that
may affect the relaxation accuracy were chosen appropriately to give acceptable accuracy
even for the highest investigated number of k-points and E

max

. The results are shown in
figure (5) to (6). For details on the convergence parameters and relaxation methods, the
reader is referred to the appendix and the VASP manual in ref. [16].
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Figure 4: Lattice constant as
function of number of k-points,
at E

max

= 700 eV. The figure
constitutes a detailed plot of the
top row in figure (5).

Figure 5: Lattice constant as function of number
of k-points and maximum plane wave energy, E

max

.
The number of k-points is dependent on the k-point
grid subdivisions used for the k-point grid construc-
tion, and thus the dual x-axis.

For readers familiar with VASP, each data point in fig. (4) to (6) was obtained through
two consecutive volume relaxation procedures with IBRION = 2, ISIF = 7 , in accordance
with the VASP recommendations in ref. [10]. Note that the energy plotted here is not the
energy obtained from the tetrahedron method (ISMEAR = �5) as described in ref. [10],
but the energy of the last step of the structure relaxation. This is the energy obtained
using the same smearing method as for all steps of the structure minimization, and for
all MD cascade simulations in the present study, which is the energy of interest for the
absolute convergence analysis.

Figure 6: Energy convergence plot. Total energy for volumetric relaxed unit cell as
function of maximum plane wave energy, E

max

and number of k-points. The number of k-
points is dependent on the k-point grid subdivisions used for the k-point grid construction,
and thus the dual x-axis.
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Even though many potentials and simulation methods give distinct lattice parameters
for a given system, the lattice constant for the EAM simulations were set equal to that
used for (and obtained from) DFT, in order to simplify calculations. Also note that
several reasonable choices for the structure relaxation exist, for example to use the lattice
parameter obtained by using the same supercell and simulation parameters as used in the
MD-simulations. This would result in a different lattice parameter, relaxed for the actual
system used in the MD-simulations, however not absolute converged. Also, when using a
small basis set, the equilibrium structure might possibly incorrectly depend on positions
of other atoms. Suspicions of this and similar issues motivated the choice of using a close
to absolute converged lattice parameter.

Conclusions drawn from the structure relaxation were that both the total energy and
lattice parameter for the structure relaxation appear to converge with respect to the
plane wave basis completeness. The lattice parameter was chosen to be

a := 3.19 ˚

A

which is a value approximately in accordance with the converged value of figure (4) and
(5) (approximately 3.1895 ˚

A).

2.4 Evaluating alternating EAM-DFT qualitatively

For the first comparison between EAM, DFT and alternating EAM-DFT, the time evo-
lution of the total kinetic energy was the main focus. The similarity of the total kinetic
energy could be expected to be an indication of the overall similarity of the system�s time
evolution. The qualitative comparison through analysis of the total kinetic energy was
complemented with 3D visualizations of the cascades (fig. 7) provided in OVITO [17].

The energy loss per collision was analyzed as in ref. [18]. The evolution of the energy
loss per collision in RCS is strongly dependent on the potential [18] and can be used as
a measure of similarity, particularly for replacement collision sequences due to the large
number of collisions.

Figure 7: 3D visualization of a displacement cascade, provided in OVITO.
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2.5 Comparing threshold displacement energy calculations

For a specific simulation method, the threshold displacement energy can be determined
by performing sufficiently long cascade simulations with varying PKA energy and subse-
quently checking which energies that give stable defects. First, initial energy guesses are
made until one energy below the TDE is found (with no stable defects), and one above
the TDE (with a stable Frenkel pair). After that, the TDE is determined more precisely
through binary search. To clarify, in the binary search, the energy interval for the TDE
is reduced by bisection, iteratively testing an energy in the middle of the known interval
obtained from last iteration step.

The simulation setup for the cascade simulations used for determining the TDE was
similar to that used hitherto and demonstrated in fig. (1). However, the exception is
that the 200 fs simulations were continued, using DFT and a longer time step of 3 fs
instead of 1 fs. Longer time step can be justified by the fact that the maximum atom
velocity has decreased significantly after 200 fs. For one direction, h110i, EAM required
a somewhat larger supercell because of high sensitivity for thermal self interaction for
the particular defect configuration. For the regular 9⇥ 6⇥ 6 supercell, the high thermal
movements would cause recombination for the specific configuration of the frenkel pair,
for all reasonable energies. This should be considered a limitation of the EAM potential
and should not affect the validity of analyses of the present work.

The TDE cascade simulations were stopped either if and when the defect pair recombined,
or at a time considered sufficient to know with high certainty that the defect is stable.
Mostly, the stability could be substantiated by observing that the interstitial changed con-
figuration to the more stable, ground state configuration, the h111i crowdion interstitial
[19], and that its distance to the vacancy was not too small (determined by experience).
Most importantly, for the critical simulation corresponding to the smallest upper bound
of the TDE intervals, it was always confirmed that the interstitial changed into the h111i
crowdion configuration.
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3 Results

3.1 Evaluating alternating EAM-DFT qualitatively

Displacement cascade simulations were alternately carried out using DFT and EAM, and
the results compared with simulations purely based on DFT and EAM respectively, see
figure 1 in methods. As a first estimate of how well the alternated DFT-EAM simula-
tions conform to pure DFT simulation, the dynamics was qualitatively compared through
total kinetic energy analysis. Lastly, the threshold displacement energy was determined
for three directions and compared for the different methods. The most interesting and
important results are given in section 3.2 to 3.4.

3.1.1 Verification of fundamental properties

As expected, for different PKA directions, the temporal evolution of the collision sequences
differs significantly. In the high symmetry directions h100i (fig. 9 to 8), and particularly
h111i (fig. 12 to 14), the energy loss per collision is notably smaller than in the low
symmetry direction h135i (fig. 16) and h110i (fig. 15), since most of the energy is
exchanged between few particles. By comparing the kinetic energy plots and 3D animation
of the corresponding collision sequence, it could be observed that in h111i and h100i, the
total kinetic energy oscillates with the same periodicity as the collision sequence, and that
two sets of points in the kinetic energy plot (8) correspond to well defined positions in
the RCS. Firstly, the minima (green) coincides with when two atoms of the chain are the
closest to each other, and the inflexion points with negative derivative (pink) are assumed
approximately when the high energetic atom passes a window of four atoms that normally
constitute four of the eight nearest neighbors (fig. 2).

Figure 8: Total kinetic energy for RCS in h100i at 100 eV for sets of simulations with
DFT starting at the same phase. Notice the similarity of simulations with the same DFT
starting phase (same color). The figure demonstrates the importance of starting phase.
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3.1.2 100 eV RCS in h100i

Figure 9: Total kinetic energy for RCS in h100i at 100 eV with VASP starting times
between 0 and 100 fs.

Figure 10: Local maxima of total kinetic
energy for RCS in h100i at 100 eV.

Figure 11: Kinetic energy loss per colli-
sion for RCS in h100i at 100eV, equals the
kinetic difference between two consecutive
collisions. The value of a point at time
t equals the kinetic energy difference be-
tween the local maxima p

n

at time t, and
the local maxima before that, p

n�1

.

From the simulations in the h100i–direction, it can be observed that at a given time,
generally, alternating EAM-DFT simulations with smaller DFT starting time are closer to
the reference DFT simulation (black). Also, for many alternating EAM-DFT simulations,
the kinetic energy appears to initially diverge from the reference DFT simulation. The
simulations starting after up to about 60 fs are all fairly similar to the reference DFT
simulation, compared to the EAM simulation, although the fairness certainly also depends
on the desired accuracy.
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3.1.3 100 eV RCS in h111i

Figure 12: Total kinetic energy for RCS in h111i at 100 eV.

Figure 13: Local maxima for RCS in the
h111i direction.

Figure 14: Energy loss per collision for
RCS in the h111i direction.

The simulations in the h111i -direction share the same periodic behavior as in the h100i -
direction. However, note that the error for each simulation is constant in time, as opposed
to the simulations in the h100i -direction. Also, in general, the error does not seem to
be smaller for smaller starting time, but rather possibly depend on the starting phase.
Note that the EAM and DFT reference simulations are more similar to each other in most
respects, than to the alternating EAM-DFT simulations. Furthermore, the energy loss
per collision (14) is smaller than in h100i .
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3.1.4 100 eV RCS in h110i

Figure 15: Total kinetic energy for RCS in h110i at 100 eV.

In the simulations with PKA direction h110i, it can be observed that the errors diverge
up to approximately 100 fs, after which the errors decrease. Since the kinetic energy
decreases rather fast in the h110i direction, the replacement collision sequence ends after
fewer collisions, here at time before 200 fs. Note that the pure EAM simulation diverges
notably from the other simulations after 150 fs.
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3.1.5 100 eV displacement cascade in h135i

Figure 16: Total kinetic energy for RCS in h135i at 100 eV.

Similarly to the simulation in h110i, the kinetic energy in h135i decreases fast. The
differences between all methods are subtle, and all methods give similar kinetic energy
time evolution, although the number of starting times tested for alternating EAM-DFT is
rather limited. However, as in h110i, the kinetic energy of alternating EAM-DFT appears
to have better agreement with DFT than EAM in the last 50 fs of the 200 fs simulation
interval, though it is not as clear as in h110i.
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3.2 Determination of TDE in h110i

First, the TDE was determined using pure EAM and pure DFT. After that, the TDE was
determined for the alternating EAM-DFT method, with DFT starting at 50, 100, 150 and
200 fs. For pure DFT, the TDE was determined to precision ±0.5 eV, which required 7
simulations. In order to reduce the total simulation cost, the TDE for alternating EAM-
DFT was however determined to precision ±5 eV. The threshold displacement energy in
h110i is given in table (1).

Simulation method TDE [eV]

EAM 45

DFT 97

DFT starting at 50 fs 90-100
DFT starting at 100 fs 90-100
DFT starting at 150 fs 90-100
DFT starting at 200 fs 90-100

Table 1: Threshold displacement energy for replacement collision sequence in h110i from
EAM, DFT, and alternating EAM-DFT.

The threshold displacement energy is more than twice as high for DFT as for EAM. Also,
the TDE for alternating EAM-DFT is near the DFT value at between 90 eV and 100 eV
(not determined more precisely).

3.3 Determination of TDE in h135i and h30, 5, 2i

The threshold displacement energy in h135i and h30, 5, 2i was secondly determined, but
somewhat less detailed than in h110i. The threshold displacement energies are given in
table (2).

Simulation method TDE in h135i [eV] TDE in h2, 5, 30i [eV]

EAM 105 33

DFT >120 40� 50

DFT starting at 50 fs - > 40

DFT starting at 100 fs - 30� 40

DFT starting at 150 fs 115-120 30� 40

Table 2: Threshold displacement energy for replacement collision sequence in h110i from
EAM, DFT, and alternating EAM-DFT.

In h135i, it can be observed that the TDE quite high for all methods, but that the DFT
and alternating EAM-DFT values are higher than the EAM value, up to the precision
of energy sampling. Furthermore, in h30, 5, 2i the TDE is small for all methods, but
somewhat higher for DFT than for EAM and alternating EAM-DFT.
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3.4 Simulation cost

The purpose of the method is to reduce time, and it is therefore relevant to make an
estimate of the simulation cost reduction. The simulation times in core hours is given
in table 3 and 4. The data is limited and should be seen as an example; the actual
time savings is probably dependent on many factors, including the specific simulation
parameters used, energy and direction. Simulation cost reduction would in other cases
probably be both higher and lower than the values given here.

Since the simulations at energies above and below the TDE have different stopping condi-
tions, the typical required physical time differs, more specifically approximately a factor 2
for the parameters and considerations made. Therefore, the simulation time for an energy
above and an energy below the TDE is given for the typical physical time required above
and below the TDE, respectively.

DFT starting time Simulation cost (750 fs cascade) Part of pure
[fs] [core h] DFT cost
0 12650 100%
50 11660 92%
100 8230 65%
150 4990 39%
200 1590 1/8

Table 3: Simulation cost for DFT and alternating EAM-DFT. The values are for sim-
ulations in h110i with PKA energy below the TDE and for the corresponding required
physical time of 750 fs. The simulations based purely on DFT have DFT starting time 0
fs. EAM has comparatively negligible simulation cost.

DFT starting time Simulation cost (1400 fs cascade) Part of pure
[fs] [core h] DFT cost
0 16390 100%
50 23140 141%
100 10200 62%
150 6230 38%
200 3390 1/5

Table 4: Simulation cost for DFT and alternating EAM-DFT. The values are for sim-
ulations in h110i with PKA energy above the TDE, and for the corresponding required
physical time of 1400 fs. The simulations based purely on DFT have DFT starting time
0 fs. EAM has comparatively negligible simulation cost.

The simulation time of MD cascade simulations is dependent on mainly two factors, the
number of ionic steps (commonly referred to as time steps), and the number of electronic
self consistency steps required for convergence in each ionic step.
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As seen in table 3 and 4, the time reduction compared to pure DFT varies greatly de-
pending on the DFT starting time for the alternating EAM-DFT method. For small DFT
starting times, the time reduction is unexpectedly small, but it is also unexpectedly large
for large starting times. Typically, the number of electronic self consistency steps was
either around the preset maximum of 60, in the beginning of cascades, or between 4 and
7, some time after the initial PKA - neutron collision. The physical time for the transition
from many to few electronic steps varied greatly and was method dependent. Alternating
EAM-DFT simulations with small DFT starting time remained for most of the simula-
tion at 50-60 electronic self consistency steps, and the extreme example is the alternating
EAM-DFT simulation in table 4 with 50 fs starting and energy above the TDE, which was
slower than the simulation based purely on DFT. In contrast, the number of electronic
self consistency steps in alternating EAM-DFT simulations with 200 fs starting time was
consistently between 4 and 7 throughout the DFT part of the simulation. The resulting
simulation cost is 1/5 and 1/8 of the pure DFT simulation cost, for energy above and
below the TDE respectively.
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4 Discussion

In the present study, we asked whether it would be possible to substitute parts of a molec-
ular dynamics simulation based on the more accurate DFT method, for the less computa-
tionally costly EAM-method. The EAM poses a number of limitations and considerations
must be undertaken to evaluate under what circumstances losses to computational accu-
racy are tolerable. The qualitative kinetic energy analysis, and the quantitative threshold
displacement energy determinations have provided some insights into this.

4.1 Evaluating alternating EAM-DFT qualitatively

The purpose of the qualitative kinetic energy analysis of displacement cascades was to
get a first estimate of what could be expected of the suggested alternating EAM-DFT
method. For all PKA directions, the alternating EAM-DFT method had good agreement
to the pure DFT. However, in h100i, it was demonstrated that the specific starting point
in the periods of the RCS (i.e. the phase) has influence on the similarity to pure DFT
simulation in high-symmetry replacement collision sequences, with respect to the kinetic
energy time evolution. Also, in h111i, the kinetic energy time evolution was quite similar
between DFT and EAM, more similar than between DFT and alternating EAM-DFT.
The kinetic energy error of alternating EAM-DFT was however constant over time and
only introduced in the EAM-DFT transition.

The fact that the alternating EAM-DFT method appeared to agree well with DFT, and
that EAM and DFT are similar up to at least 150-200 fs, indicated that at least the first
150 to 200 fs of a DFT MD cascade could possibly be substituted to EAM with little loss
of accuracy. This motivated spending more supercomputer time on further investigation
into the accuracy of the alternating EAM-DFT method, more specifically through the
actual sample TDE computations later presented in section (3.2).

4.2 Determination of TDE in h110i

In h110i, the TDE was considerably higher for DFT than for EAM, and the alternating
EAM-DFT was for all DFT starting times verified to give TDE with good agreement
with the DFT value. The reason for the large TDE discrepancy between DFT and EAM
seemed to be that the recombination distance was longer for DFT than EAM. In other
words, the defect pair created at the TDE of EAM would not be stable in DFT. Also, the
interstitial formed at the TDE was of different kind for DFT and EAM (but the same for
alternating EAM-DFT and DFT). For DFT and alternating EAM-DFT, the interstitial
evolved into the h111i crowdion interstitial, whereas for EAM, the interstitial was a h110i
dumbbell. The reason that alternating DFT-EAM had such good agreement with DFT
could therefore be that whether or not a specific defect is stable is largely determined
sometime after the first say 200 fs, when DFT was applied and not EAM. It seems that
the properties of EAM are sufficiently good for high energetic collisions, but lack the
accuracy needed to accurately predict whether or not a defect is stable.
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This kind of differences constitute one of the main reasons why more accurate methods
than EAM are needed. Even quite small details in the EAM potentials have great effect
on the behavior, making them unreliable. It is also remarkable considering the particular
EAM potential used here was developed for defect and radiation damage studies.

4.3 Determination of TDE in h135i and h30, 5, 2i

The direction h135i is often chosen as a typical low symmetry direction. h30, 5, 2i was
chosen as a border direction near the high symmetry direction h100i. It is a direction on
the border to focusing towards the h100i direction, and therefore differences between the
methods could be prominent. However, for both h135i and h30, 5, 2i, the TDE seemed
relatively equal for all methods. In h135i, the TDE was high for all methods (>100 eV),
while for all methods it was in the low end of the scale for h30, 5, 2i.

4.4 Limitations and topics of future study

High computational cost of DFT restricted the number of directions tested for the qual-
itative kinetic energy and TDE comparison. The TDE for the high symmetry directions
h111i, and h100i, was thus not analyzed since replacement collision sequences (RCS) are
quite long at the TDE. The length should not inherently be problematic for the alternating
EAM-DFT method. On the contrary, the similarities between EAM and DFT observed
in the 200 fs long kinetic energy comparison simulations is an indication that more than
the first 200 fs DFT may be substituted for EAM with small resulting TDE discrepancy.
This is particularly probable for h111i, which showed the greatest similarity between DFT
and EAM in the kinetic energy comparison. This direction is also important due to the
large span of lattice directions that through focusing induce RCS:s in h111i. The reason
that TDE was not calculated for h111i was instead that the pure DFT simulations for
the comparison need to be rather long, and with high computational cost through most
simulation since the maximum atom kinetic energy is high for a long time, requiring short
time steps and many electronic self consistency steps (slow convergence). Also, the h111i
direction is particularly sensitive to the thermal movements due to the high symmetry, and
would thus require multiple simulations for the same energy, increasing the computational
cost for the analysis further. The restrictions of the present project did unfortunately not
allow for such time consuming simulations, but it would be interesting to investigate in
future studies.
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5 Conclusions

Judging by the five crystallographic directions considered, the first part of a DFT simula-
tion can be substituted for EAM, without significant loss in the predictive power of DFT,
but with greatly reduced simulation cost. Based on the TDE comparison, the appropri-
ate length that can be substituted appears direction dependent, but for low symmetry
directions, it can potentially be as long as 200 fs. The corresponding simulation cost
is reduced to 1/5 - 1/8 compared to simulation based purely on DFT for the example
direction h110i. From the qualitative kinetic energy analysis, we argue that more time
could be substitutable in the high symmetry directions h100i and especially h111i, due to
the high similarity regarding kinetic energy time evolution and due to the high regularity
of the dynamics. This reasoning includes the relatively large span of directions that due
to focusing induces RCS:s in h111i and h100i. We hope that our work can also inspire
work in other domains where DFT use today is limited due to its high computational
cost; that with informed selection of alternation conditions, substantial improvement in
accuracy and computation time can be obtained.
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A Appendix

A.1 Density functional theory

A.1.1 Ionic problem

For the ionic problem, it is reasonable to assume that the wave properties of the atom
cores can be neglected if the de Brogile thermal wave length,

�
B

=

s
2⇡~2
mkBT

(1)

is much smaller than the mean atomic distance [20]. For tungsten atoms at 300 K, this
corresponds to a distance of 0.074 Å, which is much smaller even than the nearest neighbor
distance, ⇠ 2.2 Å. For DFT in general, this assumption is made, and the ions (atom cores)
are thus treated classically according to newton mechanics,

m ˙r; = �rV (r)

It is not uncommon that in MD simulations, many atoms are initially stationary. Inserting
T = 0K in (1) causes obvious problems, however, the validity of such simulations could be
motivated by that all the important dynamics involve non stationary atoms with kinetic
energies corresponding to sufficiently high temperature.

A.1.2 Electronic problem

In the electronic problem, the electrons are treated quantum mechanically. In the Born
Oppenheimer approximation, the electronic Hamiltonian can be written

ˆH
e

=

ˆT +

ˆV
int

+

ˆV
ext

where ˆT is the electron kinetic energy operator, ˆV
int

is the electron-electron interaction
and ˆV

ext

is the nuclei-electron interaction. The corresponding scalar potentials V
int

and
V
ext

are commonly referred to as the internal and external potential, respectively.

The Hohenberg Kohn theorems [10] provide a relationship between the ground state elec-
tron density n(r̄), the external potential V

ext

, and the total energy E(n). Specifically,
they state that

1. V
ext

is a unique function of n(r̄) , except for a constant.

2. For a given V
ext

, the total energy E(n) assumes its minimal value for the correct
n(r̄).
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The most important consequence of the Hohenberg Kohn theorems is that the many
particle ground state is fully and uniquely determined by the electron density, which in
turn may be determined by minimizing the total energy functional E[n]. Since the explicit
expression of the many particle Hamiltonian (of real, interacting electrons) is unknown,
the theorem cannot be used directly. However, Kohn and Sham [11] provided means of
using the theorem in practice by transferring the exchange and correlation effects of the
Hamiltonian of an interacting electron gas, to an effective potential of a corresponding non-
interacting system. The resulting self consistent equations are the Kohn-Sham equations
[11], and the proof thereof may be summarized as follows:

The total electric energy can be written

E[n] =
D
 | ˆT +

ˆV
int

+

ˆV
ext

| 
E
= T + V

int

+ V
ext

(2)

Next, the total energy functional is written in terms of quantities of a corresponding
non-interacting system (same electron density and external potential) of non-interacting
electrons (primed variables):

E[n] = T + V
int

+ V
ext

= T 0
+ V 0

int

+ V 0
ext

� [(T � T 0
) + (V

int

� V 0
int

) + (V
ext

� V 0
ext

)]

Here, for the non-interacting system, V
ext

= V 0
ext

=

R
v
ext

(r)n(r)dr and V 0
int

=

1

2

RR
n(r1)n(r2)
|r1�r2| dr1dr2

are known. By defining E
xc

= (T � T 0
) + (V

int

� V 0
int

) equation (2) may be rewritten as

E[n] = T 0
+

Z
V
ext

(r)n(r)dr+
1

2

ZZ
n(r1)n(r2)

|r1 � r2|
dr1dr2 + E

xc

Since the ground state is determined by n(r̄) , E
xc

is a functional of n(r̄),

E
xc

=

Z
v
xc

(r)n(r)dr

for some unknown function v
xc

(r). E[n] can then be written as
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In other words, the energy of the real system equals the energy of an imaginary system,
of equal electron density and in an effective potential

v
e↵

= v
ext

(r) +

Z
n(r

2

)

|r� r2|
dr2 + v

xc

(r)n(r)dr
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According to the variational principle, the energy of the non interacting system (and
thus the energy of the interacting system) is minimized for the ground state of the non
interacting system, given by the one particle Schrödinger equations


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+ V
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�
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i

 
i

Using that n(r) =
P

| 
i

(r)|2, the Kohn-Sham equations are
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n(r) =
X

| 
i

(r)|2

These may be solved self consistently from top to bottom by guessing an initial electron
density n(r). Note that the system still contains an unknown exchange-correlating func-
tional, though, in a more practical form than in the many particle Hamiltonian. In the
paper by Khon and Sham in which the Kohn Sham equations were originally derived, ref.
[11], one approximation for v

xc

was presented where the exchange-correlation energy is
locally approximated as that of a uniform electron gas of the same density,

v
xc

(r) = "
xc

(n(r)) (4)

Equation (4) is the local density approximation (LDA). The LDA, which is DFT at its
simplest form, predicts many properties of most compounds accurately despite its sim-
plicity. In a more accurate approximation, the magnitude of the gradient of the electron
density is included, resulting in the generalized gradient approximation (GGA),

v
xc

(r) = "
xc

(n(r), |rn(r)|)

To solve the one electron Schrödinger equations efficiently, there are many possible sim-
plifications due to the applied restrictions (periodic boundary conditions etc.), physical
considerations, and wave function basis choice. The following sections will provide a brief
description of some of them.

A.1.3 Bloch�s theorem

In a periodic potential, the solutions of the Schrödinger equation are restricted to particu-
lar forms. F. Bloch found in 1928 that the eigenstates are products of a plane wave and a
lattice periodic function [21], although an analogous but purely mathematical result was
derived earlier by Gaston Floquet in 1883 [22, 23].

By assuming that the (locally defined) potential is translation symmetric, that is

V (r) = V (r+ g
1

a1 + g
2

a2 + g
3

a3)
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, for any g
1

, g
2

, g
3

2 Z compatible with the crystal size, Bloch showed that the eigenfunc-
tions can be written

 
klm

(x, y, z) = e
2⇡i(

kx

a1g1
+

ly

a2g2
+

mz

a3g3
)

u
klm

(x, y, z) (5)

where u
klm

is a function with the same periodicity as the potential. Since (5) is valid
for any translation coefficients g

1

, g
2

, g
3

compatible with the size of the whole crystal,
in the macroscopic limit, the coefficients 2⇡k

g1
, 2⇡l

g2
, 2⇡m

g3
are arbitrary rational numbers,

which can be approximated as arbitrary real numbers. In vector notation with k :=

2⇡k

a1g1
a1 +

2⇡l

a2g2
a2 +

2⇡m

a3g3
a3 , (5) can be written

 k = eikruk

where k is an arbitrary vector in three dimensional real space.

Even though Bloch assumed a lattice with orthogonal basis vectors, the theorem holds in
general [24]. Fourier expansion of uk gives

 
j

(k, r) =
X

G

C
j,k,Ge

i(k+G)r (6)

Note that G is reciprocal lattice vectors due to the periodicity of u
k

. Thus, any wave
function solution to (3) can be written in terms of the eigenstates (6), and non periodic
systems, such as those in displacement cascades, may be approximated as periodic sys-
tems by using large supercells i.e. periodicity at larger scales than the conventional and
primitive unit cell. Note that the probability density | 

j

(k, r)|2 is as expected, lattice
periodic, with the same periodicity as the unit cell or supercell. To get the full solution,
(6) has to be solved for all j, k (or r) and G, and numeric computations naturally require
appropriate discretization and sampling.

A.1.4 Brillouin zone (k) sampling

Since the reciprocal and lattice {G} satisfies eiGR
= 1 , where {R} is the direct lattice,

plane waves in (6) that differ only by a reciprocal lattice vector are equivalent. Thus, for
sampling k-space, it is sufficient to sample the first Brillouin zone. For a cuboid supercell,
the first Brillouin zone is small and thechnically the brillouin zone of a simple orthorombic
lattice, the supercell together with the periodic boundary conditions constitutes a simple
orthorombic lattice with rather complicated atoms basis. Because of the inverse relation
between simulation cell and brillouin zone size, treating just one k-point, the gamma
point, is often sufficient for large supercells [25].
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A.1.5 Plane wave (G) sampling

For each k-point, there is an infinite number of plane waves corresponding to different
G-points. Since the wave function oscillates most at the core region, an approximation
implemented in VASP [14] is to choose a basis for the wave function in the interstitial
region consisting of waves that fulfill

~
2m

2

|G+ k| < E
cut

for an energy cutoff E
cut

[16]. The core region, where the wave function generally has
higher frequencies, is typically treated separately, see the PAW-method below.

For accurate numeric calculations, the number of terms in the serial expansion has to
be restricted to a finite (and unlike the original set, bounded) subset of G-vectors corre-
sponding to the physically most important plane waves . U. von Barth et al. showed that
the strong oscillations are due to core states and of less significance for the interatomic
interactions [26].

A.1.6 The PAW-method

There are several ways of representing the wave function for effective and accurate com-
putations, and one of the more common is the projector augmented wave method (PAW)
[27]. It is based on plane wave expansions in the interstitial region, with atomic orbitals
in the core region.
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